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Physical strength and endurance of an individual are vital for athletic
performance, and minimizing the risk of injuries, especially during competitions.
Other than training and diet, athletic performance is determined by genetic
factors or heredity, which is less focused in sports science research. Genetic
factors play a crucial role in greater cardiovascular endurance and muscular
phenotypes, and thereby contribute to athletic success. Several genes and
different polymorphisms are positively/negatively associated with athletic
performance. This review delved into the intricate role of several genes and
polymorphisms in different-population groups, and explored their impact on
an individual’s ability to engage in athletic activities. Among several identified
genes, the prominent genes, including ACE, AGT, BDKRB2,NOS3,HIF1A, ACTN3,
AMPD1, PPARGC1, SOD2, BDNF, VDR and mtDNA are discussed in this study.
These genes have been reported to play indispensable roles in endurance
performance and power. Furthermore, genetic variations/polymorphisms
within these genes are potential to impact various aspects of physiology,
including cardiovascular function, muscle fiber composition, and metabolic
efficiency. Genetic polymorphisms are recognized as contributing factors in
determining the athletic capacity to engage and perform sustained physical
activities in their respective sports. We emphasized the noteworthy discoveries
from the existing literature, and precisely explored the association between
particular gene polymorphisms and athletic prowess, with a specific focus on
endurance-oriented sports (running, cycling, and swimming) and power sports.
Understanding the genetic variations and their influence on endurance/power
sports can offer valuable insights for athletes, coaches, and scientists in sports
sciences, who strive to enhance athletic training strategies and performance
outcomes in achieving success.
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Introduction

Endurance performance of an individual is influenced by several
factors, and heritability is one of the important determinants.
Genetic factors play a key role particularly in cardiovascular and
muscular strength, and in the achievement of athletic success.
Therefore, a favorable genetic profile is crucial for elite athletic
performance and winning the competitions (Guth and Roth, 2013).
According to research, the heritability values for performance-
related characteristics to elite athletes are approximately 50% for
optimum oxygen uptake (VO2max), 42%–46% for cardiac output,
40%–50% for muscle fiber type proportions and 67% for explosive
muscle power (MacArthur and North, 2005). Therefore, it is
advantageous to have a proper genemix that is beneficial for athletes,
particularly in terms of muscular strength and endurance. It is
also said that favorable gene profile with appropriate training is
advantageous for greater performance and athletic success (Guth
and Roth, 2013). A recent meta-analysis identified a total of 50
genes and 94 different polymorphisms that are associated with
various athletic characteristics, including endurance, strength, speed
and power (Ferreira et al., 2024).

In addition to being a crucial component in many sports,
endurance-related factors are also linked to excellent health and low
mortality. The ability of an organism to perform a certain task for a
prolonged period of time and remain active for a maximum period
of time as well as its ability to resist, withstand and recover from,
and have the immunity to battle trauma, wounds or fatigue is termed
as endurance (Wan et al., 2017). Endurance usually comes into play
in aerobic and resistance exercises. We should define each step to
properly comprehend how the phases of exercises differ from one
another. A group of long-lasting muscles may deliver sub-maximal
force over an extended period of time or through repeated activities,
the ability of the muscles to perform continuously without breaking
down is necessary for endurance, and the metabolic system must
be able to keep up with the removal of waste and supply of energy
(Alghannam et al., 2021). These two systems should be “firm” in a
way that allows them to continue operating for an extended period,
but not always at a high level of intensity. Vitality is the ability of a
specific group ofmuscles to generate their greatest amount of energy
against an obstruction in a single motion. Energy is the ability of a
group of muscles to produce their greatest amount of power in the
least amount of time (Douglas et al., 2021).

There are mainly two types of physical endurances, such as
cardiovascular endurance, and muscular endurance. Circulatory
system has the potential for cardiovascular endurance, including
the heart and lungs, to function for an extended period during
activities like running, jogging, swimming, cycling, dancing and
other similar sports. Heart and lungs work in tandem to supply
the oxygen to muscles, make sure that an individual has everything
that needed to complete the workouts. The Cooper Run (running
as far as feasible in 12 min) is a popular test for determining the
cardiovascular endurance (Cooper, 1968), however many trainers
prefer the Step Test (stepping onto a platform for 5 min). These
tests provide reliable assessments of cardiovascular endurance of an
individual. The sports like football, hockey, and marathon running
are popular in this category. The endurance of muscles is the ability
to contract muscles for an extended period. For instance, during
cycling, the leg muscles are exercised for minutes as compared to

lifting or carrying something, in which muscles exercised just for a
few seconds.

Exercise execution is a complicated attribute that influenced by
a variety of contextual factors, including gender, social standing,
training, and diet. However, innate traits, including genetics, also
significantly influence the likelihood of developing into a human
with high physical endurance (Eynon et al., 2013). This is because
genes can influence muscular and cardiorespiratory functions, as
well as responsiveness to the training stimuli, hence altering physical
endurance (Rankinen et al., 2010). Athletic performance is mainly
determined by the oxygendelivery, energy production, and recovery.
These processes are tightly regulated by the genes involved in the
metabolic efficiency, hypoxia response, cardiovascular regulation
andmuscle function. According to findings from theHeritage Study,
the variance of key human endurance-related characteristics is likely
50% based on DNA genetic variations, meaning that the other
50% dependents on environmental variables, such as endurance
exercise and diet (Simoneau and Bouchard, 1995). Genome-wide
association studies (GWAS) have identified several genetic markers
and polymorphisms that are associated with athletic performance
traits, such as endurance, power, and strength. However, the direct
physiological mechanisms by which these genes/polymorphisms
influence athletic performance remain incompletely understood
(Al-Khelaifi et al., 2019; Bıçakçı et al., 2024; Wang et al., 2022).
An updated review stated that about 66% of variance in athletic
status is associated with genetic factors, and the remaining variance
is associated with other environmental factors, including diet,
regular training, ergogenic aids and availability of medical and
social support (Semenova et al., 2023). Although different genetic
polymorphisms are reported to influence the athletic performance,
a recent meta-analysis emphasized the need of future studies to
explore the influence of polymorphisms in elite athletes from
different background and sports disciplines (Ferreira et al., 2024).
The published reviews till date are mainly focused on any one of the
above physiological phenomena with few genes or polymorphisms.
Although some reviews addressed the role of important genes,
many of these reviews limited to emphasize the influence of gene
polymorphisms on both endurance and strength of athletes from
different population groups. The present review is a comprehensive,
an updated and focused on every aspect of above-mentioned
physiological adaptations across different population groups from
different sports disciplines.

Genes in endurance, power and
strength performance

In the recent decades, several studies focused on attempting
to understand the genetic influence on sports performance.
Identification of key genetic variants that involved in endurance
performance may help differentiate between elite and non-elite
athletes. In this process, several gene variants have been identified
to be associated with endurance performance and power-related
performance (Semenova et al., 2023; Pickering and Kiely, 2017). The
important genes involved in cardiovascular functions (ACE, AGT,
BDKRB2, NOS3, HIF1A), muscle function and energy metabolism
(ACTN3,AMPD1, PPARGC1, mtDNA), protection against oxidative
stress (SOD2), neuro-muscular coordination (BDNF), and bone
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FIGURE 1
Genetic polymorphism associated with endurance and strength.

health (VDR) are known to determine the endurance and power in
athletes (Figure 1; Table 1, 2). The other alleles, including ACTN3
rs1815739C (Dogan et al., 2022; Bulgay et al., 2023), androgen
receptor (AR) with ≥21 CAG repeats (Guilherme et al., 2021),
LRPPRC rs10186876 A (Kikuchi et al., 2021), MMS22L rs9320823T
(Semenova et al., 2023; Kikuchi et al., 2021), PHACTR1 rs6905419 C
(Semenova et al., 2023; Kikuchi et al., 2021), andPPARG rs1801282G
alleles (Semenova et al., 2023) are involved for muscular strength.
Themost recentmultiethnic GWAS conducted onworld-class sprint
and power athletes from West African and East Asian ancestry has
uncovered a significant association of G-allele of rs10196189 in
polypeptide N-acetylgalactosaminyltransferase 13 (GALNT13) with
elite sprint and power perform compared to their geographically
matched controls (Wang et al., 2025). Herewe explored the influence
of individual gene polymorphisms on athletic performance of
different population groups.

