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Objective: This study aims to assess the impact of hypoxia training on body
composition and glycolipid metabolism in excess body weight or living with
obese people through meta-analysis.

Methods: Randomized controlled trials investigating the effects of hypoxia
training on body composition, glucose, and lipid metabolism in excess body
weight or living with obese people were systematically searched from databases
including CNKI, PubMed, andWeb of Science. Themeta-analysis was performed
by using Stata 18 and RevMan 5.4 analytic tools. The risk of bias was assessed
using the Cochrane evaluation tool, and the level of certainty of evidence
was determined by the GRADE framework. Between-study heterogeneity was
examined using the I2 test, and the publication bias was evaluated via the Egger
test or funnel plot.

Results:A total of 32 RCTs with 1,011 participants were included. Ameta-analysis
of 25 RCTs was performed (499 men and 480 women, Age: 40.25 ± 15.69, BMI:
30.96 ± 3.65). In terms of body composition, the outcome indexes of body fat
ratio (MD is −1.16, 95% CI -1.76 to −0.56, P = 0.00) in the hypoxia group were
better than the normal oxygen group. Therewas no significant difference in body
mass and BMI between the hypoxia group and the normal-oxygen group (P >
0.05). In terms of lipid and glucose metabolism, no significant changes were
found between the hypoxia group and the normoxia group (P > 0.05). Subgroup
analysis showed that training in hypoxic environment at altitude 2001–2,500 m
could effectively improve body mass, TG and LDL-C (P < 0.05). The effective
program to reduce body mass is to carry out moderate intensity training of
45–60 min for ≤8 weeks, ≥4 times a week (P < 0.05).

Conclusion: Hypoxic training is essential for reducing body fat ratio in excess
body weight or obese people. It is recommended to carry out 45–60 min of
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moderate-intensity aerobic exercise for ≤8 weeks, ≥4 times a week, in a hypoxia
environment of 2,001–2,500 m to lose body mass. The effects of hypoxia
training and normoxia training on lipid and glucose metabolism in excess body
weight or obese people are the same.

Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/view/
CRD42024628550
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hypoxia training, obesity, body composition, metabolism, meta analysis

1 Introduction

In the clinical field, Excess adiposity has gradually become a
global public health issue and a leading cause of death in most
countries’ populations (Chen et al., 2022). The World Health
Organization (WHO) defines excess body weight and excess
adiposity by body mass index (BMI), individuals with a BMI
exceeding 30 kg/m2 are typically classified as living with obesity,
while those with a BMI ranging from 25 to 30 kg/m2 are considered
excess body weight (Badimon et al., 2017). In recent years,
alongside economic development and improved living standards,
the prevalence of excess body weight and excess adiposity has
continued to rise (Tee et al., 2023; Collaboration, 2016). The
World Health Organization forecasts that by 2030, nearly 60% of
the global population will be excess body weight or with obesity
(Dragano et al., 2020). Excess body weight and excess adiposity
can impair their exercise capacity and, coupled with excessive
caloric intake, elevate the risk of cardiovascular ailments like
diabetes mellitus and hypercholesterolemia (Chacaroun et al.,
2020; Chen et al., 2022; Wang and Sun, 2019; Wang et al.,
2012), consequently augmenting healthcare expenses and societal
and economic burdens (Wang et al., 2021; Wang et al., 2011).
Additionally, they may encounter discrimination from society,
potentially impacting their mental wellbeing and reducing their
quality of life (Heymsfield and Wadden, 2017; Han, 2020; Jin et al.,
2023). Therefore, implementing appropriate interventions to
manage people’s weight and enhance their glucose and lipid
metabolism is imperative. Exercise for weight loss is globally
important (Exercise for weight loss was no. One in China, Brazil,
Mexico, and Spain and no. Four in Europe) (Kercher et al.,
2021). Exercise aids in preserving lean body mass through
weight loss efforts and helps consumers maintain long-term
weight loss (Newsome et al., 2024). For excess body weight or
obese individuals, although aerobic exercise can bring about
effective weight loss, it usually takes a relatively long time; in
contrast, interval training is an efficient and time - saving exercise
option (Batrakoulis et al., 2021), and combined training has the
most positive influence on cardiometabolic health indicators
(Batrakoulis et al., 2022).

