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Uterine contractions, driven by complex electrical activities within the uterine
smooth muscle cells, play a critical role in labor and delivery. Various
techniques, including EHG and EMMI, have been developed to record and
image uterine electrical activities. Both EHG and EMMI use a bandpass filter
(fast wave 0.34–1Hz) to preserve uterine contraction activities. However,
high-frequency signals are usually weak and are prone to multiple sources
of noise and artifacts, significantly impacting the accuracy of contraction
detection and subsequent analysis of long- and short-distance signaling in
the laboring uterus. Existing methods, such as Zero-Crossing-Rate (ZCR) and
Teager-Kaiser Energy Operator (TKEO), employ the transformation of fast
wave signals to detect uterine contractions and are still limited by the EHG
signal quality. This work proposed a novel method that combines high-
frequency (fast wave, 0.34–1Hz) and low-frequency (slow wave, 0.01–0.1Hz)
components of uterine electrical signals to generate enhanced EHG signals.
Incorporating slow-wave signals offers additional information rather than relying
solely on fast wave signals like ZCR and TKEO. Our approach utilizes the
stability of slow wave signals to enhance the more noise-prone fast wave
signals. This method significantly improves the quality of uterine contraction
detection, as evidenced by enhanced signal contrast between contractions
and baseline activity. The improved signals enable more accurate detection
of contractions and more detailed spatial analysis of uterine contraction
propagation. This signal enhancement technique holds great potential for
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advancing the understanding of long- and short-distance signaling during labor,
paving the way for more precise labor management and better maternal-
fetal outcomes.

KEYWORDS

Electrohysterography, signal enhancement, uterine contraction, slow wave, uterine
signaling

1 Introduction

Rhythmic uterine contractions (Cohen, 2017; Young, 2015) of
labor are produced by the activation and relaxation of the uterine
smooth muscle myocytes (Young, 2007; Young and Barendse,
2014). These cellular electrical activations are driven by calcium
metabolism, which is a complex network of ion channels, pumps,
and exchangers (Garfield et al., 2020; 2005; Garfield and Maner,
2007; Lammers, 2013). Collectively, millions of myocytes are
composed of the myometrium, and the electrical signals of
myocytes contribute to the electrical signals that are observable
and measurable on the body surface to reflect the uterine
activities noninvasively (Rosen and Yogev, 2023). Improving our
understanding of the relationship between these electrical signals
and the effectiveness of uterine contraction to advance labor will
enhance our ability to clinicallymanage both termandpreterm labor
(Li et al., 2022; Romero-Morales et al., 2023).

Various techniques have been developed to record and analyze
uterine electrical activity. Uterine electromyography, also called
electrohysterography (EHG) (Devedeux et al., 1993; Jacod et al.,
2010; Larks and Dasgupta, 1958), is a non-invasive method
employing surface electrodes on the abdominal wall and has
emerged as a promising tool for monitoring uterine contractions
(Euliano et al., 2009; Jacod et al., 2010; Muszynski et al., 2018)
throughout gestation and during labor. This technique offers
advantages over traditional tocodynamometry (EULIANO et al.,
2013), including improved sensitivity and the ability to detect
contractions earlier in pregnancy. More recently, advanced
techniques such as electromyometrial imaging (EMMI) (Wang et al.,
2023; 2020a; 2020b; Wang and Wang, 2020; Wu et al., 2019)
have been developed, combining high-density surface electrode
arrays with magnetic resonance imaging (MRI) to create detailed
three-dimensional maps of uterine electrical propagation. These
techniques provide more comprehensive data for a better
understanding of long- and short-distance signaling in the laboring
uterus and facilitate clinical decision-making.

EHG and EMMI employ band-pass filtering of 0.34–1 Hz to
preserve the signal of uterine activities. Traditional energy-based
contraction detection methods perform well in detecting uterine
contractions from EHG when the signal-to-noise ratio (SNR) is
sufficient. However, the recording environment in the labor-delivery
room is typically electrically noisy, and it is challenging for laboring
women to stay static during the recording. Under such a noisy
environment, EHG signals are very susceptible to low SNR and
motion artifacts (Allahem and Sampalli, 2020; Chen et al., 2024a;
Esgalhado et al., 2020; Ye-Lin et al., 2014). In EMMI studies, multi-
channel abdominal EHG signals are often contaminated by various
noise sources, including motion artifacts, power line interference,
and crosstalk fromadjacentmuscles (Boyer et al., 2023). Low-quality

signals increase the false positives (detecting contractions that are
not occurring) or false negatives (missing real contractions) for
uterine contraction detection. Such detection inaccuracy negatively
impacts the accurate identification and analysis of potential EHG
biomarkers for preterm labor or other pregnancy-related conditions
(Marinescu et al., 2022). For example, previous studies have failed to
pinpoint the onset of contractions or identify consistent directions
of propagation using EHG or magnetometers (Young et al., 2023).

