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Methods: This study identified the alterations caused by concurrent training and
intermittent fasting on the myocardium of rats. In total, 39 adult male Wistar rats
were used, divided into four groups: control [C (n = 12)], fasting control [FC (n =
11)], training [T (n = 8)], and fasting training [FT (n = 8)]. The critical load test was
performed to evaluate and determine the intensity of effort in aerobic training
(AT) (swimming). The resistance training protocol (RT) (anaerobic) consisted
of four series of 10 jumps, with overload corresponding to 50% of the body
mass of each animal, and 1 min of rest between each series. The concurrent
training (CT) was composed of a protocol of AT and RT in the same session.
The intermittent fasting period was 12/12 h. At the end of the experiment, the
animals were weighed to obtain the Lee index; heart weight was verified, and
tissue samples were collected for further histological analysis. After obtaining
the data, the Shapiro-Wilk test was performed, followed by a two-way analysis
of variance (ANOVA) with Tukey’s post-test for the variables measured at the end
of the experiment.

Results: For the variables body mass, feed consumption, and the anaerobic
threshold, the FC group showed a greater decrease in the Lee index [(0.28
± 0.00) p < 0.05)] in relation to the other groups. There were no significant
alterations (p > 0.05) in relation to heart weight, fractal dimension, and anaerobic
threshold (AnT); finally, both the T and the FT groups presented a significant
decrease ([T: (277.3 ± 119.3/FT: 310.5 ± 148.8] p < 0.05) in the transverse cross-
sectional area of the cardiomyocytes, when compared to the control groups.
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Conclusion: The practice of concurrent training for a period of 4 weeks
precipitated a decrease in the transverse cross-sectional area of the
cardiomyocytes of Wistar rats. Furthermore, when combined with intermittent
fasting, concurrent training not only led to a reduction in the transverse cross-
sectional area of the cardiomyocytes but also resulted in a decrease in body
mass compared to the isolated concurrent training model.
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1 Introduction

Several modalities of physical training, performed at moderate
to high intensity, are used to promote beneficial alterations in the
cardiovascular system, being responsible for greater mitochondrial
adaptation, physiological cardiac hypertrophy, and improvements
in different cardiac variables (Ghorayeb et al., 2005; Seo et al.,
2019). Among these modalities, “concurrent training” (CT) stands
out, consisting of performing exercises that stimulate both aerobic
and anaerobic demand in a single training session (Hickson,
1980). Studies carried out to evaluate the effects of this training
model on the cardiovascular system report greater cardiovascular
adaptation when compared to isolated resistance training, and that
this adaptation occurs due to the competition between aerobic
and anaerobic metabolisms (Coffey and John, 2017). However, if
CT is carried out at very high intensities, it can cause negative
effects to the practitioner, such as overtraining, which may affect
the magnitude of molecular signaling and, consequently, impair
protein synthesis, thus generating negative effects at the cellular level
(Fyfe, Bishop, Stepto, 2014; Schoenfeld, 2010; Souza et al., 2001).

Some studies have identified that concurrent training is able to
alter cardiovascular and muscle health variables to a greater extent
when compared to other training modalities. These alterations
include a decrease in resting heart rate, systolic and diastolic
blood pressure, and an increase in maximal oxygen consumption.
(Davis et al., 2008; Häkkinen et al., 2003; Sheikholeslami-
Vatani et al., 2015; Takeshima et al., 2004). However, some authors
suggest that the excessive fatigue caused by concurrent training (CT)
may impair improvements in physical capacities, as CT activates
different energy systems simultaneously and compromises the
individual’s recovery (Aoki and Gomes, 2005; Bell et al., 2000).
It is known that concurrent training uses energy substrates from
both anaerobic and aerobic pathways and that fasting promotes less
energy availability during its performance, causing the metabolism
to use a greater amount of fatty acids as an energy source
(Medeiros, et al., 2015; Hill et al., 2012). Intermittent fasting is
one method of food restriction, consisting of fasting during the day
and feeding only when the sun goes down (Saleh et al., 2005).