Angiotensin-converting enzyme (ACE)

The angiotensin converting enzyme (ACE) is the gene that most
frequently investigated in relation to inherited physical endurance.
This gene is responsible for encoding the angiotensin I-converting
enzyme. The gene’s product is an essential part of the renin-
angiotensin system (RAS), which regulates blood pressure, and
plays a significant role in the overall efficacy of the body. One
of the important genes associated with endurance performance
is an insertion (I)/deletion (D) polymorphism (rs4340) in the
ACE gene. Angiotensin I-converting enzyme activity in the blood
is specifically associated with the insertion (I) rather than the
deletion (D), which is associated with a higher level of endurance
(Cieszczyk et al., 2009). Despite the ACE I allele being located
within a non-coding intronic region, the insertion of an Alu
sequence appears to impose transcriptional suppression, potentially
via mechanisms, such as chromatin remodeling or interference
with enhancer activity. This results in decreased ACE mRNA levels,
leading to reduced enzymatic activity and decreased synthesis

of angiotensin II, while concurrently maintaining bradykinin
levels. The molecular mechanisms promote vasodilation, enhance
skeletal muscle perfusion, and increase oxygen availability, thereby
corroborating the noted correlations between the I allele and
improved endurance performance. Nevertheless, the magnitude of
this effect is relatively modest, and it’s influenced by additional
factors such as training, environmental conditions, and polygenic
interactions (Wu et al., 2013). A decrease in ACE activity results in a
concomitant decrease in vasoconstriction, leading to an augmented
supply of oxygenated blood to the actively contracting muscles
(Sutar et al., 2024). Consequently, the existence of the I allele, which
is related with reduced ACE activity, can be regarded as a favorable
genetic mutation. Therefore, it is hypothesized that athletes who
possess the I allele or have the II genotype may demonstrate a
greater propensity for improved performance in endurance-focused
athletic activities, such as running, cycling, and swimming. This is
due to the crucial role of oxygen demand in these endeavors. The
I allele and II genotype have been found to exhibit associations
with divergent athletic performance characteristics, specifically in
terms of speed/power versus endurance sports, as elucidated by a
multitude of investigations involving elite athletes. The observed
phenomenon elucidates a notable augmentation in the frequency
of the I allele within a cohort of British athletes of Olympian
caliber. Specifically, the aforementioned genetic variant exhibited an
escalation from 35% among sprinters engaging in events exceeding
200 m, to a substantial 65% among distance runners participating
in events surpassing 5,000 m (Myerson et al., 1999). It was
observed that the short distance group of Russian athletes, including
swimmers, skiers, triathletes, and track and field participants,
exhibited a surplus of the D allele, accounting for approximately
72% of the observed alleles. Conversely, the middle distance group
displayed an excess of the I allele, constituting approximately 73%
of the observed alleles (Nazarov et al., 2001). According to the study
conducted by Scanavini et al. (2002), a significantly lower percentage
of anaerobic athletes in Italy, specifically 5.3%, possessed the II
genotype, in contrast to the 33% of aerobic athletes.This finding was
determined through the examination ofVO2max andOlympic ability,
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TABLE 1 Genetic markers and their associations with athletic traits.

Genetic marker Allele Athletic trait Association References

ACE I/D Endurance I/I associated with higher
endurance performance

Myerson et al. (1999)

AGT 235 Thr Blood pressure regulation 235 Thr/Th associated with
higher blood pressure

Rankinen et al. (2000b)

BDKRB2 I/D Blood flow regulation Variations associated with
endurance performance

Williams et al. (2004)

NOS3 G894T Nitric oxide production T/T associated with improved
endurance performance

Saunders et al. (2006b)

HIF1A Pro582Ser Anaerobic glycolysis Pro/Pro associated with
sprinters, Ser/Ser with strength

Cieszczyk et al. (2011)

ACTN3 R577X Muscle fiber composition R/R associated with sprint
performance, X/X with
endurance

Pickering and Kiely (2017),
Kim et al. (2014)

AMPD1 34C>T Muscle energy metabolism 34C/C associated with elevated
AMPD activity

Rubio et al. (2005)

PPARGC1 rs8192678
Gly482Ser

Endurance Ser allele associated with
endurance

Yvert et al. (2020)

mtDNA Various haplogroups Endurance and Power Specific haplogroups linked to
improved endurance or Power

Table 2

SOD2 Ala16Val Oxidative stress Val/Val associated with muscle
injury

Ahmetov et al. (2014)

BDNF rs10501089 Fast-twitch muscle fibers A-allele is more in power
athletes than in endurance
athletes

Guilherme et al. (2022)

VDR rs10735810 Bone mineral density T/T associated with increased
bone mineral density

Haussler et al. (2011)

shedding light on the genetic variations between these two groups
of athletes (Scanavini et al., 2002). The Finnish research conducted
by Rankinen, et al., yielded congruent results, wherein athletes were
categorized based on their maximal oxygen consumption levels.
This categorization encompassed individuals engaged in cross-
country skiing as well as running activities. The findings suggest a
potential correlation between the allele and individuals engaged in
endurance-based athletic activities (Rankinen et al., 2000a).

In terms of the distribution of ACE polymorphisms, it is
noteworthy that the genotype frequency exhibited no considerable
differences between the athletes and the controls. Specifically,
among the female soccer athletes, the II genotype was observed
in 40% of individuals, the ID genotype in 46.7% of individuals,
and the DD genotype in 13.3% of individuals. Similarly, among
the controls, the II genotype was present in 42% of individuals,
the ID genotype in 48% of individuals, and the DD genotype in
10% of individuals. There was an absence of discernible disparity in
the frequency of the I/D allele between the cohort of athletes and
the group serving as a control (Wei, 2021). A study on the British
Olympic-standard runners reported a positive association of ACE

I allele with elite endurance performance. This was convinced by
a greater I allele frequency among longer distance runners than
controls (Myerson et al., 1999). The prevalence of the ACE DD
genotype among young Columbian athletes engaged in strength-
based athletic activities was observed to be approximately two-fold
and 1.5-fold greater in comparison to those involved in endurance-
based athletic activities and individuals from the control group,
respectively. This observation implies that the ACE DD genotype
exhibits a higher prevalence among individuals engaged in strength-
based athletic activities compared to the remaining two cohorts
(Ortiz et al., 2022). In contrast to this Iranian endurance athletes
exhibited a higher frequency of the D allele (63.5%) compared to
the control group (45.1%) (Shahmoradi et al., 2014). A latest study
on Brazilian athletes revealed the higher frequency of ACE DD
genotype in strength experts of elite group, and higher frequency
of ACE ID genotype in strength expert sub-elite athletes. This study
further emphasized that the DD homozygotes of theACE belongs to
elite group with strength phenotypes than the group of sub-elite and
elite strength experts compared to elite endurance (de Albuquerque-
Neto et al., 2024). Additionally, Brazilian football players possessing
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TABLE 2 Association of mitochondrial DNA haplogroups with endurance and power in different population groups.

Haplogroup Population Relationship with
endurance or power

References

Haplogroup L Kenyan Haplogroup L0 ↑, L3 ↓ in endurance
athletes

Scott et al. (2009)

Haplogroup M Korean Haplogroup M ↑ in endurance athletes Kim et al. (2012)

Haplogroup G Japanese Haplogroup G1 ↑ in endurance athletes Mikami et al. (2011)

Haplogroup N Korean Haplogroup N9 ↑ in endurance athletes Kim et al. (2012)

Haplogroup I Finnish Haplogroup I ↑ in endurance athletes
and but not seen in sprinters

Niemi and Majamaa (2005)

Haplogroup H

Spanish Haplogroup H ↑ higher VO2max and
higher mitochondrial damage during
cycling exercise

Martínez-Redondo et al. (2010)

Polish, Spanish and Finnish Haplogroup H ↑ endurance than power Maruszak et al. (2014), Castro et al.
(2007), Martínez-Redondo et al. (2010)

Haplogroup V Spanish Haplogroup V ↑ in endurance athletes,
but not in power athletes

Nogales-Gadea et al. (2011)

Haplogroup J

Spanish Haplogroup J ↓ lower VO2max and lesser
stamina during cycling exercise

Martínez-Redondo et al. (2010)

Finnish Haplogroup J ↓ in endurance
performance

Kiiskilä et al. (2021)

Iranian Haplogroup J ↑ in elite athletes Arjmand et al. (2017)

Finnish Haplogroup J2 ↑ in sprinters but not
seen in endurance athletes

Niemi and Majamaa (2005)

Haplogroup T Spanish Haplogroup T ↓ in endurance athletes Castro et al. (2007)

Haplogroup F Japanese and Korean Haplogroup F ↑ in power athletes Hwang et al. (2019), Mikami et al.
(2011)

Haplogroup B Korean Haplogroup B ↓ in endurance athletes Kim et al. (2012)

Haplogroup U Iranian Haplogroup U ↓ in elite athletes Arjmand et al. (2017)

Haplogroup K

Finnish Haplogroup K ↑ in sprinters but not
seen in endurance athletes

Niemi and Majamaa (2005)

Finnish and Polish Haplogroup K ↓ in endurance
performance

Maruszak et al. (2014), Kiiskilä et al.
(2021)

theDD genotype demonstratedwith enhanced sprinting capabilities
(Coelho et al., 2022). However, in Moroccan elite cyclists and field
hockey players, ACE I/D is not associated with the risk of non-
contact injury, suggesting that this genetic variant does not influence
injury susceptibility in athletic population (El Ouali et al., 2025).