A hypoxia environment refers to an environment with
reduced oxygen partial pressure compared to the normal sea-
level oxygen environment, encompassing both natural high-
altitude hypoxia environments and artificial hypoxia environments
(Wang and Sun, 2019). Hypoxic exercise training is a method
of exercise and fitness in a naturally occurring or artificially
simulated plateau where the body is below normal oxygen

conditions (Weng et al., 2006). Individuals accustomed to
living at sea level may experience altitude sickness when first
exposed to high altitudes, making altitude training impractical
due to its associated challenges in distance and duration.
Consequently, in recent years, artificial simulation of hypoxia
environments, rather than natural high-altitude conditions, has
been demonstrated to enhance athletes’ aerobic and anaerobic
exercise capacities (Faulhaber et al., 2023; Feng et al., 2023;
Mujika et al., 2019)and performance and is emerging as a
potent non-pharmacological intervention against numerous
diseases (Burtscher et al., 2023). This artificially simulated
hypoxic environment is also progressively utilized to enhance
the body composition and lipid metabolism of living with
obese individuals. Research indicates that prolonged residence
in high-altitude, hypoxia environments results in weight loss
(Xie et al., 2017).

When the load is regulated by heart rate, hypoxic environments
typically induce a slight increase in heart rate, potentially alleviating
the body’s burden compared to normal oxygen conditions
(Yang et al., 2014). Exercising in a hypoxic environment also
creates greater metabolic strain and increases overall fatigue
(Ruggiero et al., 2022). Furthermore, many training modalities
in hypoxic environments involve stationary bicycles, which can
mitigate the risk of bone, knee, and ankle injuries in excess body
weight or living with obese individuals (Yan, 2020). At the same
time, it is feasible, safe, and effective for excess body weight/with
excess adiposity individuals (Batrakoulis and Fatouros, 2022).
Previous studies have shown that training in the normobaric
hypoxic environment does not produce better benefits (Chen et al.,
2022). There are also no studies exploring the best hypoxic
training prescriptions for people who are excess body weight
or obese. Hence, this study aims to assess the impact of
hypobaric/normobaric hypoxic training on enhancing body
composition and glucose and lipid metabolism in excess body
weight or living with obese people via meta-analysis, aiming to
ascertain its efficacy compared to conventional oxygen training and
explore the best hypoxic training program for excess body weight or
obese people.

2 Materials and methods

This paper follows the Systematic Review and Meta-Analysis
Project (PRISMA) guidelines (Page et al., 2021). The PROSPERO
registration number is CRD42024628550.
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FIGURE 1
Flow diagram of the process of article selection.

2.1 Inclusion and exclusion criteria

Inclusion criteria: Inclusion criteria followed the PICOS
principles. (1) The participants were overweight or obese, and
had no physical restrictions or health conditions that would
preclude evaluation and exercise intervention; (2) Clinical
randomized controlled trials; (3) In a hypobaric/normobaric
hypoxic environment, oxygen concentration ≤17.4% or altitude
≥1,500 m; (4) The experimental group underwent hypoxia
training hypoxic environme, while the control group received
normal oxygen training; (5) Outcome: body mass, body
fat ratio, body mass index, total cholesterol, triglycerides,
low-density lipoprotein cholesterol, high-density lipoprotein
cholesterol, fasting blood glucose, fasting blood insulin, and
homeostatic assessment of insulin resistance, there is at least one
outcome indicator in the literature.

Exclusion criteria: (1) Review Literature; (2) Case report
studies; (3) Animal experimental literature; (4) Non-randomized
controlled trials.

2.2 Literature search

A literature search was performed on databases including
China National Knowledge Infrastructure (CNKI), Pub Med,
and Web of Science, covering the period from the inception
of each database to 11 January 2024. The last literature search
was conducted on 1 December 2024. We use the exact Boolean
operator (AND, OR) to concatenate search terms. The following
combination of terms was used: “hypoxia training” or “hypoxia
exercise” or “Intermittent hypoxia” or “altitude training”. The
Boolean operator “AND”was used to combine these descriptorswith
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FIGURE 2
The risk assessment of bias.

“overweight” or “obesity” or “obese”. References included in the study
and meta-analysis were also manually checked to avoid possible
missing studies.

2.3 Literature screening and data
extraction

The literature was retrieved from the databases using the
established search strategy. Duplicate literature was removed using
End Note X9 software, and irrelevant articles were excluded based
on the examination of their titles and abstracts. Subsequently,
articles that did not meet the inclusion and exclusion criteria
were excluded.

Data extraction included retrieving information such as the first
author’s name, publication year, sex distribution, sample size, age
distribution, body mass index, intervention duration, intervention
frequency, altitude, exercise modality, training duration, and
outcome measures.