Conventional uterine contraction detection methods, such
as energy-based approaches, can be easily affected by subtle
electrical activities, including motion artifacts. One way to
improve the performance of uterine contraction detection from
EHG signals is to develop more sophisticated signal processing
algorithms. Existing methods, including Zero-Crossing-Rate
(ZCR) (Song et al., 2021) and Teager-Kaiser Energy Operator
(TKEO) (Solnik et al., 2010; Vasist et al., 2022) are developed to
increase uterine contraction detection accuracy. ZCR quantifies the
frequency atwhich a signal transitions betweenpositive andnegative
values or vice versa. ZCR is inherently linked to the frequency
content and is an effective parameter for distinguishing between
contraction and baseline noise segments. TKEO is a non-linear
technique utilized to assess the instantaneous energy variations
of the signal. By incorporating both amplitude and frequency
components, TKEO enhances the accuracy of detecting the onset
of uterine contractions. However, both methods are based on
the transformations of the fast wave signals (0.34–1 Hz) without
incorporating extra information, and the SNR of EHG still limits
their performances.

In this study, we proposed a novel signal enhancement method
designed to increase the accuracy of uterine contraction detection
by significantly improving the signal quality by incorporating
additional physiological information. The signal enhancement
method filters the contraction signal into two distinct components:
a high-frequency component (fast wave 0.34–1 Hz) and a low-
frequency component (slow wave 0.01-0.1 Hz). Both components
have been reported as reliable electrical signals recorded by
conventional EHG electrodes (Garfield et al., 2020). Our data
suggests that uterine contractions are highly correlated with both
slow and fast wave signals. Notably, slow waves have larger
magnitudes (Medel et al., 2023) and demonstrate greater robustness
against contamination from the measurement noises and motion
artifacts than fast wave signals. By incorporating slow wave
signals alongside fast wave signals, we gained additional reference
information to better identify the occurrence of contractions,
thereby enhancing the quality of the fast wave signals.This approach
led to a significant improvement in overall signal clarity and
reliability.

The primary goal of the signal enhancement method is to
improve the signal quality, thereby benefiting post-processing tasks,
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such as uterine contraction detection, which will facilitate a better
understanding of long- and short-distance signals of the laboring
uterus based on multi-channel EHG recordings.

The rest of this paper is structured as follows. Section 2 presents
a comprehensive description of our proposed signal enhancement
method, metrics to quantify signal quality improvements, and
statistical tools to determine the significance of the difference
observed in the metrics. Additionally, we describe the contraction
detectionmethod, and the approach employed to analyze the uterine
contraction propagation. Section 3 provides a detailed comparative
analysis of signal quality between fast wave and enhanced signals.
We then evaluate the impact of our signal enhancement technique
on contraction detection performance. Additionally, spatial patterns
of uterine contraction propagation based on fast wave signals
and enhanced signals are compared. Section 4 concludes with our
findings and a critical discussion of the implications for uterine
contraction monitoring. We address the limitations of our signal
enhancement method and explore potential applications for future
research and development.

2 Materials and methods

2.1 Data collection

This study utilized body surface multi-channel EHG data from
five subjects in active labor with cervical dilation greater than 4 cm
(Friedman and Cohen, 2023; Neal et al., 2010) at the time of data
recording. The data were collected as part of the electromyometrial
imaging (EMMI) study (Wang et al., 2023). For each subject, a
multi-channel EHG recording, approximately 20 min in duration,
was measured from up to 192 unipolar EHG electrodes placed
directly on the body surface, targeting uterine contraction signals
during labor, as shown in Figure 1. With unipolar recording, each
channel was referenced to the average signal of the grounding
channels. The temporal sampling rate for all recordings was set
at 2048 Hz. The raw electrode recording was passed through a
Butterworth filter with a frequency range (0.01–0.1Hz) to get the
slow wave signals and a frequency range (0.34–1Hz) to get the
fast wave signals. Channels with fast waves exhibiting a maximum
magnitude greater than 0.3 mV or less than 0.01 mV were classified
as low-quality channels and excluded from the computation. The
entire signal processing pipeline was conducted using MATLAB
(2022b).The procedure was approved by theWashington University
Institutional Review Board (No. 201612140) and complied with
its guidelines and regulations. The clinical characteristics of five
subjects are shown in Table 1.