Angiotensinogen (AGT)

The hepatic organ facilitates the synthesis of a vital protein
known as angiotensinogen (AGT), which plays a crucial role in the

renin-angiotensin aldosterone system. Upon the enzymatic action
of renin, the substrate AGT undergoes cleavage by ACE, resulting in
the formation of a distinct molecular entity known as angiotensin
I (MacArthur and North, 2005). The angiotensin I does not exhibit
biological activity in its current form.Nevertheless, angiotensin I has
the potential to undergo subsequent enzymatic conversions, leading
to the formation of angiotensin II (MacArthur and North, 2005;
Crisan and Carr, 2000). This particular peptide plays a pivotal role
in the regulation of blood vessel resistance and renal or sodium
homeostasis in the human body, and thereby exerting a profound
influence on the overall blood pressure dynamics (MacArthur and
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North, 2005). The elevated concentrations of AGT in the circulatory
system induce an upsurge in the synthesis of angiotensin II, and
thereby culminating the manifestation of hypertension (Da Eira,
2024). In a rodent experimental model, it was observed that the
injection of AGT elicited a notable rise in the mean arterial
blood pressure (Rodrigues et al., 2023). This increase was found
to be directly proportional to the dosage of AGT administered,
thereby establishing a dose-dependent relationship between the
variables (Klett et al., 2001).

The AGT protein is derived through the process of protein
synthesis, originating from the AGT gene. This particular gene
is situated on chromosome 1q42.2, a specific region within the
first chromosome (Shahid et al., 2022). The M235T (rs699)
polymorphism in AGT is the most important gene of RAS,
and associated with athletic status and performance. The AGT
M235T polymorphism is characterized by a missense mutation,
wherein a T to C substitution at nucleotide 704 leads to an
amino acid alteration from methionine (M) to threonine (T) at
the 235th position of the angiotensinogen protein (Makuc et al.,
2017). This alteration does not directly influence the enzymatic
function of the protein; however, it is associated with heightened
transcriptional activity of AGT gene, resulting in increased plasma
concentrations of angiotensinogen, which serves as the substrate
for renin within the RAS. As a result, there is an augmented
synthesis of angiotensin I, which is subsequently converted into
its biologically active form, angiotensin II (Brasier et al., 1999).
This compound serves as a powerful vasoconstrictor and plays a
critical role in the regulation of sodium retention, maintenance
of fluid homeostasis, and the process of vascular remodeling
(Brasier et al., 1999; Fountain et al., 2025).

Individuals possessing the TT genotype (a homozygous for
the threonine variant of AGT gene), consistently exhibit elevated
expression levels of the AGT gene as well as increased circulating
concentrations of angiotensinogenwhen compared to thosewith the
MM genotype. The T allele is classified as a gain-of-function allele,
which leads to an increase in RAS activity (Jeunemaitre et al., 1992;
Puthucheary et al., 2011b; Bloem et al., 1997). This enhancement
may improve cardiovascular efficiency, optimize oxygen delivery,
and aid in the regulation of blood pressure elements that
could contribute to power, strength, and potentially endurance
performance. This phenomenon may also result in an increased
left ventricular hypertrophy as a response to training, which can
be beneficial for elite power athletes (Montgomery et al., 1998;
Gomez-Gallego et al., 2009). The ‘heritage family study’ showed
remarkable findings regarding the correlation between diastolic
blood pressure andAGT Met235Thr polymorphism among middle-
aged sedentary normotensive women. The findings concluded that
the AGT M235T polymorphism is associated with body fatness,
and the correlation between gene polymorphism and diastolic
blood pressure is linked with fat mass in middle-aged sedentary
normotensive women (Rankinen et al., 1999; Rankinen et al.,
2000b). Genetic studies have suggested that increased ACE and
angiotensin II serve as a skeletal muscle growth factors that further
beneficial in improving the strength and power-related sports
(Jones and Woods, 2003).

The TT genotype of M235T (rs699) polymorphism of the ATG
gene reported to correlate with higher levels of angiotensin II,
and increased blood pressure at rest as well as in response to

intense exercise (Rankinen et al., 2000b). Previous investigation
revealed that there were no notable disparities observed in the
frequencies of AGT Met235Thr genotypes between Spanish elite
athletes and the control group (Alvarez et al., 2000). A study
conducted on Polish athletes revealed that the M235T (rs699)
polymorphism in the AGT gene is associated with power but
not associated with endurance performance (Zarebska et al.,
2013). Another study on Polish Caucasian women has shown
that the M235T genotype was associated with an improved single
squat and average height of countermovement jumps, but no
association was noticed for Wingate peak power and sprint running
time (Aleksandra et al., 2016). Among 15 AGT polymorphisms,
the AGTR2 C allele (rs11091046) carries of the angiotensin II,
is reported to be associated with skeletal muscle development
(increased proportion of slow-twitch muscle fibers), endurance
athlete status and aerobic performance in Caucasian athletes
(Mustafina et al., 2014).TheC allele rs699 showed a good correlation
to power performance, probably by the increased angiotensin II
in resistance training male Caucasians (Ellis et al., 2017). A recent
meta-analysis addressed the important role of gene polymorphisms
in power athlete status, and highlighted that AGT rs699 Thr allele
was significantly dominant in power athletes (Ipekoglu et al.,
2023). Contrary, a latest meta-analysis stated that allele and
genotype frequencies for AGT gene polymorphism were not
significantly differ between control adults and endurance athletes
(İpekoğlu et al., 2024).

It is important to note that both ACE and AGT genes are
the part of the RAS linked with the cardiovascular function and
muscle physiology. The individuals with the D allele of ACE ID
polymorphisms are known to possess higher ACE activity that
contribute to strength and power to performhigh-intensity activities
(Coelho et al., 2022; D et al., 2019). The M268T polymorphism of
AGT gene involves a change of amino acid from methionine to
threonine at position 268, and thereby accounts for 15%–40% of
the variation in plasma angiotensinogen levels (Inoue et al., 1997).
Carriers of Thr/Thr genotype (AGT) are reported to have higher
levels of angiotensin II, and have an advantage in power and strength
sports than that of individuals with other genotypes (Met/Met.
Met/Thr) (Gomez-Gallego et al., 2009; Maciejewska-Skrendo et al.,
2019). Hence the interaction between these polymorphisms may
also determine the performance of an athlete. For example, the
combined effect of ACE I/D and AGT Met268Thr polymorphisms
significantly influences the modulation of endurance and strength
phenotypes, primarily through their impact on the RAS, a
critical regulator of blood pressure, fluid balance, and muscle
perfusion (Alvarez et al., 2000; Puthucheary et al., 2011a).
The carriers of insertion genotype (II) of ACE and Met/Met
genotype of AGT gene may excel in endurance sports due to
enhanced cardiovascular efficiency. In contrast, the carriers of
ACE DD genotype and AGT genotype may show increased
muscle performance and contractility, which is an advantage in
strength and power-oriented sports (Gomez-Gallego et al., 2009).
However, the joint contribution of ACE and AGT Met268 Thr
polymorphisms remains counterseal due to the clear racial
difference in the serum angiotensinogen level. This gene-gene
interaction serves as a prime example of the polygenic characteristics
inherent in athletic performance, underscoring the significance
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of integrated genetic profiles rather than relying solely on
single-marker associations.