Studies indicate that this type of fasting promotes cardiovascular
protection against heart disease, decreased heart rate, and protection
against muscle injury biomarkers (Saleh et al., 2005; Mrad et al.,
2019; Varady et al., 2007). It is also important to acknowledge that
high-intensity physical exercise can compromise cardiac function,
inducing arrhythmias, heart failure, and even sudden cardiac death.
These outcomes may result from enzymatic imbalances, structural
damage, and reduced cellular oxygen availability (Junqueira et al.,

2016; Ventura-Clapier et al., 2011; Ping et al., 2015). Additionally,
low levels of certain nutrients can increase cardiovascular risks; for
instance, sodium restrictionmay trigger several physiological effects
associated with cardiac function (Graudal et al., 2014; Paterna et al.,
2008; Parrinello et al., 2009). Thus, the authors' hypothesis was
that the high intensity of concurrent training (CT), combined
with dietary restriction, could lead to changes in cardiac tissue,
especially in cardiomyocyte size. This reduction may result from
exercise-induced adaptations and altered nutrient availability due to
fasting, since cardiomyocytes are responsive to bothmechanical and
metabolic stimuli (Trager et al., 2023).Therefore, the present study is
relevant because it reports the effects of a CTmodel and intermittent
fasting method on the myocardium.

Despite demonstrating different characteristics when compared
to humans, such as the circadian cycle, studies involving
animals present advantages, for example, the high control of
variables and ease of manipulation. Additionally, the effects
found can be extrapolated to humans or used to encourage
further studies (Quinn, 2015). Thus, the aim of the present study
was to verify the possible alterations in the myocardium of rats after
12 sessions of CT associated with intermittent fasting.

2 Methods

2.1 Ethical approval

The study was developed in compliance with the rules
and ethical principles of the Brazilian College of Animal
Experimentation (BCAE) and was approved by the Ethics
Committee for the Use of Animals (ECUA-5372). The investigators
understand the ethical principles under which the journal Frontiers
in Physiology – Exercise Physiology operates, and this work
complies with the journal’s animal ethics checklist (Grundy, 2015).

2.2 Animals

In total, 39 male Wistar rats (Rattus novergicus albinus) were
used, with a mean age of 150 days and a body mass of 431 ± 2.94 g.
The experiment startedwith 40 animals, however, therewas a sample
loss due to one animal drowning during the development of the
study. The animals were housed in groups of 2 animals per box
(polyethylene), with a controlled ambient temperature (22°C ± 2°C)
and brightness (light/dark cycle of 12 h), with lights turned on at 10
a.m. and off at 10 p.m.
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2.3 Division of groups

The animals were divided into four groups:
Control Group [C (n = 12)]: the animals remained loose in

their cages, with free access to water and feed (feed for laboratory
rats – Primor® ).

Fasting Control [FC (n = 11)]: the animals remained loose
in their cages, with free access to water, however, feeding
was controlled to a fasting period of 12 h for 12 h of free
access to feed (Ferreira Da Silva et al., 2011).

Training [T (n = 8)]: This training model was composed of two
different exercise sessions, which require different energy sources
during execution, one being predominantly aerobic (swimming)
and the other predominantly anaerobic (jumping). Access to water
and feed was ad libitum.

Fasting Training [FT (n = 8)]: This group was identical to the T
group except that the animals fasted, under the samemodel that was
applied to the FC group (12 × 12 h).

2.4 Concurrent training

Prior to beginning the training protocols, the rats
were submitted to a period of adaptation to the liquid
environment and equipment (10–20 min/day, 3 days a week,
for 1 week, with progressively increasing overload and
duration) (Manchado et al., 2006). An adaptation period
reduces the stress produced by the liquid medium and by
the physiological alterations resulting from physical training
(Chimin et al., 2009).

