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Introduction: This study aimed to investigate the acute effects of statins on
maternal and fetoplacental vascular reactivity in vessels from pregnancies
affected by pre-eclampsia (PE), a leading cause of maternal and fetal morbidity
and mortality. Statins have been proposed as a candidate therapy due to their
pleiotropic effects but evidence of statins’ ability to ameliorate the observed
endothelial dysfunction in PE is lacking.

Methods:Human chorionic plate arteries (CPAs) and omental arteries (OAs) from
normal and PE pregnancies were mounted on a wire myograph. Contraction
was assessed with KPSS and the thromboxane mimetic U46619. Arteries were
incubated for 2 h with 1 µM or 10 µM pravastatin, pitavastatin or simvastatin
(pitavastatin only in OAs). U46619 dose–response curves were repeated
or dose-response curves with NO-donor SNP or endothelium-dependent
bradykinin (BK) performed following U46619 pre-constriction.

Results: CPAs from normal and PE pregnancies showed similar responses
following exposure to the vasoconstrictive agent U46619 and the relaxatory
agent SNP. Short-term exposure to pravastatin, simvastatin and pitavastatin did
not cause detrimental effects on CPA reactivity. Acute exposure of OAs from PE
pregnancies to pitavastatin (1 µM) did not reduce U46619-mediated contraction
or enhance BK-mediated relaxation of vessels although in this study ex vivo
endothelial function of OAs from PE pregnancies was not different to those in
normotensive pregnancy pre incubation.

Discussion: In conclusion, this study did not demonstrate an effect on
vascular reactivity of maternal systemic or fetoplacental arteries following acute
treatment of statins. Future studies investigating the effect of longer-term statin
exposure on maternal and fetoplacental vascular reactivity may help towards
treatment strategies for vascular dysfunction in PE-affected patients.
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1 Introduction

Preeclampsia (PE) is defined by hypertension at ≥ 20 weeks
gestation and proteinuria or evidence of placental, renal, hepatic,
or hematological dysfunction (Khan et al., 2020). PE affects
4%–5% of pregnancies and is a major contributor to maternal
and fetal morbidity and mortality (Phipps et al., 2019), including
increased risk of preterm birth and fetal growth restriction (FGR)
(Haddad et al., 2004; Madazli et al., 2014; Rezk et al., 2015).
Additionally, women diagnosed with PE have an increased risk
of cardiovascular disease (CVD) later in life (Kuklina et al.,
2009; Chen et al., 2014; Breetveld et al., 2014; Wu et al.,
2017; Leon et al., 2019; Ormesher et al., 2022). Meta-analyses
indicate an estimated 3.7-fold increased risk for hypertension
and 1.8-fold for stroke in women previously diagnosed with
preeclampsia (Bellamy et al., 2007).

PE is associated with placental dysfunction and placental
ischemia (Bakrania et al., 2020; Chappell et al., 2021), and
severe early-onset cases of PE are linked to inadequate
spiral artery remodeling (Labarrere et al., 2017; Staff et al.,
2020). In addition, PE is associated with an angiogenic
imbalance in the maternal circulation (Ahmad and Ahmed,
2004; Phipps et al., 2019; Kluivers et al., 2023), ultimately
resulting in maternal endothelial dysfunction (Maynard et al.,
2003; Levine et al., 2004; Possomato-Vieira and Khalil, 2016;
Tomimatsu et al., 2019; McElwain et al., 2020).

There are no effective treatments for PE. Clinical management
following diagnosis currently focuses on the use of antihypertensive
medications such as labetalol and nifedipine (NICE, 2023) and
increased fetal monitoring. The only current treatment option for
clinicians is delivery, often preterm, of the fetus and placenta. While
this intervention halts the clinical progression of PE, there remains
an urgent need for effective maternal treatment as an alternative to
preterm birth (Berzan et al., 2014; Rana et al., 2019; Maayeh and
Costantine, 2020).