Bradykinin 2 (BDKRB2)

Bradykinin 1 (BDKRB1) and the bradykinin 2 (BDKRB2)
receptors are two distinct two-cell surface receptors via which
bradykinin functions. The BDKRB2 is also known as B2R, BK2, BK-
2, BKR2 or BRB2. The BDKRB2, which has a strong affinity for
kallidin (Lys-BK) and BK, is primarily responsible for mediating
most physiological processes upon activation (Rex et al., 2022). The
bradykinin 2 receptor or B2R is an essential G protein-coupled
receptor (GPCR), which regulates the cardiovascular system as a
vasodepressor. The bradykinin protein is involved in regulation
of several key processes, such as cell proliferation, inflammation,
smooth muscle contraction, glucose metabolism, oedema, pain, and
modulation of vascular function (Rex et al., 2022; Shen and Zhang,
2023). The activation of BDKRB2 causes greater skeletal muscle
glucose uptake during exercise, increase blood flow in muscles, and
thereby improve physical endurance performance (Williams et al.,
2004). It has been documented that the human BDKRB2 is consisted
359 amino acids and its molecular weight is 41 kDa (Prado et al.,
2002). The single-copy gene that codes for BDKRB2 is found on
chromosome 14q32 and expressed in the majority of human tissues.
The coding sequence is thought to be situated in exons 2 and 3 of
the human BDKRB2 gene, which is predicted to have a three-exon
structure (Ma et al., 1994; Grenda et al., 2014).

The BDKRB2 plays a significant role in muscle physiology.
Genetic variations in BDKRB2 have been associated with athletic
performance. About the gene sequence, several investigations have
found three polymorphisms in each exon and one in the promoter
region. The insertion/deletion polymorphism (−9/+9, rs5810761)
in exon 1 has been extensively studied in relation to genotypes
and athletic status, as well as their association with cardiovascular
diseases and hypertension (Fu et al., 2004; Saunders et al., 2006a).
In contrast to the presence of a nine base pair (bp) repeat (+9),
the absence of a nine base pair (bp) repeat (−9) is linked to
heightened gene transcriptional activity, higher mRNA expression,
and enhanced receptor activity in exon 1 of the BDKRB2 gene
(Lung et al., 1997). The −9 allele may thus be associated with
improved skeletalmusclemetabolic efficiency and higher endurance
athletic performance (Williams et al., 2004; Brull et al., 2001).
The BDKRB2 receptor polymorphisms, −9 allele is associated with
endurance phenotype in competitive swimmers (Zmijewski et al.,
2016), while +9 allele is reported to be overexpressed in eastern
European athletes. (Sawczuk et al., 2013). It is further stated that
there was no association between BDKRB2 -9/+9 polymorphism
and athletic status in two cohorts of eastern European athletes
(Sawczuk et al., 2013). The -9-9 genotype of rs5810761 which
is rare, was found to be linked with increased skeletal muscle
contraction efficiency in healthy individuals (Williams et al.,
2004), and overexpressed levels were reported in Iron-man athletes
(Saunders et al., 2006a). Latest study investigated the association
BDKRB2 variants with physical performance and muscle mass
among older adults with low grip strength and low gait speed. The
findings revealed that the rs5810761 -9-9 genotype was associated
with lower arm fat mass, while the rs1799722TT genotype was

associated with longer 6-minute walk distance and greater leg
muscle mass among older adults (Shrestha et al., 2024).

Nitric oxide synthase (NOS3)

Nitric oxide (NO) is identified as the most efficacious relaxation
factor originating from the endothelium, characterized by its
gaseous free radical nature (Félétou, 2011). The family of three
enzymes, known as nitric oxide synthase (NOS) facilitates the
conversion of arginine into nitric oxide. In comparison to
neuronal nitric oxide synthase (nNOS, NOS1) and endothelial
nitric oxide synthase (eNOS, NOS3), the inducible nitric oxide
synthase (iNOS, NOS2) is often not constitutively expressed
but can be induced in reaction to stress (Vecoli, 2014). An
expanding corpus of research suggests that NO may partake
in a multitude of physiological mechanisms that are pivotal for
enhancing both aerobic and anaerobic efficacy. These mechanisms
encompass glucose metabolism, specifically the uptake of glucose
by human skeletal muscles during exercise. Additionally, NO is
implicated in regulating the structure and function of skeletal
muscles, facilitating the conversion of skeletal muscle fiber types,
promoting mitochondrial ATP production, and influencing oxygen
consumption within skeletal muscles (Gao, 2010). Furthermore, NO
plays a vital role in the preservation, rejuvenation, and regulation of
the myocardium’s oxygen utilization. Within the context of skeletal
muscle, it is noteworthy to mention the identification of two distinct
isoforms of NOS, namely, nNOS and eNOS. The predominant
isoform identified in skeletal muscle is nNOS, whereas eNOS is
primarily localized in endothelial cells and primarily functions in
the regulation of vascular tone.

The NOS3 gene, situated on chromosome 7 at the 7q36
locus, is responsible for the production of the endothelial NOS
(referred to as eNOS or NOS3). The genetic sequence, spanning
approximately 21 kilobases of genomic DNA, consists of 26 exons
and is responsible for encoding a protein comprising 1203 amino
acids in length (Marsden et al., 1993). Following an extensive
examination of the NOS3, a multitude of polymorphic sites have
been unearthed through a meticulous polymorphism screening
process.The extensively researched and commonly observed genetic
variations of the NOS3 gene in exon 7 encompass the promoter-
786T/C (rs2070744), G894T (also known as Glu298Asp or E298D
or rs1799983), as well as the variable number tandem repeats
(VNTR) and microsatellite (CA)n repeats located in intron 13,
along with the 27 bp repeats situated in intron 4. The NOS3
variants, specifically −786T/C and G894T, have been associated
with various aspects of athletic performance. Research conducted
by Saunders et al., on Caucasians, has demonstrated that G894T
NOS3 gene polymorphisms is associated with actual performance
during the Ironman Triathlons, as well as the status of being an
elite endurance athlete (Saunders et al., 2006b). Similarly, Gómez-
Gallego and colleagues found a connection between these variants
and power athlete status (Gómez-Gallego et al., 2009). The Glu/Glu
genotype of NOS3 is associated with greater lower limb strength
and power, especially among elite soccer players occupying attacker
and defender positions, indicating that theGlu298Glumay influence
role-specific athletic performance (Petr et al., 2022). Furthermore, a
study by Eynon et al. discovered a link between these variants and
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statuses of football player statuses (Eynon et al., 2012), as well as with
the differentiation of elite power from endurance athletes (Gómez-
Gallego et al., 2010).

Researchers have found that the NOS3 −786T/C polymorphism
in the promoter region of the eNOS gene influences its expression
and NO production (Tanus-Santos et al., 2002; Oliveira-Paula et al.,
2016). These changes in eNOS could help to preserve vascular
function and supply oxygen during exercise (Tran et al., 2022).
The T allele of this polymorphism links to increased eNOS activity
due to increased interaction between transcription factors like
activator protein 1 (AP-1) and nuclear factor-κB (NF-κB), and the
promoter region (Oliveira-Paula et al., 2016; Maurer et al., 2020).
This interaction boosts eNOS gene transcription. The increased
expression of eNOS increases NO generation, a potent vasodilator
that improves blood flow and oxygen delivery to skeletal muscles
during exercise. The T allele’s effect on eNOS activity may improve
endurance performance by improving vascular function and oxygen
supply, especially during prolonged physical activity. However,
this polymorphism’s effect on athletic performance is complex,
and perhaps affected by other genetic and environmental factors,
like training, food, and oxygen supply (Vostrikova et al., 2022).
Physical prowess associated with the T allele of theNOS3 c.-786T/C
polymorphism (rs2070744) includes both power and endurance
(Gómez-Gallego et al., 2009) because it improves the efficiency
with which the cardiorespiratory systems work during exercise
(Varillas et al., 2021). However, the polymorphism c.894G/T
(rs1799983) T allele is a genetic associated risk for developing
hypertension (Xin et al., 2009). In Spanish athletes, the −786T
allele was found to be more prevalent (71%) among power athletes
compared to endurance athletes (55%), with a statistical significance
of P = 0.003. In a study, it was observed that elite football
players possessing the −786C allele exhibited odds ratios varying
from 1.879 to 4.032 when compared to other groups (Gómez-
Gallego et al., 2009).