2.4 Risk of bias assessment for included
studies

The Cochrane Collaboration RCT bias evaluation tool in
Revman 5.4 software was employed to assess: (1) Random
sequence generation; (2) Allocation concealment; (3) Blinding of
participants and personnel; (4) Blinding of outcome assessment;
(5) Incomplete outcome data; (6) Selective reporting; (7) Other
bias. (This assessment was conducted independently by two
researchers, with discrepancies resolved through discussion with a
third researcher.)

2.5 Certainty of evidence

The Grading of Recommendations Assessment, Developing
and Evaluation (GRADE) method was employed to assess
the quality of evidence. GRADE assesses the certainty
of evidence to fall into the categories of very low, low,
moderate, or high.

2.6 Statistical analysis

The outcome indicators extracted from the included
literature were analyzed using Stata 18 software. Since the
outcome indicators in the included studies are continuous
variables, the unit of body composition was the same, so
mean difference (MD) was used as the effect size. The
units of lipid and sugar metabolism are different, and the
effect sizes (Hedges’s d) were expressed as standardized
mean difference (SMD) and 95% confidence intervals (CI).
Heterogeneity among outcome indicators was assessed using
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FIGURE 3
Forest plot of body mass meta-analysis. Gatterer, H 2015a1 indicated that the intervention period was 5 weeks, 2015a2 was 3 months, and 2015a3
was 8 months (Park et al., 2017). indicates training in a hypoxia environment at an altitude of 2,000 m, and 2017b indicates training in a hypoxia
environment at an altitude of 3,000 m.

I2 statistics. When I2 < 50%, indicating small heterogeneity,
the fixed-effect model was employed for analysis. Conversely,
if I2 suggested significant heterogeneity, exceeding 50%, the
random-effects model was utilized. The source of atypia was
identified by sensitivity analysis. The subgroup analysis method
was used to explore the best hypoxic fat reduction training
prescription. Publication bias was assessed by funnel plot or Egger’s
regression test.

3 Results

3.1 Literature search process and screening
results

A total of 1,676 articles were retrieved from databases (Specific
literature search strategies are shown in Supplementary Table 1).
After excluding 353 replicated studies, the texts of the remaining
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FIGURE 4
Forest plot of body fat ratio meta-analysis. Gatterer, H 2015a1 indicated that the intervention period was 5 weeks, 2015a2 was 3 months, and 2015a3
was 8 months (Park et al., 2017). indicates training in a hypoxia environment at an altitude of 2,000 m, and 2017b indicates training in a hypoxia
environment at an altitude of 3,000 m.

articles were reviewed. Ultimately, 32 studies met the inclusion
criteria and were included in the analysis. The flow chart illustrating
the literature screening process is presented in Figure 1.

3.2 Basic information and risk of bias
assessment results of included literature

The basic information of the literature included in this study
is presented in Supplementary Table 2. Of the 32 randomized
controlled studies included (ameta-analysis of 25 studies (Park et al.,
2024; Ghaith et al., 2022; Fu and Li, 2022; Hobbins et al., 2021;
Ma, 2020; Jung et al., 2020; Gao et al., 2020; Chacaroun et al.,
2020; Park et al., 2019; Zhang, 2019; Yang et al., 2018; Shin et al.,
2018; Klug et al., 2018; Fernández Menéndez et al., 2018; Camacho-
Cardenosa et al., 2018a; Park et al., 2017; Kong et al., 2017; Zhao
and Shi, 2016; Nishiwaki et al., 2016; Gutwenger et al., 2015;
Gatterer et al., 2015; Morishima et al., 2014; Kong et al., 2014;

Li et al., 2014; Wiesner et al., 2010) was performed, 499 men and
480 women, Age: 40.25 ± 15.69, BMI: 30.96 ± 3.65;The seven studies
(Han, 2020; Yan, 2020; Mai et al., 2020; Camacho-Cardenosa et al.,
2019; De Groote et al., 2018; Camacho-Cardenosa et al., 2018b;
Netzer et al., 2008) for which raw data could not be extracted
have been analyzed descriptively in Supplementary Table 2), four
specified allocation concealment. In terms of blind evaluation, 13
studies were single-blind and six studies were double-blind, and
three of them informed the subjects of the entire trial process and
risks. Eight of the studies had problems with participants dropping
out of the trial during the intervention. The evaluation results are
depicted in Figure 2.