2.2 Signal enhancement method

A two-step signal enhancement method was developed to
combine low-frequency signals and conventional uterine EHG
signals, as shown in Figure 2. First, a fourth-order Butterworth
bandpass filter of 0.01–0.1 Hz and 0.34–1 Hz was applied
to extract the low-frequency EHG signal si = s(ti) and high-
frequency EHG signal fi = f(ti), i = 1,2,…,N, respectively, where
si and fi are the voltage samples measured at the time ti.

Without loss of information, the sampling rate of fast and
slow wave signals was then down-sampled to 5 Hz. Next, the
enhanced signal was defined by multiplying the high-frequency
EHG signals by the root mean square envelope of the low-
frequency signals (Equation 1).

en(ti) = RMSslow(ti) · f(ti) (1)

TheRMSenvelope of the slowwavewas calculated usingEquation 2:

RMSslow(ti) = √
1
ni

j=min(N,i+ n
2
)

∑
j=max(1,i− n

2
)

s(tj)
2 (2)

where n represents the window length (n = 50). The term ni =
min (N, i+ n/2) −max (1, i− n/2) accounts for both full and partial
window calculations. The latter is particularly relevant for the start
and end portions of the signal, ensuring that the RMS is computed
using the available data within the incomplete window segments.

The underlying rationale for improving the signal quality is
to enhance the uterine contraction signal while suppressing the
baseline noise signal. To achieve this goal, we used the root mean
square (RMS) envelope of the slow wave as a weighting factor. This
approach involves applying a higher weight factor to the contraction
signal and a lower weight factor to the baseline noise signal, thereby
increasing the contrast between the baseline noise and uterine
contraction.

2.3 Evaluation metrics for signal quality

While the signal-to-noise ratio (SNR) is traditionally considered
the most direct metric for assessing signal quality, its calculation
requires precise knowledge of both signal and noise levels, which
is challenging to obtain from our dataset. Instead of computing
SNR, we implement three alternative metrics to address this
limitation and provide a comprehensive evaluation of our signal
enhancement method on the channel level. These metrics offer
diverse perspectives on signal quality improvement, allowing for a
robust assessment of the enhancement technique’s effectiveness. To
describe the relationship between the metrics and signal quality, we
first divide the EHG signal into subsequences using a slidingwindow
operation and compute the energy for each subsequence.The energy
of each subsequence is computed using Equation 3:

e =
n

∑
1
[i(tj)]

2 (3)

where e represents the energy of the input signal in a sliding window.
n is the length of the sliding window (n = 50). The input signal i,
taken within a sliding window, can be either fast wave signals or
enhanced signals.

The histogramof the energies of subsequences in the EHG signal
has two distinct components corresponding to baseline noise and
uterine contraction, separately (Figure 3). For the fast wave signal,
the two components are close to each other with low contrast,
making them difficult to separate (Figure 3A). In contrast, for
the enhanced signal, the two components are far apart with high
contrast, making them easy to separate (Figure 3B). We used the
following metrics to quantify the differences in the shapes of the
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FIGURE 1
Multi-channel EHG data collection, filtering, signal enhancement, and contraction detection. (A) Multi-channel EHG signals were measured from up to
192 unipolar electrodes on the subject’s body surface. (B) The raw signal is filtered into fast (0.34–1Hz) and slow wave (0.01–0.1Hz) signals. (C) Signal
enhancement combines fast and slow wave signals and contraction detection results based on enhanced signal.

TABLE 1 Clinical characteristics of participants.

Clinical
characteristics

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5

Age 24 30 18 21 32

Delivery history Multiparous Nulliparous Nulliparous Multiparous Nulliparous

Labor type Induction Induction Induction Induction Induction

Gestation 40 weeks 1 day 39 weeks 1 day 39 weeks 1 day 37 weeks 0 days 40 weeks 2 days

Cervical dilation 4.5 cm 6.5 cm 6.5 cm 5 cm 7.5 cm

Number of electrodes used 144 108 108 128 128

Number of high-quality channels 119 92 74 115 123

histograms: skewness, kurtosis, and peak-to-average-ratio (PAER).
To reduce the impact of spike artifacts, we used the 0.95 quantile of
the data, as spike artifacts typically exhibit large magnitudes.