In a more precise manner, it is worth noting that there exist
notable disparities in the occurrence rate of the NOS3 786T/C T
variant, with percentages of 75.4% and 65.0% observed among
Ukrainian athletes who emphasize endurance activities and the
control group, respectively (Drozdovska et al., 2009). According to
the study conducted by Gómez-Gallego et al., it was observed that
both Spanish world-class endurance athletes and controls exhibited
an equivalent frequency of the NOS3 786T/C T variant (Gómez-
Gallego et al., 2009). Based on the findings presented by Drozdovska
et al., it was observed that Ukrainian athletes with a power-oriented
focus exhibited a significantly higher occurrence of the NOS3
786T/C T allele in comparison to the control group. The findings
of these investigations were supported by two distinct studies, one
involving elite Spanish athletes with a focus on power-oriented
activities and non-athletic controls, and the other involving Italian
power-oriented athletes (Drozdovska et al., 2013).

Hypoxia-inducible factor 1α (HIF1A)

The process of glycolysis holds a crucial role as the primary
source of energy in the absence of oxygen in humans. This
metabolic pathway is regulated by a transcription factor known
as ‘hypoxia-inducible factor 1α (HIF1α)’, which is encoded by a

gene called HIF1A located on the 14q23.2 chromosome (Škrlec and
Kolomeichuk, 2024). The HIF1α helps to regulate glycolysis in low-
oxygen conditions (Basheeruddin and Qausain, 2024). Numerous
genes involved in various physiological processes, including the
metabolism of glucose, which includes glucose transporters and
glycolysis-related enzymes, are controlled by HIF1α. In exon 12
of the HIF1A gene, there is a common genetic variation called
Pro582Ser, which involves a change from a proline to a serine
amino acid at position 582 due to a C/T change at bp 85 (also
known as rs11549465) (Semenza, 2012). The T allele, which is less
common, leads to an alteration that enhancesHIF1α protein stability
and transcriptional activity, consequently, may enhance glucose
metabolism. The Ser allele (T allele) demonstrates a correlation
with enhanced stability and transcriptional activity of the HIF-
1α protein, even under normoxic conditions (Tanimoto et al.,
2003; Keith et al., 2011). The increased activity diminishes protein
degradation, facilitate accumulation of HIF-1α, which subsequently
translocate to the nucleus to activate genes that play crucial roles
in oxygen transport and energy metabolism, including angiogenesis
and erythropoiesis, and several glycolytic enzymes (Tanimoto et al.,
2003; Forsythe et al., 1996; Zimna and Kurpisz, 2015).

The aforementioned adaptations have the capacity to enhance
capillary density, optimize oxygen delivery, and increase metabolic
efficiency, thereby presenting potential benefits for endurance
performance. Nonetheless, the impact of this polymorphism
is complex and likely contingent upon various environmental
factors, including altitude, training regimens, and nutritional intake
(Tanimoto et al., 2003). Several studies investigated whether there
was a difference in the distribution of the HIF1A Pro582Ser
genotype between controls and Russian sprint/power-oriented
athletes who rely heavily on anaerobic glycolysis for power
performance. HIF1A Pro/Pro genotype were slightly more frequent
in Caucasian male elite endurance athletes (Döring et al., 2010;
Ahmetov et al., 2008). The 582Ser variant exhibited a higher
prevalence among Russian strength athletes (Gabbasov et al., 2013).
Weightlifters had a considerably greater frequency of the HIF1A
582Ser allele than the control adults. Furthermore, the frequency
of the 582Ser allele was found to be increased with the level
of achievement from sub-elite athletes to elite athletes, and to
highly elite athletes (Ahmetov et al., 2008). A study conducted
on Polish power-oriented athletes (weight lifter, short distance
runners, and swimmers) revealed that the athletes had significantly
higher frequency of theHIF1A 582Ser allele compared to sedentary
controls (Cieszczyk et al., 2011). However, this difference was
not observed in a group of Israeli sprinters (Eynon et al., 2010).
In addition, the 582Ser allele was associated with an increased
proportion of fast-twitch muscle fibers in the vastus lateralis muscle
of all-round speed skaters (Ahmetov et al., 2015).

Alpha-actinin-3 (ACTN3)

One of themost promising genes influence athletic performance
is actin-alpha-3 (ACTN3), which is also known as “a gene for speed”
(Pickering and Kiely, 2017). Fast-twitch (type II) skeletal muscle
fibers encompass ACTN3, a protein belonging to the actin family
that exhibits significant expression within muscular tissue. Through
the orchestration of rapid-twitchmuscle contractions, this particular
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protein possesses the capability to facilitate the cultivation of robust
musculature when it is actively expressed within the glycolytic
skeletal muscle, as elucidated by Yang et al. (Yang et al., 2003). The
ACTN3 gene, which codes for this protein, has been thrust into the
forefront of genetic investigations as a result of the discovery of a
nonsense polymorphism at position 577 (rs1815739), which has a
major effect on the levels of ACTN3 protein since the ACTN3 gene
contains an early stop codon (Bulgay et al., 2023).Themost prevalent
nucleotide at position 577, cytosine (C allele), codes for an arginine
amino acid (arginine = R), with the alternative T allele coding a stop
codon (stop = X). As a result, the CC genotype is known as RR and
the TT genotype is known as XX in the scientific literature (referred
to as R577X). Fascinatingly, it is found that over a billion people in
the world are deficient in the homozygous absent XX genotype yet
are believed to carry it (Eynon et al., 2013).

The ACTN3 R577X polymorphism stands out as one of the
most extensively characterized genetic variants within the realm
of sports genomics. The R allele, which facilitates the complete
expression of α-actinin-3, enhances the performance of fast-twitch
muscle fibers, thereby promoting activities that require power and
sprinting capabilities. Notably, the RR genotype and R allele of
ACTN3 R577X are significantly more frequent in power athletes
than in endurance athletes and non-athletes (El Ouali et al., 2024).
In consensus to this, frequency of the RR genotype was shown
to be significantly greater in Israeli sprinters (52%) compared
to endurance athletes (18%) and controls (27.3%) (Eynon et al.,
2009). In contrast, the X allele introduces a premature stop codon,
leading to a total absence of α-actinin-3 and instigating a molecular
transition towards an oxidative, endurance-oriented metabolic
pathway. This encompasses improved mitochondrial functionality,
modified calcium management, and fiber-type reconfiguration.
Although there are notable correlations, particularly in power
sports, the comprehensive impact of ACTN3 is influenced by
polygenic factors, training regimens, and environmental conditions,
rendering it a significant yet non-deterministic indicator of athletic
capability (Pickering andKiely, 2017). A transformation of fiber type
towards fatigue resistance, as a remunerative mechanism for the
absenteeism of functional ACTN3 protein results due to an increase
in the levels of alpha-actin two which was inferred from a study
examining the effect of an ACTN3 knock out in mice (Seto et al.,
2013). Even athletes with a XX genotype exhibit this greater a
tendency to engage in endurance activities similar to those shown
in in-vivo investigations, as shown by the increased frequency of this
particular allele.

The homozygous R allele ofACTN3 and strength/power athletic
traits currently have a strong relationship across different population
groups (Cięs et al., 2011; Kim et al., 2014; Puthucheary et al., 2011b).
Moreover, evidences indicate that there is a relation between a higher
proportion of slow-twitch muscle fibers with the X allele genotype
and elite endurance status (Ahmetov et al., 2011). This has been
corroborated by a study in which the XX genotype frequency was
higher among the Chinese female endurance athletes (21.2%) than
that of the control group (15.8%) (Shang et al., 2010). In a group
of Brazilian football players, it was discovered that those with the
RR genotype outscored individuals with the RX and XX genotypes
in short-distance sprints and jump tests (Pim et al., 2012). Another
study on Brazilian swimmers and control adults reported that
participants with XX genotypes of ACTN3 are more likely to belong

to athlete group compared with that of control (de Albuquerque-
Neto et al., 2024). The examination of the genotype distribution
among individuals engaged in sprinting and distance athletics has
yielded intriguing results. An analysis of these athletes has revealed
that 44% have the RR genotype, 35% have the RX genotype, and
21% have the XX genotype. The associated p-value of 0.3143,
which measures the statistical significance, indicates that there
is no substantial correlation between ACTN3 genotypes and the
classification of individuals as either sprinters or distance athletes.
This suggests that there is no noteworthy disparity in the distribution
of genotypes when compared to individuals who do not engage in
athletic activities (Dogan et al., 2022).