Several drugs have been suggested for the treatment of PE,
including statins, which are HMG-CoA inhibitors primarily used to
reduce cholesterol levels (Phipps et al., 2019). Statin use in pregnancy
was previously contraindicated, but progress has been made now
that the FDA has requested removal of the “Pregnancy Category
X” label for statins (US Food and Drug Administration, 2024). This
was mainly due to previous results from systematic reviews and
cohort studies linking increased rates of fetal abnormalities with
statin exposure (Bateman et al., 2015; Edison and Muenke, 2004;
Pollack et al., 2005; Taguchi et al., 2008; Winterfield et al., 2013).
Although these studies are limited in their size and scope, current
guidance does not recommend statin use during pregnancy.

Several clinical and preclinical studies using pravastatin have
been performed, demonstrating lower rates of preeclampsia
and improvement in the sFlt-1/PlGF ratio, yet showing little
or no definitive evidence of benefit. Many of the clinical trials
were underpowered (Ahmed, 2011; Brownfoot et al., 2016;
Costantine et al., 2016; Costantine et al., 2021; Döbert et al., 2021;
Mendoza et al., 2021). These studies have shown no evidence of
detrimental effects of statins on the placenta, but there are limited
in vivo data (Zarek et al.,2013).

Currently, there is a lack of knowledge on the effect of statins
on vascular reactivity in either the maternal systemic arteries or the

placental arteries. Various statins have been explored to assess the
biological plausibility of statins for treatment in preeclampsia. These
include lovastatin (Minsker et al., 1983), simvastatin (Cudmore et al.,
2007; Rossoni et al., 2011), and pravastatin (Ahmed et al.,
2010; Costantine et al., 2011; Kumasawa et al., 2010), although
Rossoni and colleagues only investigated the acute effects of
simvastatin on isolated mesenteric resistance arteries in male
Wistar rats. Three statins were chosen for the current study:
pravastatin, pitavastatin, and simvastatin. These were used to
assess chorionic plate artery (CPA) reactivity, while pitavastatin
alone was used for omental arteries (OAs) from pregnancies
complicated by PE.

The different metabolic states of these three statins made them
useful for comparison of pleiotropic effects on vascular function.
Pitavastatin has high bioavailability in the bloodstream due to its
avoidance of the first-pass metabolism route in the liver. Pitavastatin
has never been used in pregnancy studies previously and is therefore
an exciting therapeutic candidate to explore. In the current study,
OAs and CPAs were used as models of the maternal systemic and
fetoplacental vasculature, respectively. CPAs are resistance arteries,
and they, along with other fetoplacental small arteries, play an
important role in regulating vascular tone in the fetoplacental
circulation (Mulvany and Aalkjaer, 1990).

We thus hypothesized that short-term (2 h) exposure to statins
would improve the vascular reactivity of omental arteries from
pregnancies complicated by preeclampsia and have no detrimental
effects on fetoplacental CPA function. The aims of the study
were 1) to assess whether vascular reactivity of OAs or CPAs
was altered in PE versus normal pregnancies and 2) to assess
whether short-term statin exposure affects vascular function in
OAs and CPAs from both uncomplicated pregnancies and those
complicated by PE.

2 Materials and methods

2.1 Ethical approval

All work herein was carried out following Research Ethics
Committee approval (REC number 15/NW/0829). Studies were
carried out in accordance with the guidelines of the Declaration of
Helsinki. Written informed consent was obtained from all women
prior to the collection of placental and omental samples.

2.2 Inclusion/exclusion criteria

Placental samples were taken from women with a normal
pregnancy (normal defined as an uncomplicated pregnancy birthing
≥37 weeks with an appropriately grown fetus; N = 21) or a
pregnancy complicated by PE (PE as defined by ISSHP guidelines
(Brown et al., 2018; Duhig et al., 2019); N = 14). Following a
Cesarean section, omental samples were taken from women with
a normal pregnancy (N = 34) or a pregnancy complicated by
PE (N = 9).