2.3.1 Skewness
Skewness is a statistical measure that quantifies the

asymmetry of a probability distribution. The skewness is
computed using Equation 4:

Skewness = 1
N

N

∑
i=1
[
(ei − e)

σ
]
3

(4)

where ei represents the energy of the signal in a window, N is the
length of the sliding window, e denotes the samplemean of the energy
distribution, σ is the standard deviation of the energy distribution.

The skewness of the energy distribution of the enhanced signal
is expected to increase compared to that of the fast wave signal. This
is because the baseline noise is significantly reduced, causing it to
shift to the left, resulting in a more positively skewed distribution,
as shown in Figure 3.

2.3.2 Kurtosis
Kurtosis is a higher-order statistical measure that quantifies

the shape of a probability distribution, specifically focusing on the
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FIGURE 2
Pipeline for signal enhancement method. (A) Fast wave signal (0.34–1Hz). (B) Slow wave signal (0.01–0.1Hz). (C) Slow wave RMS envelope (Window
size = 10s). (D) Enhanced signal.

dispersion of data between the distribution’s center and tails. The
kurtosis is computed using Equation 5:

Kurt = 1
N

N

∑
i=1
[
(ei − e)

σ
]
4

(5)

where ei represents the energy of the signal in a window, N is
the length of the sliding window, e denotes the sample mean of
the energy distribution, σ is the standard deviation of the energy
distribution.

The kurtosis of the energy distribution of the enhanced signal
is expected to increase compared to that of the fast wave signals.
This is due to a significant reduction in baseline noise, causing
it to shift to the left, leading to heavier tails and higher kurtosis,
as shown in Figure 3.

2.3.3 Peak-to-average-energy ratio (PAER)
Inspired by the Peak-to-noise ratio (PSNR) concept, we

developed a new metric: Peak-to-average-energy ratio (PAER). It
quantifies the ratio between the signal’s maximum energy and the
average energy of the signal. We computed PAER using Equation 6:

PAER = 10∗ log10(
max (e)2

mean(e)2
) (6)

where e represents the energies of subsequences.

For the enhanced signal, the baseline noise is
significantly reduced, causing it to shift to the left
and resulting in an overall decrease in the mean,
as shown in Figure 3. The PAER is expected to increase since
the maximum value of the energy distribution remains largely
unchanged, and the mean value of the energy distribution
decreases.

2.4 Evaluate the impact of signal
enhancement on contraction detection

To evaluate the impact of signal enhancement on the
accuracy of contraction detection, we compared the contraction
detection results on fast wave and enhanced signals. Energy-
based method (Horoba et al., 2001) is one of the most widely
used methods in contraction detection. Figure 4 shows the
pipeline of the contraction detection method using a single-
channel enhanced signal as an example (Figure 4A). The energies
of subsequences (Figure 4B) were computed for both fast wave
and enhanced signals with a sliding window operation using
Equation 3. A threshold is applied to determine the uterine
contraction and baseline regions. The energies higher than the
threshold were identified as uterine contraction regions, while
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FIGURE 3
Energy histograms of fast wave signal (A) and enhanced signal (B).

energies lower than the threshold were identified as baseline
noise regions (Figure 4C).

To demonstrate the improvement in contraction detection, a
binarymask (Figure 5B) was generated tomark the timing of uterine
contractions. First, we aligned the TOCO recording (Figure 5A)
with the electrical signal (Figure 5C) by matching the start and end
time points. Then, the binary mask is manually labeled by referring
to the TOCO recording. The receiver operating characteristic
(ROC) curve and area under the curve (AUC) (Figure 5G) were
computed by comparing the TOCO binary mask (Figure 5B) and
the predictions of different thresholds (Figures 5E,F).The thresholds
for each point on the ROC curve are discretized by computing the
mean value (μ) and the standard deviation (std) of the energies
of the input signals (Figure 5D). These thresholds ranged from μ-
3∗std to μ+3∗std, representing the data with z-scores from −3 to
+3, which covers 99.7% of the data in a normal distribution. A
step size of 0.05∗std was used. The optimal threshold is defined as
the one that maximizes the difference between true positives and
false positives. The ROC and AUC were first evaluated using three
representative channels, which included one high SNR fast wave

and two low SNR fast wave channels. Subsequently, the AUC was
computed for all the high-quality channels for each subject using
the same pipeline (Figure 5H).These AUC results of all high-quality
channels on the body surface are then used to evaluate the impact of
enhanced signal on spatial signaling and propagation of the uterine
contraction.