The aerobic training protocol was performed first, followed
by the resistance training protocol. The protocols were performed
sequentially, with a pause only to change the training area.
The training was carried out three times a week for 1 month,
totaling twelve training sessions. The aerobic training protocol
consisted of three weekly sessions on non-consecutive days,
comprising 30 min of swimming exercise, with an intensity of
80% of the anaerobic threshold (AnT), stipulated from the
critical load test (Manchado et al., 2006). For the swimming
exercise, a tank was used, containing cylindrical polyvinyl chloride
(PVC) tubes, 25 cm in diameter and 100 cm in height, with
water at a depth of 70 cm, and a controlled water temperature
(Ozaki et al., 2014).

For the resistance training protocol, four series of 10 jumps were
used, with overload, adjusted weekly, corresponding to 50% of the
body mass of each animal. A polyvinyl chloride (PVC) tube, 25 cm
in diameter, 80 cm in height, and 38 cm deepwas used.The overload
was carried in a waistcoat made from elastic, with a Velcro closure,
attached to the chest area, specially designed for this type of exercise
(Hill, 1993) (Figure 1).

2.5 Critical load test

The critical workload (CWL) and anaerobic capacity (CTA)
were obtained by inducing swimming exercise with three different
stimuli. Three loads were selected for each animal, corresponding

to 7, 9, and 11% of body mass, so that the animals performed
all efforts (Hill, 1993).

The exercises were chosen with the intention of the
animals entering exhaustion after between 2 and 10 min (Hill,
1993). In this way, we recorded the time limit (Tlim) to
perform the exercise at each of the loads. The animals
rested for 24 h after each stimulus (Marangon et al., 2002;
Chimin et al., 2009; Castoldi et al., 2013). The values established for
the two variables were obtained using the formula: Critical Load =
CWL+ (CTAx1/Tlim).

After performing this procedure, the aerobic capacity of each
animal could be determined, which was necessary to identify the
intensity of effort in the swimming exercise.

2.6 Food consumption

Food consumption was recorded at each change of feed and
water to establish parameters between the groups, calculated
by the ratio between the animal’s body mass (BManimal)
and food consumption, both in grams (g). Consumption was
calculated by the content of feed offered (FO) and subtracted
from the surplus (S), using the formula [BManimal/FO-S]
(De Luca et al., 1987).

2.7 Intermittent fasting protocol

Intermittent fasting was performed with a 12/12 protocol,
that is, the animals performed 12 h of fasting with 12 h of
feeding on every day of the week (Ferreira Da Silva et al.,
2011). The fasting period started at 9 p.m. and ended the
next day at 9 a.m. The training took place 1 h before the
beginning of the feeding period, so the animals performed the
concurrent training while still fasting. Water consumption was
ad libitum, 24 h a day, for all animals.

2.8 Lee Index

The Lee index was calculated for all animals, using the
ratio between the cube root of body mass (g) and the naso-
anal (muzzle-coccyx) length in centimeters, as described by
Novelli and colleagues (2007). Although this method provides a
practical and non-invasive approach to estimate body adiposity
in rodents, it represents an indirect measure and does not allow
precise quantification of fat mass. Therefore, interpretation of
this index should be made with caution, and future studies are
encouraged to include direct assessments of body composition,
such as dissection-based fat pad analysis or imaging techniques
(Figure 2).

2.9 Anesthetic protocols

The animals were euthanized 48 h after the final training
session to avoid the influence of acute exercise-induced effects
on the analyses and outcomes. Anesthesia was induced using an
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FIGURE 1
Experimental design. BM = Body Mass.

FIGURE 2
Comparison of the Lee Index between groups after intervention. C (12)
= Control; FC (11) = Fasting control; T (8) = Training; FT (8) = Fasting
training. Statistically significant difference of the two-way ANOVA test
with Tukey’s post-test with 5% significance (p < 0.05).

intraperitoneal injection of ketamine hydrochloride (40 mg/kg)
and xylazine hydrochloride (10 mg/kg). Subsequently, the
animals were euthanized by exsanguination via cardiac puncture
(Castoldi et al., 2013).