To control for women in the obese category, a BMI cut-off
of <35 kg/m2 was used, and to control for women of advanced
maternal age (aged 35 years and above), a cut-off of <40 years
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was utilized for uncomplicated pregnancies. Normotensive women
were excluded if they had a BMI ≥35 kg/m2 or age ≥40 years,
or they presented with maternal diabetes, multiple pregnancy,
hyperthyroidism, or had other existing medical conditions or
complications of pregnancy. Women with PE were excluded if they
presented with diabetes, hyperthyroidism, multiple pregnancy, or
if they had sexually transmitted diseases. Samples were considered
“normal” and included if the individualized birthweight ratio (IBR)
was between the 10th and the 100th centiles. IBR was calculated
using the UK BulkCentileCalculator GROW 8.04 (Perinatal, 2019).
Large-for-gestational age fetuses (>90th centile (Pasupathy et al.,
2012)) were included where maternal characteristics were normal.

Unless otherwise stated, all chemicals and statins were obtained
from Sigma–Aldrich (Poole, Dorset, United Kingdom) or BDH
(Poole, Dorset, United Kingdom).

2.3 Sample collection

Omental biopsies ∼2 × 2 cm in size were excised from the
greater omentum in the abdomen of women at the time of Cesarean
section from normal pregnancies. Following collection, fat and scar
tissue were removed, and OAs (138–521 µM) were isolated from
the omental biopsy and placed directly into ice-cold physiologic
salt solution (PSS). Resistance arteries were identified and mounted
under amicroscope onto aDMTmulti-chamber 620 wiremyograph
using small dissecting scissors and forceps. For placentae, biopsies
were taken and placed into ice-cold PSS, and small chorionic
plate arteries (CPAs) were identified under the microscope and
dissected free from surrounding connective tissue (112–501 µM)
within 20 min of delivery, before being mounted onto a
wire myograph.

2.4 Wire myography

Short (∼2 mm long) sections of omental arteries (OAs) and
CPAs were mounted onto a Multi Myograph System 620M
(Wareing et al., 2002). Initially, the bath contained 6 mL of PSS
(in mmol 1–1; 127.76 NaCl, 25 NaHCO3, 4.69 KCl, 2.4 MgSO4, 1.6
CaCl2, 1.18 KH2PO4, 6.05 glucose, 0.034 EDTA; pH 7.4), warmed
to 37°C, and gassed with 20% air/5% CO2 (OA) and 5% air/5% CO2
(CPA). Mounted OAs were normalized to 0.9L13.3 kPa while CPAs
were normalized to 0.9L5.1 kPa following the method described in
detail elsewhere (Wareing et al., 2002).

2.5 Contraction/relaxation responses for
omental arteries/CPAs

Following equilibration, contractile viability was assessed
with 2x high potassium PSS (KPSS; 120 mM KCl, equimolar
substitution for NaCl) exposures with 10–20-min intervals in
between. This was followed by concentration–response constriction
curves to U46619 for OA/CPA (incremental doses of 10–10–10–5.7

M; 2 min intervals). Vessels (OAs) were washed to baseline
tension with PSS and then incubated for 2 h with either 1 µM
or 10 µM pitavastatin, 1 µM simvastatin, or 1 µM or 10 µM

pravastatin (CPAs), with an appropriate control (1 µM DMSO
or water) running in parallel. Following incubation, constriction
to U46619/relaxation to bradykinin (BK; 10–10–10–5 M) was
performed for OAs, and constriction to U44619/relaxation to
sodium nitroprusside [SNP; (10–10–10–5 M)] was performed for
CPAs. U44619-mediated contraction and basal tone pre- and
post-statin were assessed to confirm if any statin-related effects
were observed.

2.6 Statistical analyses

The Kolmogorov–Smirnov test was used to assess whether
the data fitted a Gaussian distribution. This is used for datasets
where only one comparison was made; for example, basal tone
pre- and post-statin incubation and KPSS contraction pre- and
post-statin incubation. Demographics were compared using the
Mann–Whitney U test and Fisher’s exact test for categorical
data, that is, smoking, parity, and sex of fetus, while the chi-
squared test was used for ethnicity. U46619-induced constriction
and SNP/bradykinin-induced relaxation of OAs and CPAs from
women with normal and pathological pregnancies post-statin
incubation were assessed using repeated-measures two-way
ANOVA. Data are expressed as mean ± S.E.M, median ± SD,
or median (range) depending on the outcome of the normality
tests. The number of observations (n = arteries from N patients)
is given in parentheses. Statistical significance was considered
to be p < 0.05.