3.3 Certainty of evidence

The overall certainty of evidence underwent assessment
with the application of the GRADE tool, and the findings are
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FIGURE 5
Forest plot of body mass index meta-analysis. Gatterer, H 2015a1 indicated that the intervention period was 5 weeks, 2015a2 was 3 months, and
2015a3 was 8 months (Li et al., 2014). represents the normobaric hypoxia environment, and 2014b represents the hypobaric hypoxia environment.

presented within Supplementary Table 3. The GRADE method
demonstrated that the certainty levels for BM, BFR, TC and FBG
were low, while those for BMI, TG, LDL - C, HDL - C, BFI and
HOMA - IR were very low.

3.4 Meta-analysis

3.4.1 Body mass
Twenty-two randomized controlled trials were utilized to assess

the body mass (See Figure 3 for individual studies), there was no

significant difference in the improvement of the body mass between
the hypoxic group and the control group and no heterogeneity among
the studies (MD -1.14, 95% CI -2.34 to −0.07; P = 0.07, I2 = 0%).

3.4.2 Body fat ratio
Sixteen randomized controlled trials were included in the

analysis of body fat ratio (See Figure 4 for individual studies),
there was a significant difference in the improvement of body fat
ratio between the hypoxic group and the control group and no
heterogeneity among the studies (MD -1.16, 95% CI -1.76 to −0.56;
P = 0.0001, I2 = 42.92%).
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FIGURE 6
Forest plot of total cholesterol meta-analysis. Camacho-Cardenosa et al., 2018a stands for high-intensity interval training, 2018b stands for high
intensity full sprint (1 means that the intervention period is 6 weeks, two means that the intervention period is 12 weeks). Gatterer, H 2015b1 indicated
that the intervention period was 3 months, and 2015b2 indicated that the intervention period was 8 months (Park et al., 2017). indicates training in a
hypoxia environment at an altitude of 2,000 m, and 2017b indicates training in a hypoxia environment at an altitude of 3,000 m.

3.4.3 Body mass index
Twenty-one randomized controlled trials were included in the

analysis of BMI (See Figure 5 for individual studies), there was
no significant difference in the improvement of BMI between
the hypoxic group and the control group and heterogeneity
among the studies (MD -0.42, 95% CI -1.23 to 0.39; P = 0.31,
I2 = 69.55%).

3.4.4 Total cholesterol
Twenty-two randomized controlled trials were utilized to

analyze total cholesterol (See Figure 6 for individual studies),
there was no significant difference in the improvement of total
cholesterol between the hypoxic group and the control group and no
heterogeneity among the studies (SMD -0.04, 95% CI -0.21 to 0.12;
P = 0.59, I2 = 39.40%).

3.4.5 Triglycerides
Twenty-three randomized controlled trials were utilized to

analyze triglycerides (See Figure 7 for individual studies), there
was no significant difference in the improvement of triglycerides
between the hypoxic group and the control group and heterogeneity

among the studie (SMD 0.08, 95% CI -0.20 to 0.35; P = 0.59,
I2 = 65.02%).

3.4.6 Low-density lipoprotein cholesterol
Eighteen randomized controlled trials were utilized to

analyze low-density lipoprotein cholesterol (See Figure 8 for
individual studies), there was no significant difference in the
improvement of low-density lipoprotein cholesterol between
the hypoxic group and the control group and heterogeneity
among the studies (SMD -0.23, 95% CI -0.65 to 0.19; P = 0.28,
I2 = 78.59%).

3.4.7 High-density lipoprotein cholesterol
Nineteen randomized controlled trials were employed to

analyze high-density lipoprotein cholesterol (See Figure 9 for
individual studies), there was no significant difference in the
improvement of high-density lipoprotein cholesterol between
the hypoxic group and the control group and heterogeneity
among the studies (SMD 0.17, 95% CI -0.26 to 0.59; P = 0.44,
I2 = 80.28%).
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FIGURE 7
Forest plot of triglycerides meta-analysis. Camacho-Cardenosa et al., 2018a stands for high-intensity interval training, 2018b stands for high intensity
full sprint (1 means that the intervention period is 6 weeks, two means that the intervention period is 12 weeks). Gatterer, H 2015b1 indicated that the
intervention period was 3 months, and 2015b2 indicated that the intervention period was 8 months (Li et al., 2014). represents the normobaric hypoxia
environment, and 2014b represents the hypobaric hypoxia environment.