2.5 Evaluate the impact of signal
enhancement on electrical signaling and
propagation in the laboring uterus

To compare the impact on the signaling and propagation in the
laboring uterus, we used AUC to evaluate the consistency between
multi-channel EHG signals and the TOCO signal. Figure 6 shows
the pipeline to compute spatial consistency and the estimation
of uterine signaling using a representative subject (subject #5).
We defined an AUC threshold of 0.8 (Çorbacıoğlu and Aksel,
2023) to identify high signal consistency with the TOCO recording
(red dots in Figures 6A,B). To quantify the impact of enhanced
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FIGURE 4
Energy-based uterine contraction detection method. (A) A sliding window operation is applied to compute the energy of each subsequence of the
input signal. (B) Energies of the subsequences of the input signal. Each point in (B) corresponds to the energy of a subsequence in the sliding window
in (A). A threshold is applied to determine the uterine contraction and baseline regions. Energies higher than the threshold are identified as uterine
contraction regions, while energies lower than the threshold are identified as baseline noise regions. (C) The input signal and uterine contraction
detection results.

signals on the spatial pattern of electrical activities in the laboring
uterus, we compared the number of high consistency channels
for enhanced signals (Figure 6A) to those for fast wave signals
(Figure 6B) using Equation 7:

rc = (chE − ch f)/ch f (7)

where chE represents the channel number of enhanced signals
exhibiting high consistency with the TOCO signal, ch f represents
the channel number of the fast wave signals, which exhibit high
consistency with the TOCO signal, rc represents the growth ratio of
the channel number, comparing the fast wave and enhanced signals.

Based on the results of high consistency channels, we estimated
the uterine signaling distance (Figures 6C,D). The locations of
channels that exhibited high consistency are first projected along
the y-axis (the direction from anterior to posterior). A convex hull
is computed to enclose all the points, forming a convex polygon.
The geometric center is computed by taking the mean value of the
points on the convex polygon. The signaling distance d is estimated
by computing the average distance between all the points on the
convex polygon to the geometric center (Equation 8).

d = 1
n

i=n

∑
i=1

√(xi − xc)
2 + (yi − yc)

2 + (zi − zc)
2 (8)
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FIGURE 5
The pipeline to compute the ROC curve for TOCO and contraction detection binary masks. (A) Tocodynamometer (TOCO) recording. (B) TOCO binary
mask. (C) Input signal. (D) Energies of the input signal are computed, and different thresholds are set to generate contraction detection masks (E, F). (G)
The ROC curve and AUC for a single channel are obtained by comparing the TOCO binary mask and contraction detection binary masks. (H) The AUC
for all the channels on the subject’s body surface.

where xi,yi,zi represent the coordinates of points on the convex
polygon. xc,yc,zc represents the coordinates of the geometric
center, and n represents the number of points on the convex
polygon.

The growth ratio of the signaling distance is
computed using Equation 9:

rd = (dE − d f)/d f (9)

where dE represents the signaling distance for enhanced signals, d f
represents the signaling distance for fast wave signals, rd represents
the signaling distance growth ratio comparing the fast wave and
enhanced signals.

2.6 Statistical analysis

The statistical analysis was performed using MATLAB
(2022b) to determine if there are significant differences in the
metrics between fast wave and enhanced signals for each subject

individually, as well as in an overall analysis combining all subjects.
For this comparison, all the high-quality channels were included,
and we computed all three metrics for the entire channel without
segmentation. Since the differences between paired data are not
normally distributed, the data are represented as the median
and the interquartile range. A nonparametric Wilcoxon signed-
rank test was conducted to determine the significance of the
differences observed in the metrics for fast wave and enhanced
signals for two related samples. The resulting p-values were
compared against a significance level of 0.05 to determine statistical
significance.

3 Results

3.1 Metrics comparison

In this section, we calculated three metrics for all high-quality
channels for each subject, as well as conducted an overall analysis by
combining the data from all subjects. The boxplots of five subjects
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FIGURE 6
Spatial distribution of high consistency channels between multi-channel EHG and TOCO signals and signaling distance estimation for fast wave and
enhanced signals. (A) Spatial pattern of the signal consistency for fast wave signals. (B) Spatial pattern of the signal consistency for enhanced signals.
Deep blue dots indicate low consistency, red dots indicate high consistency, and green circles indicate newly added high consistency channels for
enhanced signals compared to fast wave signals. Two blue circles represent the electronic fetal monitor (EFM) and tocodynamometer (TOCO). (C) The
signaling distance computation for fast wave signals. (D) The signaling distance computation for enhanced signals. The red dots represent the high
consistency channels. The blue lines represent the convex hulls. The green dots represent the geometric centers of the area, and the pink circles
represent the points on the convex polygons.

and all subjects combined are shown in Figure 7. The median and
interquartile range values (IQR) are shown in Table 2. Enhanced
signals exhibit significantly higher skewness, kurtosis, and PAER
compared to fast wave signals, with all the p-values for five subjects
and overall analysis less than 0.0001. Outliers are observed in each
metric, and different subjects exhibit variations across all metrics.
For example, subject #3 shows noticeably higher values than other
subjects in all three metrics for both fast wave and enhanced
signals.