3 Results

3.1 Patient characteristics

Patient demographics for women donating placental and/or
omental samples from NP and PE pregnancies are shown
in Tables 1, 2. Large-for-gestational age (LGA) fetuses (>90th
centile (Pasupathy et al., 2012) were included where maternal
characteristics were normal. There were 7/34 LGA fetuses in
the normotensive omental group only. Demographic clinical
details for the two groups are shown in Tables 1, 2 (samples
for placental and omental analyses are from different patients).
Blood pressure was taken at booking (approximately 12 weeks
of gestation) for both normotensive women and women who
ultimately were diagnosed with PE; however, maximal blood
pressure near delivery was collected for the PE group only. As
expected, maximal recorded systolic (p < 0.01) and diastolic blood
pressures (p < 0.05) were significantly higher in the PE group
than in NP women (Mann–Whitney U test). Gestational age at
delivery (p < 0.0001), birthweight (p < 0.0001), and IBR (p <
0.01, omental samples only) were significantly lower in the PE
group than the NP group (Mann–Whitney U test). Furthermore,
for women donating placental samples, a significant difference
was seen with regard to parity (p < 0.0001) and a lower BW:PW
ratio (p < 0.05) in the PE group. Smoking status, parity, and sex
of the fetus were also different (Fisher’s exact test). Maternal age,
BMI, and gravidity were not different between groups in those
individuals donating omental and placental samples, while for
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omental samples, ethnicity was also significantly different between
groups (p < 0.001).

3.2 Assessment of vascular reactivity

The mean diameter of CPAs was not statistically different prior
to treatment with statins between normal and PE pregnancies,
and diameters were 314 µm [218–485] and 272 µm [173–414],
respectively (p = 0.087). The mean diameter of OAs was also not
statistically different prior to treatment with statins between normal
and PE pregnancies; diameters were 324 µm [173–536] and 333 µm
[239–466], respectively (p = 0.781).

3.3 Omental arteries

3.3.1 Assessment of vascular reactivity in normal
and PE pregnancies

There was no significant difference in U46619-induced
contraction between the NP and PE groups when expressed as
tension (kPa) (Figure 1A, p = 0.557), or when U46619 data were
expressed as %KPSS = high potassium physiological saline solution
(Figure 1B, p = 0.188). When assessing endothelial function pre-
incubation, there was significantly less relaxation to bradykinin in
OAs from PE versus normal pregnancies (Figure 1D, p = 0.037).
Following the 2-h incubation with DMSO, relaxation of OAs to BK
was not different between normal or PE OAs (Figure 1C, p = 0.974).
A high concentration of U46619 (10–5 M) was used to pre-constrict
vessels prior to relaxation.

3.3.2 Effect of statins on vasoconstriction of
omental small arteries

Following a 2-h incubation with 1 µM pitavastatin, there was no
significant effect on the contraction of OAs to U46619 from normal
pregnancies (Figure 2A: DMSO versus pitavastatin, p = 0.980)
or from PE pregnancies (Figure 2B: DMSO versus pitavastatin,
p = 0.796).

3.3.3 Effect of statins on vasodilatation of
omental small arteries

Following a 2-h incubation with 1 µM pitavastatin, there was no
significant effect on relaxation of OAs to BK in vessels from normal
pregnancies (Figure 3A: DMSO versus pitavastatin, p = 0.690)
or from PE pregnancies (Figure 3B: DMSO versus pitavastatin,
p = 0.963).