2.10 Surgical procedures and weighing the
heart

After euthanasia, the heart of each animal was surgically
removed, and the ventricles and atria were removed and weighed

FIGURE 3
Body mass of groups during the evaluations. C (12) = Control; FC (11)
= Fasting control; T (8) = Training; FT (8) = Fasting training. Significant
difference between FT and C, FC, and T.∗= statistically significant
difference vs. control group.

separately on a precision scale, Kern & Sohn® (model PNJ
600-3M, manufactured in Balingen-Frommern, GER), and an
analytical scale of the brand Marte Científica® (model AD500,
manufactured in São Paulo, BRA) (Pinheiro et al., 2018), before
being stored in a formaldehyde solution (10%) for histological
processing (Gimenes et al., 2015).

2.11 Histological processing of the cardiac
muscle

Samples of the left ventricle were fixed in a 10% buffered
formaldehyde solution for a period of 48 h, afterwhich the tissuewas
embedded in paraffin blocks, for later preparation of the histological
slides. After fixation, the hearts were sectioned transversely
immediately below the coronary sulcus, and longitudinally, to
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FIGURE 4
Comparison of Feed Consumption between groups after the
intervention. C (12) = Control; FC (11) = Fasting control; T (8) =
Training; FT (8) = Fasting training. Statistically significant difference by
two-way ANOVA test with repeated measures and Tukey’s post-test
(p < 0.05).

obtain only the left ventricles. Next, the hearts were washed,
dehydrated, and embedded in paraffin (Noh et al., 2015). The
blocks containing the fragments of the cardiac tissue were cut
in a rotating microtome using the semi-serial method, with
thicknesses of 5 µm.

The sectionswere subjected toHematoxylin-Eosin (HE) staining
for morphological-histomorphometric analysis (Ozaki et al., 2015).

2.12 Histological analysis

For the histomorphological analysis, to quantitatively evaluate
the tissues, images of the slides stained with HE were obtained using
the Nikon®eclipse 50i (manufactured in New York, United States)
optical microscope attached to an Infinity 1 camera (manufactured
in California, United States).

For the histomorphometric analysis, to qualitatively evaluate the
tissues, the sectional area of cardiomyocytes was measured using
NIS-Elements, advanced image acquisition, analysis and processing
software developed by Nikon® . For this, images were used with
a ×40 magnification, and 50 cardiomyocytes from each animal
were measured. For the analysis of the left ventricle, a Leica

®optical microscope (DM500 model, manufactured in Illinois,
United States) was used, with Leica Application Suite software
version 4.2.0. The measurement was performed through the left
ventricle contour, where, at the end of the contour, the software
recorded the final size of the contoured line in a micrometer
(Junqueira et al., 2016).

2.13 Data analysis

After obtaining the data, the Shapiro-Wilk normality test
was performed and the comparison between groups was carried
out through the analysis of variances (two-way ANOVA). This
procedure was performed for all variables obtained at the end of the
experiment. In addition, the two-way ANOVA test with repeated
measures was utilized and Tukey’s post-test for body mass, feed
consumption, and the anaerobic threshold. All procedures adopted a
significance value of 5% (p < 0.05). The calculations were performed
using the statistical package (GraphPad Prism v.10.0. for Mac® ).

3 Results

3.1 Body mass

The FT group presented decreases in body mass throughout the
experiment, leading to a statistically significant decrease in mass (g)
in relation to groups C (p = 0.0001), FC (p = 0.007), and T (p =
0.001). After statistical analysis, the final body mass means of all
groups throughout the interventionwere as follows: C (468.5 ± 20.7);
FC (427.4 ± 33.5); T (431.6 ± 26.7); and FT (396.1 ± 26.3) (Figure 3).

3.2 Lee index

The FC group showed a significant decrease for the Lee’s Index
variable when compared to the other groups. The means and
standard deviations of the groups were: C: 0.30 ± 0.01; FC: 0.28 ±
0.00; T: 0.30 ± 0.00; and FT: 0.30 ± 0.00.

3.3 Feed consumption

A significant increase in feed consumption was verified in
the FC group when compared with the other groups. The groups
demonstrated the following respective means: (C = 27.12 ± 0.49);
(FC = 35.41 ± 1.48); (T = 26.20 ± 1.45); (FT = 22.31 ± 0.62). After
the statistical analysis of feed consumption, significant differences
were noted between group FC and groups C (p = <0.0001) and FT
(p = 0.0015); and between group FC (p = 0.001), and groups T and
FT (p = 0.001). This result can to be see in Figure 4.