3.2 Comparison of uterine contraction
detection results between fast wave and
enhanced signals

Figure 8 illustrates the contraction detection results using the
energy-based method. In the channels with high SNR in fast wave
signal (Figures 8A1,A2), where the uterine contraction patterns are

discernible, the enhanced signal (Figures 8A3,A4) yields marginal
improvements in AUC value (from 0.941 to 0.968). However,
for fast wave signals with low SNR (Figures 8B1,B2,C1,C2),
the enhanced signals (Figures 8B3,B4,C3, C4) remarkably
improve the AUC values (from 0.754 to 0.866, from
0.650 to 0.833).

3.3 Comparison of signal consistency and
signaling distance between fast wave and
enhanced signals

For all subjects, the numbers of high consistency channels
range from 7 to 50 for fast wave signals and 13 to 55 for
enhanced signals. The enhanced signal consistently increases
the number of high consistency channels, with the growth
ratios ranging from 0.1 to 0.86. Specifically, subject #2 has
the lowest growth ratio of 0.1, and subject #4 has the highest
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FIGURE 7
Comparison of the metrics on the group level. (A) Skewness comparison between fast wave and enhanced signals. (B) Kurtosis comparison between
fast wave and enhanced signals. (C) PAER comparison between fast wave and enhanced signals.

TABLE 2 Median value and interquartile range values (IQR) of 3 metrics for 5 subjects.

Metrics Subject #1 Subject #2 Subject #3 Subject #4 Subject #5 All subjects

Skewness Fast wave
signal

Median = 0.59
IQR = 0.49

Median = 0.54
IQR = 0.46

Median = 0.87
IQR = 0.30

Median = 0.57
IQR = 0.48

Median = 0.16
IQR = 0.89

Median = 0.58
IQR = 0.60

Skewness Enhanced
signal

Median = 0.96
IQR = 0.49

Median = 1.16
IQR = 0.54

Median = 1.73
IQR = 0.40

Median = 1.00
IQR = 0.55

Median = 1.01
IQR = 0.65

Median = 1.11
IQR = 0.65

Kurtosis Fast wave
signal

Median = 2.83
IQR = 0.86

Median = 2.64
IQR = 0.39

Median = 3.05
IQR = 0.85

Median = 2.78
IQR = 0.81

Median = 2.77
IQR = 1.02

Median = 2.79
IQR = 0.84

Kurtosis Enhanced
signal

Median = 3.34
IQR = 1.13

Median = 3.62
IQR = 1.50

Median = 5.67
IQR = 1.87

Median = 3.55
IQR = 1.54

Median = 3.60
IQR = 1.67

Median = 3.71
IQR = 1.95

PAER Fast wave
signal

Median = 6.47
IQR = 1.75

Median = 6.14
IQR = 1.67

Median = 7.71
IQR = 1.12

Median = 6.45
IQR = 1.65

Median = 5.38
IQR = 2.57

Median = 6.47
IQR = 2.08

PAER Enhanced
signal

Median = 8.20
IQR = 1.62

Median = 8.93
IQR = 1.77

Median = 11.02
IQR = 1.62

Median = 8.38
IQR = 2.01

Median = 8.40
IQR = 2.15

Median = 8.71
IQR = 2.27

growth ratio of 0.86. The number of high-consistency channels
for enhanced signals is significantly higher than for fast wave
signals, with a p-value less than 0.05 for each group of five
subjects.

The enhanced signal consistently increases the signaling
distance. The signaling distances range from 77 mm to 166 mm
for fast wave signals and from 110 mm to 174 mm for enhanced
signals, with the growth ratios ranging from0.05 to 0.43. Specifically,
subject #2 has the lowest increase in signaling distance between the
fast wave (166 mm) and the enhanced signal (174 mm). Subject
#4 has the largest increase in signaling distance between the
fast wave (77 mm) and enhanced signal (110 mm). The signaling
distances obtained from enhanced signals are significantly higher
than those from fast wave signals, with a p-value less than 0.05
for each group of five subjects. The standard deviation of signaling
distance for the enhanced signal (24.62) is lower than that (32.88)
for the fast wave signal. The results for each subject are shown in
Table 3.