3.4 Chorionic plate arteries

3.4.1 Assessment of CPA vascular reactivity in
normal and PE pregnancies

Figure 4 includes all vessels prior to exposure to statin orDMSO.
The endothelial-independent SNP dose–response curves shown are
for DMSO controls from normal pregnancies and DMSO controls
fromPEpregnancies (post-incubation). A SNPdose–response curve
was not conducted in PSS alone (pre-incubation). Contraction to
U46619 expressed as tension (kPa) (Figure 4A, p = 0.700) and

%KPSS (Figure 4B, p = 0.930), as well as relaxation of chorionic plate
arteries to SNP (Figure 4C, p = 0.623) was not different between
CPAs from normal versus PE pregnancies. When DMSO and water
controls were separated to assess any differences between them,
therewas no significant difference inCPA relaxation to SNPbetween
DMSO and water controls from normal pregnancies (p = 0.814) or
PE pregnancies (p = 0.909).

3.5 Chorionic plate arteries from normal
pregnancies

3.5.1 Effect of statins on vasoconstriction of
chorionic plate arteries (1 μM and 10 µM)

Following 2-h incubation with either 1 µM pitavastatin
(Figure 5A, p = 0.924) or 10 µM pitavastatin (Figure 5C, p =
0.990), CPA contraction to U46619 was not significantly different
between the pitavastatin-exposed group versus controls. When
U46619 contraction curves were expressed as %KPSS with 1 µM
pitavastatin (Figure 5B, p = 0.912), there was again no significant
difference between pitavastatin-exposed CPAs and controls, but
10 µM pitavastatin attenuated the contraction of CPAs (Figure 5D,
p = 0.026). There was no difference in contraction to U46619 in the
pravastatin and simvastatin groups (Supplementary Figure S4).

3.5.2 Effect of statins on vasodilatation of
chorionic plate arteries (1 μM and 10 µM)

Following a 2-h incubation with either 1 µM pitavastatin
(Figure 6A, p = 0.086) or 10 µM pitavastatin (Figure 6B, p =
0.147), overall CPA relaxation to SNP was not significantly different
between the pitavastatin-exposed group versus controls (Figure 6A,
p = 0.086), although a trend was seen with 1 µM pitavastatin (p
= 0.086). There was no difference in vasodilation to SNP in the
pravastatin and simvastatin groups (Supplementary Figure S5).

3.6 Chorionic plate arteries from PE
pregnancies

3.6.1 Effect of statins on vasoconstriction of
chorionic plate arteries in PE (1 μM and 10 µM)

Following a 2-h incubation with 1 µM pitavastatin (Figure 7A,
p = 0.971) and 10 µM pitavastatin (Figure 7C, p = 0.245), CPA
contraction to U46619 was not significantly different between
the pitavastatin-exposed group versus controls. When U46619
contraction curves were expressed as%KPSS, with 1 µMpitavastatin
(Figure 7B, p = 0.891), CPA contraction to U46619 was not
significantly different between the pitavastatin-exposed group versus
controls. However, with 10 µM pitavastatin, there was a decreased
contractile response (Figure 7D, p = 0.0003). There was no
difference in vasoconstriction to U46619 in the pravastatin and
simvastatin groups (Supplementary Figure S8).

3.6.2 Effect of statins on vasodilatation of
chorionic plate arteries in PE (1 µM)

Following a 2-h incubation with either 1 µM pitavastatin
(Figure 8A, p = 0.961) or 10 µM pitavastatin (Figure 8B, p = 0.195),
CPA relaxation to SNP was not significantly different between the
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TABLE 1 The maternal and pregnancy characteristics of women who agreed to the recruitment of omental samples are summarized below. For
quantitative non-parametric data, information is presented as median and range. Statistical tests used for numerical data (Mann–Whitney U test) and
categorical data (Fisher’s exact test or chi-squared test).