3.4.8 Fasting blood glucose
Eighteen randomized controlled trials were included in the

analysis of glucose (See Figure 10 for individual studies), there was
no significant difference in the improvement of glucose between
the hypoxic group and the control group and no heterogeneity
among the studies (SMD 0.01, 95% CI -0.16 to 0.19; P = 0.88,
I2 = 29.22%).

3.4.9 Fasting blood insulin
Twelve randomized controlled trials were included in

the analysis of fasting blood insulin (See Figure 11 for
individual studies), there was no significant difference in the
improvement of fasting blood insulin between the hypoxic

group and the control group and heterogeneity among
the studies (SMD 0.24, 95% CI -0.30 to 0.79; P = 0.39,
I2 = 80.62%).

3.4.10 Homeostatic assessment of insulin
resistance

Nine randomized controlled trials were included in the analysis
of homeostatic assessment of insulin resistance (See Figure 12
for individual studies), there was no significant difference in
the improvement of homeostatic assessment of insulin resistance
between the hypoxic group and the control group and heterogeneity
among the studies (SMD 0.04, 95% CI -0.44 to 0.52; P = 0.86,
I2 = 71.48%).
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FIGURE 8
Forest plot of low-density lipoprotein cholesterol meta-analysis (Park et al., 2017). indicates training in a hypoxia environment at an altitude of 2,000 m,
and 2017b indicates training in a hypoxia environment at an altitude of 3,000 m.

3.5 Sensitivity analysis

Sensitivity analysis of outcome indexes including BMI, TG, LDL
- C, HDL - C, FBI, and HOMA - IR was performed. After deleting
the literature with high heterogeneity, there were no significant
differences in BMI (MD -0.06, 95% CI -0.43 to 0.31; P = 0.74,
I2 = 48%), TG (SMD -0.09, 95% CI -0.25 to 0.08; P = 0.30, I2

= 30%), LDL - C (SMD -0.20, 95% CI -0.40 to 0.00; P = 0.06,
I2 = 26%), HDL - C (SMD -0.02, 95% CI -0.21 to 0.17; P =
0.81, I2 = 27%), FBI (SMD 0.22, 95% CI -0.03 to 0.47; P = 0.09,
I2 = 0%) and HOMA - IR (SMD 0.26, 95% CI -0.02 to 0.53; P
= 0.07, I2 = 0%) between the hypoxia group and the normal-
oxygen group (Supplementary Table 4).

3.6 Subgroup analysis

The effects of hypoxic training on excess body weight or obese
people may be influenced by duration, frequency, time, exercise
intensity, intervention form, and altitude (Tables 1, 2).

(1) Compared with normoxic training, when the duration of
hypoxic training ≤8weeks, bodymass (MD -1.51, 95%CI -2.89
to −0.13; P = 0.03, I2 = 0%) and LDL - C (SMD -0.25, 95% CI
-0.46 to −0.04; P = 0.02, I2 = 9%) could be effectively improved.

(2) Compared with normoxic training, when the frequency of
hypoxic training ≥4 days, body mass (MD -2.70, 95% CI -
4.43 to −0.97; P = 0.002, I2 = 0%), TC (SMD -0.36, 95% CI

-0.59 to −0.12; P = 0.003, I2 = 39%) and LDL - C (SMD
-0.28, 95% CI -0.54 to −0.02; P = 0.04, I2 = 1%) can be
effectively improved.

(3) Compared with normoxic training, when the time is
45–60 min of hypoxic training, body mass (MD -1.42, 95%
CI -2.70 to −0.15; P = 0.03, I2 = 0%), TG (SMD -0.27, 95%
CI -0.54 to −0.01; P = 0.04, I2 = 42%) and FBG (SMD -
0.34, 95% CI -0.64 to −0.03; P = 0.03, I2 = 0%) can be
effectively improved.

(4) Compared with normoxic training, when the hypoxic training
is moderate intensity, body mass (MD -2.29, 95% CI -3.83
to −0.76; P = 0.003, I2 = 0%), BFR (MD -1.53, 95% CI -
2.18 to −0.88; P < 0.00001, I2 = 31%) and BMI (MD -
0.69, 95% CI -1.21 to −0.17; P = 0.009, I2 = 41%) can be
effectively improved.

(5) Compared with normoxic training, when the intervention
form of hypoxic training is a combination of aerobic
training and resistance training, BFR (MD -2.26, 95%
CI -3.14 to −1.39; P < 0.00001, I2 = 0%) can be
effectively improved.