4 Discussion

In this study, our findings suggest that the slow wave signals
carry independent and complementary information to improve the
contrast between uterine activities and baseline noises. As shown
in Figure 7, the enhanced signal exhibits higher values in skewness,
kurtosis, and PAER for all subjects. This occurs because the baseline
noise component shifted leftward, concentrating closer to zero.
Meanwhile, the uterine contraction component for enhanced signal
remains largely unchanged, increasing the separation between the
uterine contraction and baseline noise. These results suggest that
the signal enhancement method effectively preserves the uterine
contraction signal while reducing the baseline noise, thereby
enhancing signal separability and ensuring a clearer distinction
between physiological events and background noise. Despite setting
a 95-percentile threshold for the energies to mitigate the effects of
spike artifacts, outliers are still observed, as shown in Figure 7. Spike
artifacts can significantly increase the skewness, kurtosis, and PAER,
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FIGURE 8
Contraction detection results compared to TOCO. (A1, B1, C1) Fast wave signals and contraction detection results with the optimal threshold in
channels 1,2, and 3. (A2, B2, C2) ROC curves and AUC values for fast wave signals in channels 1,2,3. (A3, B3, C3) Enhanced signals and contraction
detection results with the optimal threshold in channels 1,2, and 3. (A4, B4, C4) ROC curves and AUC values of enhanced signals in channels 1,2,3. TPR,
true positive rate; FPR, false positive rate.

as they make energy distribution more skewed, heavier-tailed, and
elevate the maximum value. Spike artifacts are very common in the
EHG signals. Future studies should focus on developing algorithms
to remove spike artifacts or designingmore advanced electrodes that
are robust to such artifacts to benefit post-processing tasks.

The proposed signal enhancement method offers substantial
benefits for uterine contraction detection. The enhanced
signals exhibit higher AUC compared to the fast wave signals,
as shown in Figure 8. This is due to the high contrast between
uterine contraction and baseline noise in enhanced signals, making
it easier to find thresholds that effectively separate baseline noise
from uterine contractions. By leveraging slow wave signals as an
additional source of information for uterine contraction activities,
the signal quality can be significantly improved. This enhancement
leads to more reliable and noise-resilient contraction detection
outcomes.This advancement enhances our understanding of uterine
signaling and propagation.

By analyzing the consistency between multi-channel EHG
signals and TOCO monitor data, we can evaluate the spatial
pattern of uterine contractions. Our results indicate that the
number of high consistency channels for enhanced signals is
significantly higher than for fast wave signals. Furthermore,
the signaling distances estimated using these high consistency
channels are significantly higher for enhanced signals compared
to fast wave signals. A high signal consistency between multi-
channel EHG and TOCO signals suggests high synchronization
(Shen et al., 2023; Smith et al., 2015; Young, 2018; 2015)
resulting from uterine signaling and propagation. As shown in
Figure 6 and Table 3, fast wave signals exhibited high consistency
exclusively in channels proximate to the TOCO monitor, likely
due to the rapid decay of fast wave, which inherently limits
their capability to reflect in long-distance signaling. In contrast,
enhanced signals demonstrated a broader spatial distribution in
capturing the TOCO signal, suggesting that enhanced signals
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TABLE 3 High consistency channel number, growth ratio of channel number, signaling distance, and growth ratio of signaling distance for fast wave
and enhanced signals in five subjects.

Signaling
metrics

Subject #1 Subject #2 Subject #3 Subject #4 Subject #5 Mean ± std

High consistency
channel number Fast
wave signal

27 50 24 7 34 28.40 ± 15.6

High consistency
channel number
Enhanced signal

38 55 28 13 55 37.80 ± 18.05

Growth ratio of
channel number

0.41 0.1 0.17 0.86 0.62 0.43 ± 0.32

Signaling distance
Fast wave signal

130 mm 166 mm 105 mm 77 mm 125 mm 120.60 ± 32.88

Signaling distance
Enhanced signal

148 mm 174 mm 123 mm 110 mm 144 mm 139.80 ± 24.62

Growth ratio of
signaling distance

0.14 0.05 0.17 0.43 0.15 0.19 ± 0.14

exhibit greater resilience to attenuation and interference compared
to fast wave signals. Therefore, analyzing the spatial pattern
of uterine contraction using only fast wave signals tends to
underestimate the propagation distance in the laboring uterus.
Overall, our data suggest that slow waves are more resistant
to noise and carry the detectable contraction signal across a
longer distance.