Normotensive women (N = 34) PE women (N = 9) p-value

Maternal age (years) 33 (18–39) 36 (18–41) 0.778

Body mass index (kg/m2) 26.6 (19.5–32.8) 27.9 (18.3–35.6) 0.273

Birthweight (g) 3447 (2660–4454) 1667 (623–2658) ∗∗∗∗

<0.0001

Individualized birth weight ratio 50.6 (13.4–96.9) 10.4 (0.4–31)
<3rd centile = 4

∗∗

0.003

Trimmed placental weight (g) 514.4 (373.6–591.7) 272.2 (57.6–560.3) ∗∗

0.002

Birth weight: placental weight (BW:PW) ratio 6.7 (5.0–7.7) 6.1 (4.7–10.8) 0.195

Gestation (days) 273 (259–285) 236 (188–274) ∗∗∗∗

<0.0001

Maternal systolic blood pressure (mmHg)

 Booking 107 (90–124) 110 (88–143) ∗∗

0.001

 Max - 150 (134–181) - -

Maternal diastolic blood pressure (mmHg)

 Booking 65 (52–80) 68 (58–87) ∗

0.011

 Max - 99 (82–114) -

 Proteinuria (mg/mmol) - 181.5 (15–1181) -

Parity

 Nulliparous 20% 22% 0.862

 Gravidity 3 (1–6) 2 (1–5) 0.909

Ethnicity

 Caucasian 57% 56%

0.414
 Afro-Caribbean 6% 11%

 Asian 17% 11%

 Other 20% 22%

Smoking status

 Yes 9% 0% ∗∗

0.0032
 No 91% 100%

 Sex of fetus Female (37%)
Male (63%)

Female (100%)
Male (0%)

∗∗∗∗

<0.0001
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TABLE 2 The maternal and pregnancy characteristics of women who agreed to the recruitment of placental samples are summarized below. For
quantitative nonparametric data, information is presented as median and range. Statistical tests used for numerical data (Mann–Whitney U test) and
categorical data (Fisher’s exact test or chi-squared test).

Normotensive women (N = 21) PE women (N = 14) p-value

Maternal age (years) 33 (23–47) 31 (19–41) 0.175

Body mass index (kg/m2) 23.4 (18.5–36.2) 25.9 (20.8–35.2) 0.197

Birth weight (g) 3395 (2282–3870) 1670 (572–3750) ∗∗∗

0.0002

Individualized birth weight ratio 56.7 (17.2–90.0) 50 (0–94)
≥3rd to <10th centile = 1

<3rd centile = 6

0.227

Trimmed placental weight (g) 530.0 (374.4–624.3) 297 (274.5–697.6) ∗∗∗

0.0008

Birth weight:placental weight (BW:PW) ratio 6.1 (5.2–7.9) 5.4 (2.7–8.0) ∗

0.048

Gestation (days) 273 (241–285) 238 (195–277) ∗∗∗

0.0007

Maternal systolic blood pressure (mmHg)

Booking 106 (90–124) 120 (100–143) ∗∗∗

0.0001

Max - 149 (134–181) -

Maternal diastolic blood pressure (mmHg)

 Booking 65 (52–78) 76 (60–92) ∗∗

0.003

 Max - 109 (82–112) -

 Proteinuria (mg/mmol) - 241 (26–538) -

 Mode of delivery ELCS (100%) ELCS (38%)
EMCS (47%)
NVD (15%)

-

Parity

 Multiparous 87% 62% ∗∗∗∗

<0.0001
 Nulliparous 13% 38%

 Gravidity 3 (1–6) 2 (1–5) 0.295

Ethnicity

 Caucasian 71% 38%

∗∗∗∗

<0.0001

 Afro-Caribbean 8% 8%

 Asian 8% 31%

 Other 13% 23%

Smoking status

 Yes 8% 15%
0.078

 No 92% 75%

(Continued on the following page)

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1575128
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Agwu et al. 10.3389/fphys.2025.1575128

TABLE 2 (Continued) The maternal and pregnancy characteristics of women who agreed to the recruitment of placental samples are summarized
below. For quantitative nonparametric data, information is presented as median and range. Statistical tests used for numerical data (Mann–Whitney U
test) and categorical data (Fisher’s exact test or chi-squared test).