3.4 Anaerobic threshold

The pre-intervention Anaerobic Threshold means, expressed in
% body mass × seconds (%bm∗s), were as follows: (C = 6.00 ±
0.22); (FC = 5.65 ± 0.52); (T = 6.84 ± 0.17); (FT = 6.03 ± 0.20),
and after 4 weeks of intervention, thpe means were: (C = 6.11
± 0.37); (FC = 5.62 ± 0.83); (T = 6.64 ± 0.15); (FT = 6.47 ±
0.26). The results of the Anaerobic Threshold before and after the
intervention did not show significant alterations after performing
the statistical analysis (Figure 5).
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FIGURE 5
Pre and post anaerobic threshold of the groups. C (12) = Control; FC (11) = Fasting control; T (8) = Training; FT (8) = Fasting training. Legend:
BM = Body Mass; s = seconds.

TABLE 1 Results, with mean, standard deviation and significance of heart weight.

Variables C FC T FT P

Δ Body Mass +39,4 −7 −13 −32 -

THW (g) 1.25 ± 0.11 1.23 ± 0.19 1.22 ± 0.06 1.17 ± 0.07 0.492

(% Body Mass) 0.28 ± 0.019 0.24 ± 0.012 0.30 ± 0.025 0.29 ± 0.026 0.131

RV (g) 0.24 ± 0.07 0.21 ± 0.19 0.20 ± 0.03 0.20 ± 0.04 1.000

(% Body Mass) 0.053 ± 0.005 0.052 ± 0.000 0.056 ± 0.011 0.055 ± 0.017 0.074

LV (g) 0.94 ± 0.08 0.95 ± 0.18 0.93 ± 0.05 0.88 ± 0.07 0.672

(% Body Mass) 0.21 ± 0.013 0.17 ± 0.017 0.22 ± 0.021 0.22 ± 0.013 0.961

R/L Atrium (g) 0.07 ± 0.01 0.06 ± 0.01 0.08 ± 0.02 0.07 ± 0.03 1.000

(% Body Mass) 0.018 ± 0.002 0.018 ± 0.005 0.020 ± 0.005 0.015 ± 0.004 0.808

Legend: C (12), Control; FC (11), Fasting control; T (8), Training; FT (8), Fasting training. THW, total heart weight; RV, right ventricle; LV, left ventricle; R/L Atrium R/L, Right/Left Atrium.
% Body Mass: Percentage value in relation to total body mass.

3.5 Heart weight

The results found related to the weight of the heart were not
significant after performing the statistical test (Table 1).

3.6 Transverse cross-sectional area of
cardiomyocytes

After observing the area of the cardiomyocytes of the different
groups, the following medians and standard derivations were
obtained: C (364.1 ± 197.2); FC (324.2 ± 150.1); T (277.3 ± 119.3);
and FT (310.5 ± 148.8). A statistically significant decrease was found
in the T group in relation to groups FT (p = 0.0179), FC (p = 0.0001)
andC (p=<0.0001). In addition, therewas also a significant decrease

in the transverse cross-sectional area of cardiomyocytes in the FT
group compared to group C (p = <0.001) (Figure 6).

3.7 Left ventricular lumen diameter

Post statistical analysis, the following results were found: C
(27 ± 1.04); FC (9.18 ± 1.4); T (13.92 ± 3.91); and FT (15.14 ±
4.97). Although the trained groups presented higher values, no
significant differences were verified in left ventricle lumen size and
heart size (Figure 7).

When performing a qualitative comparison of the cardiac
histomorphology of the different sample groups, a visually apparent
increase in the left ventricular lumen was observed in the trained
groups (T and FT), compared to control groups (C and FC),
although no statistical analysis was performed (Figure 8).
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FIGURE 6
Comparison of transverse cross-sectional area of cardiomyocytes
(µm2) between groups. C (12) = Control; FC (11) = Fasting control;
T (8) = Training; FT (8) = Fasting training. Statistically significant
difference of the two-way ANOVA test with Tukey’s post-test with 5%
significance (p < 0.05).