As shown in Table 3, estimating the signaling distance using
the enhanced signal results in a lower standard deviation across
different subjects compared to the fast wave signal. This indicates
that using enhanced signals for estimating signaling distance will
lead to more consistent and reliable results. This suggests that
the fast wave signal can be easily affected by the experimental
conditions, such as background noise levels or the subject’s skin
characteristics. In contrast, the enhanced signal is more robust
to these experimental conditions, leading to more accurate data
analysis.

Our signal enhancement method demonstrated varying efficacy
across different subjects, and there are two distinct perspectives
to evaluate its benefits: the improvement in signal quality and
the improvement in post-processing tasks. From the signal quality
perspective, the improvement is primarily influenced by the noise
levels in the EHG recordings. The method proved more effective
when the original EHG signal has a higher SNR, as this allows
clearer identification of fast wave and slow wave signal patterns.
For example, subject #3, who has a high-quality EHG signal
as shown in Figure 7, exhibited the highest increase in all metrics.
However, from the perspective of improvement in the post-
processing tasks, if the fast wave already has high SNR, there will
be no significant differences in the outcomes of post-processing
tasks since there is less room for improvement. For instance,
subject #3 does not show a notable increase in the high consistency
channel number. Conversely, for low quality fast wave EHG signals,
we observed greater benefits in the post-processing tasks. This is

because there is more room for improvement when the fast wave
signal quality is low.

The selection of a 10-s window was based on physiological
and signal processing considerations. Uterine contractions typically
last between 30 and 90 s. Therefore, a window size larger than
30 s would oversmooth the signal, making it hard to extract
meaningful information from the signal. Conversely, if the window
size is too short, the signal would be easily affected by local
structures, such as spike artifacts. Additionally, we use the RMS
slow wave envelope as the weighting factor to enhance the
EHG signal. The frequency band spans from 0.01–0.1 Hz. With
a high cutoff frequency of 0.1 Hz, a 10-s sliding window was
implemented to effectively capture the information in the slow wave
signal.

Our EHG system and signal enhancement can potentially
benefit the uterine vector analysis (Garfield et al., 2020). While the
prior study positioned the electrode pairs along the X, Y, and Z
directions, our use of multi-channel EHG and signal enhancement
techniques can enable us to discover more complex and accurate
patterns of uterine propagation. In addition, this study may also
help distinguish between true labor contractions and Braxton Hicks
contractions (Mulder and Visser, 1987), as accurately locating the
timing of uterine contractions is a prerequisite for differentiating
between the two types. The methodology may prove valuable
in analyzing multiple frequency bands of uterine contractions to
find the characteristics of labor contractions and Braxton Hicks
contractions, which may provide insights into the timing of delivery
or the risk of pretermbirth (Lucovnik et al., 2011;Maner et al., 2003).

It is important to acknowledge the limitations of this study.
First, our method was primarily tested on data obtained from
term pregnancies, and its efficacy in preterm birth scenarios
requires further investigation. Second, the improvement in accurate
contraction detection outcomes was primarily tested using the
energy-based method. However, the impact on other contraction
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detection methods, such as sample entropy (Chen et al., 2024;
Shen et al., 2023) or nonlinear correlation (Muszynski et al., 2018),
needs further evaluation. Additionally, false positives in contraction
detection using the energy-based methods still exist even after
signal enhancement. Machine learning (Liu et al., 2015; Yang et al.,
2021; Ying et al., 2011) and deep learning methods (El Dine et al.,
2022) have undergone significant advancements in recent years,
which can potentially be used to further increase contraction
detection accuracy. As we extract features from different frequency
bands and perform feature fusions to enhance signal quality, more
sophisticated feature fusion techniques offered by machine learning
and deep learning methods may further improve signal quality.
Furthermore, combining the spatial and temporal information from
EHG signals can help reduce the effects of background noise and
artifacts.

In conclusion, this study presents a novel signal enhancement for
uterine contraction detection, leveraging the relationship between
slow and fast wave components of EHG signals. This enhancement
not only mitigates the impact of noise but also strengthens the
physiological relevance of extracted features from EHG signals. Our
findings demonstrate significant improvements in signal quality
and contraction detection accuracy. Enhanced signal quality could
lead to a more comprehensive analysis of spatial signaling patterns
of uterine contraction and lay a foundation for the reliable
identification of labor onset and progression. As we continue to
improve this technique, we anticipate its integration into clinical
practice, ultimately contributing to safer and more effective labor
management for all pregnancies.
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