Adenosine monophosphate
deaminase (AMPD1)

Adenosine monophosphate deaminase (AMPD) is an enzyme
that catalyzes the AMP to inosine monophosphate and liberate
ammonia. The AMPD encoded by the gene AMPD1 is important
in the production of energy within the skeletal muscles, and
regulate skeletal muscle energy metabolism during exercise. AMPD
deficiency results in excessive accumulation of AMP during physical
activity led to premature fatigue, muscle cramp and myalgia
(Sabina et al., 1984; Fishbein et al., 1978). AMPD contributes to the
modulation of muscle energy metabolism by altering the balance
of the myokinase process in favor of ATP synthesis. The deficiency
of AMPD isoform 1 (AMPD1) in skeletal muscle is a common
genetic abnormality, with an allele mutation frequency of 12%–14%
and complete loss of AMPD1 in 2% of the general population
(Gross et al., 2002; Morisaki et al., 1992). The human AMPD1 gene
(on chromosome 1p13) encodes the M isoform of myoadenylate
deaminase, which is primarily generated at high levels in adult
skeletal muscle. The common 34C>T (rs17602729) polymorphism
in exon two of the AMPD1 gene results in the formation of a
premature stop codon (Gln12 X), culminating in a truncated and
non-functional AMPD1 enzyme (Leońska-Duniec et al., 2020). The
absence of functional AMPD1 significantly disrupts the purine
nucleotide cycle, as it hinders the conversion of AMP to IMP,
and this impairment results in the accumulation of AMP within
skeletal muscle during periods of exercise. The accumulation of
AMP serves to activate the AMPK (AMP-activated protein kinase)
pathway, which is a crucial regulator of energy homeostasis. This
activation facilitates mitochondrial biogenesis, enhances fatty acid
oxidation, and increases glucose uptake—characteristics that are
essential for aerobic metabolism (Hingst et al., 2020). Although
this may hinder performance in high-intensity, anaerobic activities
due to diminished ATP regeneration, it could potentially promote
endurance-related adaptations in certain individuals. Nonetheless,
the phenotypic manifestation of this polymorphism is shaped
by interactions between genes, as well as between genes and
environmental factors, rendering its effect on athletic performance
intricate and contingent upon context. The skeletal muscle AMPD
activity is incredibly low in individuals homozygous (XX) for
the 34C>T (Gln12X) mutation of the AMPD1 gene compared to
the individuals with normal alleles (12Gln) (Fischer et al., 2007;
Norman et al., 2008; Norman et al., 2001). The AMPD1 12X allele
was observed in 4.3% of Spanish endurance athletes compared
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to 8.5% in the control group (Rubio et al., 2005). Whereas the
AMPD1 12Gln allele is over represented (86.3%) in Lithuanian
sprint/power-oriented athletes indicating that this allele may help to
attain elite status (Ginevičienė et al., 2014).

When recovering from a 30-s workout, individuals withAMPD1
deficiency exhibit a faster blood lactate formation and have less
AMP deaminase activity. The AMPD-deficient group exhibits a
more rapid strength drop throughout the 30-s Wingate cycling
test, suggesting that AMPD1 deficiency may have a negative
impact on sprint or power performance (Fischer et al., 2007;
Norman et al., 2008; Norman et al., 2001). Polish power-oriented
athletes, including weightlifters, swimmers, and short-distance
runners, showed a significantly lower frequency of the AMPD1 12X
allele than controls participants (Cieszczyk et al., 2012). Similar
results were observed in a sample of Russian power-oriented athletes
(Fedotovskaya et al., 2013). A study on Lithuanian sprint and power
athletes identified that AMPD1 C allele may help to achieve elite
status in sprint/power-oriented sports, while the T AMPD1 allele
is a unfavorable factor for athletics in sprint/power-oriented sports
categories (Ginevičienė et al., 2014). In a recent study, Bulgay
and colleagues showed that the ADMPD1 G allele rs17602729
polymorphism may provide a beneficial effects to Turkish sprinters
and power athletes (Bulgay et al., 2024). A most recent systematic
review and meta-analysis demonstrated that the CC genotype of
the AMPD1 gene is significantly associated with elite status in both
endurance and power athletes (Kartibou et al., 2025). This indicates
that the individuals with AMPD1 CC genotype may have a genetic
advantage in sports demanding both aerobic and anaerobic capacity,
due to improved muscle energy metabolism and fatigue resistance,
regardless of specialization (Kartibou et al., 2025).

Peroxisome proliferator-activated
receptor gamma coactivator 1
(PPARGC1)

Peroxisome proliferator-activated receptor gamma coactivator
1 or PPARGC1 is a protein that regulates metabolic processes,
and is encoded by the gene PPARGC1A. The genes, PPARA
and PPARGC1A, coding PPARα and its coactivator PGC-1α,
are highly expressed in skeletal muscle tissue that catabolizes
fatty acids, and regulate remodeling of fiber type composition
(Akhmetov et al., 2007; Pavlovic et al., 2023). It is also stated that
higher endurance performance is achieved by the expression of
these genes, which converts causes “fast-twitch” glycolytic type IIb
fibers to “slow-twitch” oxidative type I/IIa fibers (Baoutina et al.,
2007). The muscle fiber transition can happen even in the
absence of exercise. This phenomenon in the absence of exercise
can be attained by the expression of PPARA, PPARGC1A and
PPARD genes that aids the transformation of type IIb to type
I/IIa muscle fibers (Ahmetov et al., 2012). Previous research
suggests that top-level endurance athletes may benefit from
specific variants in PPARA and PPARGC1A, which influence gene
expression and enhance metabolic efficiency (Hall et al., 2023;
Eynon et al., 2013). These polymorphisms reported to be associated
with improved mitochondrial biogenesis, fatty acid oxidation,
muscle fiber-type conversion, glucose utilization, angiogenesis, and

endurance performance, highlighting their potential role in athletic
performance (Ahmetov et al., 2015).

The Gly482Ser (rs8192678) is the most common functional
polymorphism is located in the exon 8 of PPARGC1A gene. Carriers
of the 482Gly allele generally exhibit enhanced aerobic capacity,
improved endurance, and a higher proportion of type I muscle
fibers (Varillas-Delgado, 2024). The PPARGC1A Gly482Ser variant
demonstrates a notable association with endurance, particularly
through its role in mitochondrial biogenesis (Ahmetov et al., 2015).
However, the existing literature indicate that the effect of Gly428Ser
polymorphism vary depending on the sport to which they are
applied. For example, it has been discovered that top athletes are
less likely to carry the Ser allele in terms of power and endurance
(Ginevičienė et al., 2011). However, other research indicates that
the Ser allele is helpful for power-related tasks (Gineviciene et al.,
2016). Therefore, the 482Gly allele was shown to be beneficial,
but the Ser allele was claimed to discourage endurance exercises
(Jin et al., 2016; Maciejewska et al., 2012). In consensus to this
lower frequency of the Ser allele was observed in Israeli endurance
athletes (25%) compared to the controls (43%) (Eynon et al., 2010).
Interestingly, the Gly/Gly genotype and Gly allele were less frequent
in elite Turkish track and field athletes than non-athletes (Tural et al.,
2014). In a systematic review, G allele PPARA rs4253778 is said
to be associated with endurance elite athlete status, and C allele
PPARA rs4253778 is said to be associated with soccer (Petr et al.,
2020). A comprehensive meta-analysis further substantiated the
associations of Gly/Gly and Gly allele with enhanced endurance
(Chen et al., 2019). A study examined the association between
PPARGC1A rs8192678 A/A genotype and myosin heavy-chain
isoforms (muscle fiber marker) among Japanese adults. The findings
showed that PPARGC1A rs8192678 was significantly correlated
with lower proportion of myosin heavy-chain-IIx and a higher
proportion of myosin heaby-chain-1 in females (Yvert et al., 2020).