FIGURE 7
Final distance of left ventricle lumen contour of the different sample
groups. C (12) = Control; FC (11) = Fasting control; T (8) = Training;
FT (8) = Fasting training.

4 Discussion

The main finding of this study was that concurrent training
promoted cardiac remodeling, characterized by a decrease in the
cardiomyocyte diameter, when compared to the control group.

Interestingly, although increased intraventricular pressure
and wall stress are generally expected to promote cardiomyocyte
hypertrophy, since larger fibers contain more contractile elements

arranged in parallel, allowing for greater force production
(Rassier, 2017; Nakamura and Sadoshima, 2018), the results of
the present study demonstrated a reduction in cardiomyocyte
size. This apparent contradiction suggests that alternative adaptive
mechanisms may be involved, particularly in the context of aerobic
exercise. Aplausible hypothesis is that the decrease in cardiomyocyte
diameter represents physiological remodeling aimed at enhancing
oxygen diffusion. In this regard, it is possible that smaller cells reduce
the distance between capillaries and mitochondria, facilitating
the oxygen transport needed to meet the increased metabolic
demandduring exercise (Kayar andWeiss, 1992; Poole andMathieu-
Costello, 1996). This interpretation aligns with the aerobic nature
of the training protocol and may reflect a beneficial myocardial
adaptation to optimize efficiency under conditions of elevated
cardiac output, since in skeletal muscle, smaller fibers and greater
capillary density reduce the diffusion distance, improving oxygen
transport during exercise (Hellsten and Gliemann, 2024). However,
further studies that evaluate the relationship between cardiomyocyte
diameter, mitochondrial distribution, capillary distance, and oxygen
delivery are needed, especially in the context of aerobic training, to
validate this hypothesis.

When comparing the transverse cross-sectional area of the
cardiomyocytes, an important sum of sides that reveals the
outline of each cell, between the T and FT groups, a decrease
was noted in the T group. This can be justified by the anti-
apoptotic and anti-inflammatory protection that fasting offers
cardiomyocytes (Ahmet et al., 2005). However, some studies have
identified that high intensity exercise can prevent skeletal muscle
atrophy and that fasting can cause atrophy in this type of muscle
(Belavý et al., 2017; Masiero et al., 2009).

On the other hand, with regard to cardiac muscle tissue, it was
observed that high-intensity training is related to left ventricular
morphological alterations (Dores et al., 2018). In addition, studies
show that insulin can attenuate the mechanism of atrophy and
autophagy of genes related to cardiomyocytes, through metabolic
pathways involving AKT protein phosphorylation and FOXO3a
inactivation (Paula-Gomes et al., 2013). Thus, there is a hypothesis
that training combined with fasting may have somehow influenced
body response to insulin secretion, as there was a greater decrease
in cardiomyocytes in the group that performed the isolated
training. Studies involving this theme and that evaluate hormonal
concentrations may contribute to the results of the current research.
Another hypothesis is that a physiological cardiac adaptation to
exercise may have occurred, leading to eccentric hypertrophy of
the cardiomyocytes. In this case, there would be an increase in
sarcomeres in relation to cell length without compromising cardiac
functionality, which is expected (Nakamura and Sadoshima, 2018).

In line with the present study, other research has also shown that
athletes who engage in high-intensity physical exercise may exhibit
an increase in left ventricular lumen, as a physiological adaptation
to the increased cardiac demand induced by exercise (Lang et al.,
2006; Galderisi et al., 2015; D'Andrea et al., 2017). This type of
cardiac remodeling is commonly observed in trained individuals
andmay represent a functional response to the volume and intensity
of training. However, in some cases, this structural enlargement
may be associated with greater ventricular wall stress during systole,
and even the development of arrhythmias. Thus, it is hypothesized
that concurrent training, due to its intensity, may induce structural
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FIGURE 8
Histomorphology of cross-sections of the striated cardiac muscles of the different sample groups. C (12) = Control; FC (11) = Fasting control;
T (8) = Training; FT (8) = Fasting training.

adaptations in the heart, such as an increase in the left ventricular
cavity, possibly accompanied by adjustments in cardiomyocyte size.

