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Introduction

The future has always captivated human imagination, with efforts to assess disease
prognosis dating back to ancient Egyptian times: “If the heart trembles, has little power
and sinks, the disease is advancing …and death is near …” (Papyrus Ebers, circa 1550 BC).
However, the risks of relying on predictions were also acknowledged in antiquity: “…The
prophecy has been taken from the prophets and given to the fools and babies instead …”
(BabylonianTalmud: Baba Bathra 12b). Recent advancements inmedicine have significantly
enhanced prognostic accuracy.The availability of comfortable and reliable wearable devices
capable of measuring cardiac, neuronal, and other physiological signals, combined with
sophisticated machine learning algorithms designed to interpret these signals in real time
(Davoodi et al., 2024; Elul et al., 2024; Fira et al., 2024; Kerr et al., 2024), marks the dawn of
a new era in preventive medicine—the age of real-time prediction.

Prediction vs. risk factor

Scanning the existing literature reveals considerable semantic confusion surrounding
the terms prediction, risk factor identification, detection, and diagnosis, which are often
used interchangeably. To clarify, we propose the following distinctions:

Prediction
Definition: “Event X is likely to occur within time interval T for individual P.”
Relation: Future-oriented; depends on statistical/machine learning models and

longitudinal data.
Example: “This patient has a 30% chance of developing heart failure within the next

5 years.”

Risk factor
Definition: “Individual P is at higher risk for event X due to factor F.”
Relation: Identifies modifiable/non-modifiable contributors to an event.
Example: “Hypertension is a risk factor for stroke.”

Detection
Definition: “Individual P is currently experiencing event X.”
Relation: Real-time or near real-time identification of an ongoing event.
Example: “A wearable ECG detects atrial fibrillation in real time.”
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Diagnosis
Definition: “Individual P has condition D.”
Relation: Typically involves clinical assessment, imaging,

or lab tests.
Example: “The patient has been diagnosed with myocardial

infarction based on ECG and biomarker analysis.”
In summary, we can define these conceptual relations:
Prediction → Risk Factor Identification (Predictionmodels often

incorporate risk factors.)
Risk Factor Identification → Prediction (Identified risk factors

improve predictive accuracy.)
Detection → Diagnosis (Detected anomalies may trigger

diagnostic confirmation.)
Diagnosis → Prediction (Diagnosis may inform predictions

about disease progression.)

New era of prediction

Traditionally, preventive medicine has focused on risk factor
identification and mitigation, screening tests, patient and caregiver
education, and the deployment of response systems for life-
threatening events. However, the advent of real-time prediction
is transforming this discipline. Imagine a world where non-
invasive wearable devices issue alerts before the onset of various
conditions, such as life-threatening cardiac arrhythmias, heart
failure decompensation, or stroke. These capabilities could pave
the way for precisely timed, real preventive therapies, enabling
clinicians to achieve optimal outcomes with fewer interventions
while preventing serious medical events and their potentially life-
threatening consequences.

Such real-time prediction systems are already being developed
by research groups and companies, showing promising results
(Fira et al., 2024; Kerr et al., 2024). Yet, the true clinical value and
significance of these advancements can be challenging to define and
fully comprehend.

Alarm goes off

The essence of a real-time prediction is the alarm, an actionable
output presented to patients and/or caregivers at the right time,
to convey a clear message and facilitate the most appropriate
intervention. If the alarm does not warrant a specific action, not
accurately timed or has an ambiguous meaning, its clinical utility
might be questionable.While these requirementsmay seemobvious,
the usual tools used for evaluation of prediction systems are limited
due to unique challenges posed by the continuity of time. To validate
that a prediction system has a positive effect on human health, the
clinical setting, the intended use, and the continuum of time must
be considered, as demonstrated in the following examples.

Unlike a classic predictive test that can be either “positive” or
“negative” but not both, an alarm at a certain time may be both
or neither. Imagine a system predicting sudden cardiac arrests and
activating Emergency Medical Services (EMS), enabling immediate
intervention on onset. An alarm 20 s before the event is useful,
but considering response times of even the best EMS, no added
benefit is gained. Such alerts are indeed true positive as the event

was accurately predicted, but false negative in the sense that it does
not support a timely response. Similarly, an alarm set off 5 min after
onset is technically false, but not “as false” as an alarm calling the
EMS for no reason at all.

Another challenge when testing a prediction system is
consideration of the distribution of false or true alarms over time.
For example, 30 false alarms within the same hour will mean a single
unnecessary EMS activation, but when issued every few days over
4 months, will repeatedly unnecessarily activate EMS, and result in
patient anxiety and stress as well as complacency, possibly leading
to missed true alarms. On the other hand, even a single timed alarm
is enough for intervention, making any “false negative” that relates
to the same event meaningless.

How to report real time prediction results?

To illustrate the complexity of the problem, consider the example
of predicting out-of-hospital sudden cardiac arrest.The incidence of
the predicted event is approximately 55 cases per 100,000 person-
years (Berdowski et al., 2010). But many studies showing event
prediction results calculate sensitivity, specificity, and accuracy for
patient groups with even representation for positive and negative
intervals, introducing a selection bias. In our example, even if we
consider an entire day before the event as a relevant prediction
window, 99% specificity in a 1:1 positive-negative sample population
is equivalent to 0.0003% specificity.

Researchers from different scientific fields approach this
problem in variousways. Earthquake prediction research commonly
uses a predictive ratio (Kagan and Knopoff, 1987) that compares the
predicted probability in space and time against a null hypothesis
assuming the events are random (Poisson stochastic process).
This method is unbiased and rigorous, but sheds little light on
the expected clinical utility if adopted to medicine. Arrythmia
predictions for example, usually use samples of positive and negative
intervals (e.g., the paroxysmal atrial fibrillation prediction challenge
(Moody et al., 2000) uses a 1:1 positive-negative ratio), which
provides clear clinical trial metrics (sensitivity, specificity, etc.) but
introduces a selection bias. Epileptic seizure prediction studies
usually show metrics on a sample of intervals, adding the false
alarm rate per hour (Daoud and Bayoumi, 2019), a measure useful
for estimation of false alarm burden on patients and healthcare
systems, but sensitive to the alarm time-distribution problem
described above.

Authors solicited opinion regarding
real-time prediction system results

We are of the opinion that introduction of real-time prediction
systems to clinical practice requires a usage-centered approach.
This would first require definition of the action that patients and
caregivers should take once an alarm is raised, e.g., “activate EMS,
then observe the patient for 6 h after the alarm”. Once the action
is clear, a true positive can be appropriately defined, i.e., for each
event, define if the alarm issued at a relevant time for the action
is efficient. For example, assuming an 8-min notice is needed to
significantly improve patient survival, all events with at least one
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alarm between 6 h and 8 min before onset would be considered true
positive. Thereafter, sensitivity can be defined as the rate of true
positives vs. events. A false positive would be a needless action,
e.g., an EMS activation. As the patient is observed for 6 h, this
is the minimal allowed gap between two activations; two false
alarms 3 h apart would be considered a single false positive alarm.
These definitions of true and false positives can then be applied to
meaningfully determine the positive predictive value. Alarms not
achieving the goal but not causing an irrelevant action, e.g., an alarm
20 s before or during an event, are neither positive nor negative.

Conclusion

We hope that clear definitions, awareness of pitfalls and the
proposed approach will help set a benchmark for clinically relevant
real-time prediction systems, creating the prophet rite of passage,
and retrieving prophecy from the fools.
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