(6) Compared with normoxic training, when the altitude
is between 2,001 m and 2,500 m, the body mass
(MD -2.09, 95% CI -3.83 to −0.35; P = 0.02, I2 =
18%), TG (SMD -0.30, 95% CI -0.51 to −0.09; P
= 0.005, I2 = 3%) and LDL - C (SMD -0.42, 95%
CI -0.79 to −0.05; P = 0.03, I2 = 45%) can be
effectively improved.
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FIGURE 9
Forest plot of high-density lipoprotein cholesterol meta-analysis. Gatterer, H 2015b1 indicated that the intervention period was 3 months, and 2015b2
indicated that the intervention period was 8 months (Park et al., 2017). indicates training in a hypoxia environment at an altitude of 2,000 m, and 2017b
indicates training in a hypoxia environment at an altitude of 3,000 m.

3.7 Publication bias analysis

The funnel plot of body weight results showed reasonable
symmetry, while the funnel plot analysis of other outcome
measures showed slight asymmetry (Figure 13). In the meta-
analysis, funnel plot analysis is not recommended for assessing
publication bias when the included literature has fewer than 10
outcome indicators (Chang et al., 2015). Egger’s regression test for
HOMA - IR did not reach statistical significance (P = 0.04727).

4 Discussion

This study aims to assess the impact of hypoxic training on
enhancing body composition and glucose and lipid metabolism in
excess body weight and with obese people via meta-analysis, aiming
to ascertain its efficacy compared to normoxic training. Explore
the best hypoxic training program for excess body weight or obese
people. The main finding of this meta-analysis was that hypoxic
training significantly reduced body fat ratio in excess body weight

or living with obese people, but there was no significant difference
in glycolipid metabolism. Subgroup analysis showed that training
in the hypoxic environment at an altitude of 2001–2500 m could
effectively decrease body mass, TG, and LDL - C. The effective
program to reduce body mass is to carry out moderate intensity
training (MD -2.29, 95% CI -3.83 to −0.76; P = 0.003, I2 = 0%) of
45–60 min (MD -1.42, 95% CI -2.70 to −0.15; P = 0.03, I2 = 0%)
for ≤8 weeks (MD -1.51, 95% CI -2.89 to −0.13; P = 0.03, I2 =
0%), ≥4 times a week (MD -2.70, 95% CI -4.43 to −0.97; P = 0.002,
I2 = 0%).

Previous studies have not found that hypoxic training can
significantly improve body composition, which may be affected by
different training types and populations (Chen et al., 2022; Ramos-
Campo et al., 2019; Guo et al., 2023). The results of this meta-
analysis revealed a significant superiority of the hypoxia group over
the normal-oxygen group in both body fat ratios (MD is −1.16, 95%
CI -1.76 to −0.56, P = 0.00). It is suggested that hypoxia training
can significantly reduce the body fat ratio of excess body weight
and obese people, which is more significant in the combination of
aerobic and resistance training intervention (MD is −2.26, 95% CI
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FIGURE 10
Forest plot of fasting blood glucose meta-analysis. Camacho-Cardenosa et al., 2018a stands for high-intensity interval training, 2018b stands for high
intensity full sprint (1 means that the intervention period is 6 weeks, two means that the intervention period is 12 weeks). Gatterer, H 2015b1 indicated
that the intervention period was 3 months, and 2015b2 indicated that the intervention period was 8 months (Li et al., 2014). represents the normobaric
hypoxia environment, and 2014b represents the hypobaric hypoxia environment.

FIGURE 11
Forest plot of fasting blood insulin meta-analysis (Li et al., 2014).
represents the normobaric hypoxia environment, and 2014b
represents the hypobaric hypoxia environment.

-3.14 to −1.39, P = 0.00). A recent meta - analysis has revealed that
the integration of aerobic and resistance training leads to significant
beneficial changes in multiple cardiometabolic parameters and