Mitochondrial DNA (mtDNA) and
mtDNA haplogroups

Themajority of DNA is packed within the chromosomes located
in the nucleus; however, it is noteworthy that mitochondria also
possess their own distinct circular DNA known as ‘mitochondrial
DNA’ (mtDNA). The human mtDNA, spanning a length of
16,569 base pairs, has a total of 22 transfer RNA genes, two
ribosomal RNA genes, and 13 genes responsible for mitochondrial
oxidative phosphorylation (Singh, 2023; Lim, 2024). These genes
collectively play a crucial role in facilitating protein synthesis
inside the mitochondria. On the other hand, individuals harboring
mtDNA mutations typically represents with manifest symptoms,
such as exercise intolerance, muscular weakness, and heightened
lactic acid production (Andreu et al., 1999; Taylor and Turnbull,
2005). Evidence have shown that genetic factors location in
nuclear genomes and mitochondria can influence the endurance
performance of individuals. Studies further highlighted thatmtDNA
polymorphism influences the performance of general athletes,
and mtDNA haplogroup appears to be associated with athletic
performance of elite endurance athletes (Zanini et al., 2021;
Maruszak et al., 2014). Further a lower frequency of heteroplasmy,
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and lowermtDNA copy number was documented in both power and
endurance athletes of Polish origin (Piotrowska-Nowak et al., 2023).

Emerging evidence suggests that specific mtDNA
polymorphisms, particularly within certain haplogroups, are
associated with athletic performance of across diverse population
groups. This association may be mediated by variations in
mitochondrial efficiency and oxidative phosphorylation capacity
(Table 2). For instance, haplogroup J in Caucasian associated
with lower VO2max, efficiency of electron transport chain, and
decreased production of ATP and reactive oxygen species (ROS),
while the haplogroup H in Caucasians represented with higher
VO2max and greater physical stamina during exercise (Beiter et al.,
2011). A study on elite Finnish endurance athletes has revealed the
higher prevalence of mtDNA haplogroup H among the endurance
athletes, whereas haplogroup K and J2 were not found among the
endurance athletes. These two haplogroups are reported to be
associated with longevity, make oxidative phosphorylation less
efficient and might be disadvantage to endurance performance
(Rygiel et al., 2016; Niemi and Majamaa, 2005). Another study
on Spanish athletes reported that the mtDNA haplogroup T,
specifically defined by 13368A was found to be significantly less
frequent (negative association with athletic status) among elite
endurance athletes (Castro et al., 2007).

Scott et al., compared the frequencies of mtDNA haplogroups
among Kenyan national level athletes, international athletes, and
general population. The findings revealed that the international
athletes represented with higher proportion of L0 haplogroups
and lower proportion of L3∗haplogroups. These results imply that
mtDNA haplogroups are the influential factors in elite Kenyan
distance runner (Scott et al., 2009). In another study, male
Spanish Caucasians with haplogroup J represented with lower
VO2max than that of individuals with non-J haplogroups. In this
population, haplotype H claimed to be responsible for higher
VO2max and highest mitochondrial oxidative damage following
incremental cycling exercise (Martínez-Redondo et al., 2010). A
Spanish cohort study compared the frequency distribution of
mtDNA haplogroups among the elite endurance athletes, power
athletes, and a group of non-athletic controls. The findings
disclosed a significant overexpression of haplogroup V in endurance
athletes compared to controls, but not in power athletes (Nogales-
Gadea et al., 2011). Another important finding from Finnish
military conscripts revealed that the excellence in training or
response to endurance performancewas less among individuals with
mtDNA haplogroups J or K compared to individuals with non-JK
haplogroups (Kiiskilä et al., 2021).

Kim and colleagues performed a population-based study on
Korean elite athletes, and reported that the distribution of mtDNA
haplogroups M∗and N9 were excess, whereas the haplogroup B was
dearth in endurance/middle-power athletes compared with normal
adults (Kim et al., 2012). Another study determined 20 mtDNA
haplogroups inKorean population, and demonstrated a signification
association of haplogroup F with athletic status (Hwang et al.,
2019). Similar study on Japanese Olympic athletes revealed an
excess proportion of haplogroup G1 in endurance/middle-power
athletes, and greater proportion of haplogroup F in sprint/power
athletes compared with control (Mikami et al., 2011). Top male
Japanese endurance runners were found to have a significantly
higher frequency of the m.5178C genotype of the m.5178CA

polymorphism than the control adults. This m.5178C genotype
in elite endurance runners may be beneficial for performance
(Tamura et al., 2010). Another study observed that Japanese
endurance athletes exhibit the variants m.152T>C and m.4343A>G,
whereas power athletes display the variants m.151C>T and m.204T
> C (Mikami et al., 2013). According to the study conducted
by Maruszak and colleagues, Polish elite endurance athletes
(Olympic/World class level) displayed a higher likelihood of
belonging to mtDNA haplogroups H and HV, as well as possessing
the mtDNA polymorphism m.16080G gene (favor to endurance),
in comparison to both the control group and top power athletes
(Maruszak et al., 2014). On the other hand, the Finnish endurance
athletes do not possess haplogroups K and J2, whereas sprinters
do exhibit these haplogroups (Niemi and Majamaa, 2005). A study
assessed the association of mtDNA haplogroups with elite athlete
status in Iranian population, and reported that haplogroup J was
significantly over-represented, while haplogroup U was significantly
under-represented in elite athletes (Arjmand et al., 2017).

Superoxide dismutase (SOD2)

Superoxide dismutase (SOD) is the primary metalloenzyme
in the antioxidant defense systems that quenches the superoxide
anion radicals into oxygen and hydrogen peroxide. This reaction
occurs in two steps, neutralizing the ROS while producing less
harmful byproducts. Different forms of SODs localized in specific
cellular components. The Cu, Zn-SOD or SOD1 is specific to the
cytosol and mitochondrial intermembrane, while the Mn-SOD or
SOD2 exists in the mitochondrial matrix and inner membrane
(Fridovich, 1981; Rosa et al., 2021). Moderate exercise training has
been shown to increase SOD2 gene expression and decrease lipid
peroxidation in untrained middle-aged men (Baghaiee et al., 2016).
Several variations have been identified in the SOD2 gene, including
a non-synonymous variant that causes a change from alanine to
valine in codon 16 of exon 2 (rs4880). It has been demonstrated
that the 16Val allele this polymorphism is known to reduce the
effectiveness of MnSOD in lowering oxidative stress (Shimoda-
Matsubayashi et al., 1996).

Akimoto and colleagues reported that the MnSOD
polymorphism (Val16Ala) may influence the release of muscle
damage marker (creatine kinase) which might be a determining
factor in performance among Japanese runners (Akimoto et al.,
2010). A study conducted on Israeli endurance and power athletes
demonstrated significantly higher frequency of 16Ala allele in
athletes group compared to control group, however no difference
found between power and endurance athletes. Furthermore, the
frequency of Ala/Ala genotype was higher (29%) in international
and Olympic-level athletes, while it was only 17% in national-level
endurance and power athletes (Ben-Zaken et al., 2013). Another
study on Russian and Polish athletes revealed that power/strength
athletes were considerably less likely to have the SOD2 Val/Val
genotype than controls or athletes participating in low-intensity
sports (Ahmetov et al., 2014). A recent study on Turkish elite
athletes showed that the competitive endurance performance was
in endurance athletes was significantly correlation with rs4880
polymorphism in the SOD2 gene. However, no association was
reported between performance and genotype frequencies within
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sprint/power athletes (Bulğay et al., 2023). Another recent study
conducted on United Kingdom population showed that several
single nucleotide polymorphisms (SNPs), including SOD2 are
positively associated with decreased body mass following an 8-week
running program. The change in body weight was significantly
associated with number of positive alleles present in exercised
participants (Chung et al., 2024).

Brain derived neurotrophic factor
(BDNF)

Brain derived neurotrophic factor (BDNF) belongs to the
neurotrophin family of growth factors that promotes neural
plasticity linked to learning, memory, and recovery from brain
injury (Numakawa and Kajihara, 2025; Cowansage et al., 2010).
BDNF abundantly expressed in the hippocampus, cortex, and basal
forebrain regions and supports the survival of existing neurons by
the process of neurogenesis. Although, the expression and release
of BDNF is determined by neuronal activity, the electrical activity
stimulates de novo synthesis of BDNF leading to a significant
increase in BDNF levels. Furthermore, high-intensity aerobic
exercise and long-term training are known to elevate BDNF levels
in humans and animals (Bathina and Das, 2015; Neeper et al., 1995;
Pedersen et al., 2009). Low levels of BDNF have been attributed
to a variety of psychopathological states, including Alzheimer’s
disease, depression and schizophrenia. BDNF plays a crucial role
in hypothalamic pathway that controls body weight and energy
homeostasis, as well as in regulating the energy metabolism in
peripheral organs (Pedersen et al., 2009). A recent GWAS on
Russian population disclosed a dominant role of BDNF gene in the
pathogenesis of alcohol dependency (Levchenko et al., 2022).