Although this variable is an indirect analysis of body adiposity,
there was a significant decrease in values related to the Lee index
in the T group in relation to the other groups; a decrease in
the transverse cross-sectional area of cardiomyocytes of animals
in the FT group, when compared with C and FC; and no
significant alterations in anaerobic threshold values and heart
weight. However, expansion of the cardiac chamber was observed
in the trained animals (groups T and FT). This may be justified
by the fact that the myocardium, in order to adapt to exercise
and maintain hemodynamic homeostasis, adapts morphologically
through ventricular dilation, especially the left ventricle.

In the present study, it was evidenced that the Lee Index of
the FC group and of the trained groups decreased in relation to
the control group. Thus, the present study corroborates the study
by Machado and colleagues (2014), in which a decrease in the Lee
index of animals practicing CT was found (Machado et al., 2014).
This decrease may have occurred because physical training is able
to decrease body fat and physical inactivity causes a decrease in
muscle mass (Kang et al., 2009; Janssen et al., 2002). The Lee index
was significantly lower in the FT group when compared to the T
group. This can be explained by the significant decrease in body
mass in the FT group, because the greater the fat loss, the lower the
Lee index (Souza et al., 2001).

Unlike the Lee index, there were no alterations in the anaerobic
threshold, or heart weight values between groups. A study involving
different training models showed that training with continuous load
promoted an increase in heart weight in relation to the control
group and the group that performed the training with progressive
loads (Rocha et al., 2008). Thus, there is a hypothesis that the
volume of this training model is more suitable for this cardiac
adaptation. On the other hand, high-intensity interval training,
over a 6-week period, did not significantly alter heart variables
or weight (Songstad et al., 2007).

Regarding the anaerobic threshold (AnT) evaluations, although
the groups did not present a statistically significant difference
between the pre and post intervention moments, a slight decrease in
the AnT of the animals in the training group was noted compared
to the control group. This fact may have occurred due to the

increase in body fat in animals in the C and FC groups, which
favors buoyancy, while muscle hypertrophy of the lower limbs,
generated by training, ends up impairing the buoyancy of animals
in the T group (Castoldi et al., 2016).

Regarding food consumption, both the animals that performed
the concurrent training, as well as those that performed fasting
coupled with training, presented significantly reduced feed intake,
in relation to the control group. These results are in favor of the
findings of Machado and colleagues (2014), who identified lower
food consumption of animals that practiced concurrent training for
4 weeks, compared to the control group. It is noteworthy that, in
the present study, the fasting control group presented a significant
increase in food consumption compared to the other groups, which
can be explained by the decrease that fasting causes on nocturnal
leptin levels (Alzoghaibi et al., 2014).

It is important to acknowledge that the present study has
limitations. Notably, it was not possible to perform functional
cardiac assessments, such as echocardiography, hemodynamic
analysis, or direct evaluation of myocardial contractility. The
study also lacked molecular analyses that could help distinguish
adaptive from maladaptive remodeling processes. These limitations
restrict more comprehensive understanding of the physiological
relevance of the observed morphological alterations. Despite these
constraints, this study contributes to the literature by exploring
the effects of concurrent training and intermittent fasting on the
cardiac tissue of Wistar rats. Future studies should aim to include
functional and molecular assessments, investigate different training
modalities, and incorporate additional analyses, such as citrate
synthase activity or protein expression, in order to better elucidate
the underlying mechanisms and validate the structural findings
reported herein.

In summary, it is concluded that the practice of concurrent
training for a period of 4 weeks induced a decrease in the
transverse cross-sectional area of cardiomyocytes in Wistar
rats. Furthermore, when combined with intermittent fasting,
concurrent training not only led to a reduction in transverse
cross-sectional area of the cardiomyocytes, but also resulted in
a decrease in body mass compared to the isolated concurrent
training model.
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