mental health - associated markers among excess body weight or
obese patients (Al-Mhanna et al., 2024). Furthermore, resistance
training, when employed as an independent exercise intervention,
confers numerous cardiometabolic advantages in the management
and treatment of type 2 diabetes mellitus (T2DM) patients who are
excess body weight or obese (Al-Mhanna et al., 2025). Despite the
weak evidence for hypoxic training on body mass (MD is −1.14,
95% CI -2.34 to 0.07, P = 0.07) and BMI (MD is −0.42, 95% CI
-1.23 to 0.39, P = 0.31) outcomes shown in our meta-analysis.
A body of research indicates the efficacy of hypoxia training in
improving the body composition of excess body weight and living
with obese individuals (Tee et al., 2023; Kong et al., 2014). The
combined effect of hypoxia and exercise triggers a stress response
in the body, accelerating fat decomposition (Workman and Basset,
2012). Exposure to hypoxia enhanced the ability to transport oxygen
to muscle and the improvement of fat oxidation (Park et al., 2016;
Chen et al., 2013). Additionally, a hypoxia environment boosts
metabolic rate, increases leptin and insulin-like growth factor levels,
and stimulates the hematopoietic system, ultimately reducing body
fat content (Yingzhong et al., 2006). Subgroup analysis showed
that moderate-intensity aerobic exercise (≤8 weeks, ≥4 times/week,
45–60 min) at altitude 2001–2500 m in a hypoxia environment had
the greatest improvement in body weight. Hypoxia can inhibit
Ghrelin concentration (Bailey et al., 2015), and exercise in a hypoxia
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FIGURE 12
Forest plot of homeostatic assessment of insulin resistance meta-analysis (Li et al., 2014). represents the normobaric hypoxia environment, and 2014b
represents the hypobaric hypoxia environment.

environment may lead to a substantial decrease in energy intake.
The decrease in energy intake caused by low oxygen exposure and
the increase in energy expenditure caused by an increase in basal
metabolic rate may be the main causes of weight loss (Millet et al.,
2016). The study found that exercise intensity is a crucial factor
influencing fatty acids. When engaging in sustained exercise at
25% of the maximum intensity, 90% of the energy is sourced from
fatty acid oxidation, 10% from liver glycogen, and the fatty acids
primarily originate from the hydrolysis of triglycerides in adipose
tissue (Romijn et al., 1993). Therefore, low or moderate exercise
intensity is more conducive to fat mobilization. Vascular endothelial
growth factor (VEGF) expression, skeletal muscle capillary density
increase (Vogt et al., 2001), and myoglobin content significantly
increased after hypoxia training, which is conducive to the transfer
of more oxygen and fatty acids into skeletal muscle mitochondria
to participate in oxidation and energy supply (Zoll et al., 2006),
this may be a beneficial mechanism for weight loss. Therefore,
for obese people who want to achieve a better weight loss effect
in the short term, it is recommended to carry out moderate-
intensity aerobic training (≥4 times a week, 45–60 min) in a hypoxia
environment at an altitude of 2001–2,500 m, which can effectively
reduce weight.

The results of this meta-analysis showed that there were no
significant differences in TC (Hedges’s g is −0.04, 95% CI -0.21 to
0.12, P = 0.59), TG (Hedges’s g is 0.08, 95% CI -0.20 to 0.35, P =
0.59), LDL - C (Hedges’s g is −0.23, 95% CI -0.65 to 0.19, P = 0.28),
and HDL - C (Hedges’s g is 0.17, 95% CI -0.26 to 0.59, P = 0.44)
levels between the hypoxic group and the normal oxygen group.
This is consistent with the research results of previous scholars
(Chen et al., 2022; Guo et al., 2023; Ramos-Campo et al., 2019).
Although there is no significant difference, there are many studies
showing that hypoxic training is significantly better than normal