The human BDNF gene is composed of 11 exons and 9
promoters, spans 70 kb, and is located on chromosome 11p13-
14. Several polymorphic variants have been described in the
BDNF gene and some of them have been associated with
activity-dependent BDNF expression. The Val66Met (rs6265) is
a missense variant in exon 2, leads to substituting valine (Val)
with methionine (Met) at codon 66 of the proBDNF protein.
The Met allele carriers exhibit reduced BDNF secretion, thereby
leading to impaired synaptic plasticity and neuronal survival
(Shen et al., 2018). The study from Japan explored the influence
of BDNF Val66Met polymorphism on athletic performance and
psychological adaptation in swimmers and judo athletes. The
findings highlighted that BDNF genetic variation may differentially
influence the athletic performance and psychological adaptation
across sport types (Asai et al., 2020). Patients who carry BDNF
Val/Val genotype showed a greater reduction in posttraumatic
stress disorder symptoms after exposure to therapy in combination
with aerobic exercise, indicating that they benefited from exercise-
augmented extinction learning (Bryant et al., 2024).The rs10501089
is another polymorphism that is located near the BDNF gene is
linked to elevated levels of BDNF and fast-twitch muscle fibers in
Russian power athletes. Furthermore, higher incidence of A-allele
carriers was observed in power athletes compared with controls
or endurance athletes (Guilherme et al., 2022). A recent study on
Israeli females reported a significant association between BDNF
rs925946T-allele carriers and obesity odds, which is affected by

modifiable lifestyle factors, including physical activity, eating habits
and sugar-sweetened beverages (Chermon and Birk, 2024). Martial
arts athletes with BDNF G/G genotypes showed significantly higher
conscientiousness scores compared to G/G genotype carriers in the
control group (Humińska-Lisowska et al., 2022).

Vitamin D receptor (VDR)

Vitamin D is a fat-soluble pro-hormone characterized by a
complex metabolism and regulation. Vitamin D is located in
intestinal cells, osteocytes, muscle cells, hematopoietic cells and the
brain (Reijven and Soeters, 2020; Voltan et al., 2023). Along with its
well-known role in calcium-phosphatemetabolism and bone health,
vitaminD also participate in a wide range of extra skeletal functions,
including cell proliferation, antioxidant and immunomodulatory
effect (Voltan et al., 2023). The functional ability of vitamin D is
mediated by binding to its receptor (VDR), which located in many
tissues, including skin, parathyroid glands, adipocytes, colon and
small intestine, and able to bind hundreds of genomic loci (Reijven
and Soeters, 2020; Sirajudeen et al., 2019). The presence of the VDR
can also be observed in the cells of the human skeletal muscle.
This receptor has the ability to interact with various metabolites of
vitamin D, thereby exerting an influence on the metabolic processes
occurring within the muscle cells (Pfeifer et al., 2002). Furthermore,
the VDR also serves as a regulator in maintaining optimal calcium
levels within the body by inhibiting the production of parathyroid
hormone (Garfia et al., 2002;Haussler et al., 2011). InVDR knockout
mice represented by decreased bone mass, hypophosphatemia, and
increased calcitriol levels (Yoshizawa et al., 1997).

The humanVDR gene is located on the long arm of chromosome
12, at position 13.11, exhibits an extensive repertoire of nearly 200
identified polymorphisms. VDR contains 6 promoter regions and
eight exons two to 9.TheDNA-binding domain (exons 2–4) interacts
with the VDRE in target genes, whereas the ligand-binding domain
(exons 6–9) binds 1,25(OH)D (Voltan et al., 2023;McCullough et al.,
2009). Several health outcomes, such as the mineral content of
bones, osteoporotic fractures, skeletal fractures, insulin resistance,
muscular endurance, and susceptibility to various disorders like
cardiovascular illness, osteoporosis, and sarcopenia, have been
linked to genetic variations in the VDR gene (Kerr Whitfield et al.,
2001; Banjabi et al., 2020). In individuals who possess the C allele,
which is also referred to as the F allele, there is a notable distinction
in the VDR protein compared to those who possess the T allele, also
known as the f allele.This distinction arises from the rs10735810T/C
transition that occurs specifically in exon two of the VDR gene,
resulting in a shorter VDR protein (Cong et al., 2015; Meza-
Meza et al., 2022).

The VDR genotypes of a cohort consisting of 206 individuals,
both males and females aged 50–81 years, were studied to evaluate
the VDR gene FokI and BsmI genotype in response to aerobic
exercise and strength training. The findings revealed that a
significant correlation between the VDR FokI genotype and femoral
neck bone mineral density in response to resistance training, while
no such association was observed in response to aerobic exercise
(Rabon‐Stith et al., 2005). In various scientific investigations, the
impact of the VDR rs10735810 T/C genotype on the overall bone
mineral density of Japanese athletes was assessed. A study conducted
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on a group of 84 individuals who engage in weight-bearing, and a
group of 48 individuals who participate in swimming. The findings
demonstrated that the overall bone mineral density exhibited a
greater degree of vulnerability to the effects of impact loading
in individuals with the CC genotype. Athletes who exhibited the
presence of the C allele demonstrated an augmented bone mineral
density when compared with individuals who did not engage in
athletic activities (Nakamura et al., 2002). Besides, Hopkinson et al.,
conducted a study using a sample of 107 persons diagnosed with
severe pulmonary obstructive disease and 104 healthy individuals
(Hopkinson et al., 2008). The study focused on the relationship
between the FokI polymorphism in the VDR gene and quadriceps
strength. The findings revealed that those with the CC genotype
had reduced quadriceps strength compared to those with the TC
or TT genotype (Hopkinson et al., 2008). Furthermore, other study
conducted by Micheli et al. found significant variations in the
frequencies of the DR FokI genotype among male football players
at a medium-high level and sedentary controls (Micheli et al., 2011).
The prevalence of the homozygous TT genotype of theDR gene was
shown to be higher among young football players in comparison to
a sedentary groupwith similar characteristics (Humińska-Lisowska,
2024). Additionally, a study revealed that 46 teenage soccer players
from Brazil exhibited the FokI polymorphism, a genetic variation
known to impact bone mass. TC genotype boys exhibited elevated
whole body bone mineral content and density in contrast CC
genotype boys (Tombari et al., 2024). The FokI polymorphism is
believed to exert an influence on bone mineralization at various
stages of bone growth, with particular emphasis on the first phases
of maturation.

Conclusion

Summarized evidence demonstrated that genetic factors
substantially influence athletic performance, specifically in
the realm of physical stamina. The heritability values about
performance-related characteristics emphasize the significance
of genetics. These characteristics include but are not limited to
the optimum oxygen uptake, cardiac output, muscle fiber type
composition, and explosive muscle power. It is important to
note that these traits are subject to varying degrees of influence
from genetic factors (Figure 1; Table 1). The complex interplay
of genetic factors within individuals results in a wide array
of outcomes, exerting profound influence on various qualities
that are important for both elite athletes and overall wellbeing.
The concept comprises two key physiological components (1)
cardiovascular endurance, which dependent on circulatory system,
(2) andmuscular endurance, which pertains to sustained contractile
performance of muscles. Genetic polymorphisms significantly
influence these systems through multiple mechanisms, primarily
by regulating the skeletal muscle fiber type distribution (slow-
twitch and fast-twitch ratios), which directly affects the endurance
or power performance of individuals. Genetic polymorphisms in
key genes likeACE,NOS3, andACTN3 significantly impact physical
endurance, strength/power, and athletic performance by influencing

other factors, such as muscle fiber composition and blood flow.
Specific alleles, including BDKRB2 and HIF1A affect endurance
and anaerobic capabilities, while variations in SOD2 and mtDNA
highlight the importance of mitochondrial function in athletics.
Although genetic factors contribute to athletic potential, other
factors like training, diet, and environment are also crucial. The
growing understanding of these genotype-phenotype relationships
enables precision and personalized training approaches but raises
ethical issues around genetic testing and fair practices in sports.
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