Normotensive women (N = 21) PE women (N = 14) p-value

 Sex of the fetus Female (48%)
Male (52%)

Female (43%)
Male (57%)

0.570

FIGURE 1
Assessment of vascular reactivity in OAs from normal and PE pregnancies. Assessment of U46619-induced contraction expressed as tension (A) or as
%KPSS (B). Relaxation to bradykinin post-incubation (C). Compared to the endothelial function pre-incubation, there was a significant change in
endothelial function between the NP and PE groups after relaxation with bradykinin (D). Replicate vessels from the same pregnancy were averaged for
each sample. Graphs A and B show the combined pre-incubation U46619 data for normal pregnancy (N = 34) from the pitavastatin (N = 18) and
pravastatin (N = 16) experiments. Data are expressed as mean ± SEM; two-way ANOVA (A–C) and as median, IQR with Mann–Whitney test for graph (D).

pitavastatin-exposed group versus controls. There was no difference
in CPA relaxation to SNP in the pravastatin and simvastatin groups
(Supplementary Figure S9).

4 Discussion

The current study demonstrated evidence of endothelial
dysfunction in OAs from pregnancies with PE, but short-term

pitavastatin exposure (at 1 and 10 µM) had no effect on vascular
reactivity in these vessels. Although there was no difference
in vasorelaxation or vasoconstriction in CPAs between PE and
normal pregnancies, there was no evidence of statins having
detrimental effects on vascular reactivity in CPAs, and in fact,
10 µM pitavastatin attenuated U46619-mediated contraction in
both PE and normal pregnancies. Whilst these data suggest that
statins do not show any deleterious effects on the fetoplacental
vasculature, the data also do not support pitavastatin being a
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FIGURE 2
Effect of 2-h incubation with 1 µM pitavastatin on the contraction of OAs from normal pregnancies. Assessment of U46619-induced contraction
expressed as tension (kPa) in normal pregnancy (A) and PE pregnancy (B). There was no significant effect on the contraction of OAs. U46619
dose–response curves were compared using two-way ANOVA. Data are expressed as mean ± SEM; number of omental biopsies in parentheses.

FIGURE 3
Effect of 2-h statin incubation on relaxation of OAs from normal pregnancies. Following a 2-hr incubation with pitavastatin at 1 µM, there was no
significant effect on relaxation of OAs to BK in vessels from normal pregnancies (A) or from PE pregnancies (B). BK dose–response curves were
compared using two-way ANOVA. Data are expressed as mean ± SEM; number of omental biopsies in parentheses.

potential drug treatment to improve maternal vascular function
in preeclampsia.

4.1 Vascular reactivity of omental arteries
in normal and PE pregnancies

OAs from women with PE did not show increased U46619-
induced contraction compared to OAs from normotensive women.
Multiple studies using different vasoconstrictive agents have
shown that OAs from PE women showed increased contractile

response compared to normotensive women (Aalkjaer et al., 1985;
Mishra et al., 2011; Pascoal et al., 1998; Wareing et al., 2006b).
Like the data in the current study, other studies have demonstrated
no difference in contraction compared to normotensive women
(Belfort et al., 1996; Knock and Poston, 1996; Vedernikov et al.,
1995; Walsh, 1985; Wolff et al., 1996; Vedernikov et al., 1999).
In the present study, thromboxane receptor expression, agonist
affinity, and signal transduction post-receptor activation may not
have been enhanced, resulting in no difference in contraction
between normotensive and PE OAs. The selected testing method
could also contribute to differences as some studies used pressure
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FIGURE 4
Assessment of vascular reactivity in CPAs from normal and PE pregnancies. Assessment of U46619-induced contraction expressed as tension (A) or as
%KPSS (B). Relaxation to SNP (C). There was no significant difference between CPAs from normal versus PE pregnancies. Graph A shows the combined
pre-incubation U46619 data for normal pregnancy (N = 21) and PE (N = 14) from pitavastatin, pravastatin, and simvastatin experiments (at all
concentrations), while Graph B shows post-incubation CPA data with control groups from PE and normal pregnancy. Replicate vessels from the same
pregnancy were averaged for each group. Data are expressed as mean ± SEM, two-way ANOVA.