oxygen training, and these studies are conducted in a hypoxic
environment at an altitude of 2,500 m, five times a week, each time
60 min of aerobic exercise. Engaging in regular physical activity
not only proves highly effective in boosting HDL - C levels but
also brings about a significant reduction in TG, TC, and LDL - C
levels, thus contributing comprehensively to better lipid metabolism
and overall cardiovascular health (Badri Al-mhanna et al., 2024b).
There is ongoing debate regarding the efficacy of hypoxic training
in enhancing lipid metabolism among excess body weight and
living with obese people. Research has demonstrated that a 4-week
regimen of hypoxia training substantially enhances levels of TC,
TG, LDL - C, and HDL - C in living with obese rats (Yan, 2020).
Regular endurance exercise can induce favorable alterations in
blood lipids and lipoproteins, particularly in hypoxia environments.
This could be attributed to the combined effects of hypoxia and
exercise, leading to an elevation in serum leptin levels, enhanced
adipose tissue catabolism (Huan et al., 2008), improved insulin
sensitivity, and reduced fat synthesis, ultimately contributing to the
enhancement of blood lipid profiles (Wiesner et al., 2010). Elevated
LDL - C levels and reduced HDL - C levels also elevate the risk
of atherosclerosis (Marso et al., 2008). Subgroup analysis showed
that exercise training for ≤8 weeks and ≥4 times per week at an
altitude of 2,001–2,005 m was effective in improving LDL - C. Some
suggest that the duration of training may impact the improvement
of blood lipid levels (Chen et al., 2022). However, following 8 weeks
of hypoxia training, there was a greater improvement in lipid
metabolism levels among living with obese individuals (Netzer et al.,
2017). In excess body weight and obese individuals, regular exercise
is beneficial for enhancing HDL - C levels, yet the most effective
strategy is a combination of moderate - to - high - intensity, long
- term exercise performed at the aerobic threshold, accompanied
by dietary changes (Badri Al-mhanna et al., 2024a). Furthermore,
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numerous studies suggest that exercise has a minimal impact
on TG levels in living with obese individuals (Wiesner et al.,
2010; Chacaroun et al., 2020; Wang et al., 2013), potentially
attributable to TG primarily deriving from fat decomposition in
food. A subgroup analysis then showed that 45–60 min of training
in a hypoxia environment at an altitude of 2001–2,500 m had a
significant effect on TG. Research has demonstrated that fat intake
can be diminished by adhering to a low-fat diet (Chiu et al.,
2015), eliminating lipid deposition in blood vessels, augmenting
vascular formation (Tan et al., 2016), and mitigating the risk of
atherosclerosis. However, the present study lacks rigorous dietary
control for living with obese individuals, necessitating further
investigation to ascertain whether strict dietary regulation could
notably improve lipid metabolism. Therefore, we recommend that
in a hypoxia environment at an altitude of 2001–2,500 m, develop
good exercise habits (≥4 times a week, 45–60 min aerobic exercise)
and strictly control diet, which is a better program to control lipid
metabolism.

The results of this meta-analysis revealed no significant
differences in FBG (Hedges’s g is 0.01, 95% CI -0.16 to 0.19, P =
0.88), FBI (Hedges’s g is 0.24, 95% CI -0.30 to 0.79, P = 0.39),
and HOMA - IR (Hedges’s g is 0.04, 95% CI -0.44 to 0.52, P =
0.86) levels within the hypoxic group. This is consistent with the
research results of previous scholars (Guo et al., 2023; Chen et al.,
2022). Although there were no significant differences, two or
three studies included in the analysis showed that both hypoxia
and normoxia training boosted glucose metabolism levels. The
exercise intervention in one study was 120 min of low-intensity
exercise six times a week, and the exercise intervention in the
other two studies was 60 min of moderate-intensity exercise 5/6
times a week. The majority of studies indicate that both hypoxia
and normal oxygen training can enhance glucose metabolism in
living with obese individuals (De Groote et al., 2018; Wiesner et al.,
2010). Ounis et al. (2008) reported significant reductions in
HOMA - IR among excess body weight and living with obese
adolescents following 8 weeks of aerobic training. Excess adiposity
severity correlates positively with diabetes incidence attributable
to insulin resistance. Adequate physical activity enhances insulin
sensitivity and promotes glucose utilization, thereby reducing
blood sugar levels, improving glycemic control, and effectively
preventing and managing diabetes. Presently, there is a paucity of
randomized controlled trials (RCTs) investigating the combined
effects of hypoxia and exercise intervention on glucose metabolism
among excess body weight and living obese people. These
trials are influenced by factors such as hypoxia mode, oxygen
concentration, gender, load intensity, sample size, and diet.
Research indicates that female youth in the hypoxic group
exhibit greater reductions in HOMA - IR (Wang et al., 2013),
possibly attributable to accelerated visceral fat decomposition in
hypoxic environments, thereby ameliorating metabolic disorders
and enhancing insulin sensitivity. Therefore, the effects of hypoxic
training on glucose metabolism still need more high-quality
literature to explore.

The limitations of this paper include the absence of allocation
hiding and blind methods in some of the included literature,
along with instances of subject loss, posing a significant risk
of bias. Variability exists in the training protocols across
the literature, including differences in hypoxia mode, oxygen
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FIGURE 13
Publication Bias Analysis result.

concentration, and load intensity. In this paper, all age groups
were included in the analysis, and the age span of subjects
in some studies was too large to conduct a more in-depth
analysis of age.

5 Conclusion

Hypoxic training is essential for reducing body fat ratio in
excess body weight or obese people. It is recommended to carry out
45–60 min of moderate-intensity aerobic exercise for ≤8 weeks, ≥4
times a week, in a hypoxia environment of 2001–2,500 m to lose
bodymass.The effects of hypoxia training and normoxia training on
lipid and glucose metabolism in excess body weight or obese people
are the same.
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