myography, while the current study used wire myography. Pre-
incubation, endothelial function appeared to be significantly
reduced in OAs from PE pregnancies compared to normotensive
pregnancies following a single dose of bradykinin. However,
because a control BK relaxation curve was not performed with
PSS, we could not demonstrate differences in endothelium-
dependent relaxation at different BK doses. The pitavastatin
control, DMSO, at a dose of 0.1%, was able to cause maximal
relaxation of vessels from normotensive and PE pregnancies,
potentially masking endothelial dysfunction. However, the
numbers are relatively small to be certain of this outcome.
Other studies in different vascular beds have demonstrated
attenuated endothelium-dependent relaxation to different
vasodilatory agents in vessels from hypertensive pregnancies
compared to normotensive pregnancies (Ashworth et al.,
1997; Knock and Poston, 1996; Kublickiene et al., 1997;
Mccarthy et al., 1994a).

4.2 Vascular reactivity of omental arteries
following pitavastatin exposure in normal
and PE pregnancies

Pitavastatin was used because it is a novel statin with
high bioavailability in the bloodstream and has never been
used in pregnancy studies. The doses used in this study are
suprapharmacological versus those previously measured in human
serum. For pitavastatin: 1 µM is 4× higher than a 4-mg dose in
non-pregnant women, and 10 µM is 40× higher (Luo et al., 2015).
Independent of their cholesterol-lowering ability, statins have been
shown to increase the bioavailability of NO through mechanisms
including, but not limited to, raised expression of eNOS and
activation of the eNOS enzyme, as well as decreasing oxidative
stress (Takemoto and Liao, 2001). In male Wistar rats, when
the aorta and superior mesenteric arteries were pre-constricted
with EC80 noradrenaline, the direct application of simvastatin
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FIGURE 5
Effect of 2-h statin incubation on the contraction of CPAs from normal pregnancies. Assessment of U46619-induced contraction with either 1 µM
pitavastatin (A, B) or 10 µM pitavastatin (C). There was no significant difference between the statin-exposed and control groups. Only when expressed
as % KPSS was a significant decrease in contraction seen with 10 µM pitavastatin (D); p < 0.05. U46619 dose–response curves were compared using
two-way ANOVA. Data are expressed as mean ± SEM; number of placentas in parentheses.

produced relaxation in a concentration-dependent manner in both
the presence and absence of a functional endothelium. These
effects were attributed to the release of both NO and vasodilator
products from cyclooxygenase by a mechanism sensitive to O2
scavengers, superoxide dismutase (Alvarez De Sotomayor et al.,
2000). It was suggested that this relaxation is associated with
both Ca2+ release from intracellular stores and blockade of
extracellular Ca2+ entry (Alvarez De Sotomayor et al., 2001). Finally,
Mukai et al. demonstrated that, following a 2 h incubation with
the hydrophobic cerivastatin (1 μM), ACh-induced endothelium-
dependent relaxation was enhanced in the rat aorta via the PI3
kinase/Akt pathway, and they also demonstrated endothelium-
independent relaxation via Kv channel-mediated smooth muscle
hyperpolarizations (dose-dependent: 1–100 μM). Direct application
of fluvastatin (a moderately hydrophilic statin) was also used
in this study and was able to stimulate relaxation of vascular
smooth muscle in the aorta and mesenteric arteries in a dose-
dependent manner (1–300 μM); vessels were pre-constricted with
prostaglandin F2 alpha (Mukai et al., 2003).

The present study did not show an additional effect of
pitavastatin on contraction or relaxation in OAs from normal
or pathological pregnancies. An important issue to highlight is
that OAs from the pathological pregnancies achieved a relaxation
equivalent to vessels from normotensive pregnancies, and therefore,
there was no apparent pathology to correct. The use of DMSO may
have contributed to this, which could have altered the endothelial
function of OAs post-incubation. Furthermore, different doses of
statins were used in other studies, and there were differences in
experimental design, as direct application of statins in the form of a
dose-response curvewas not performed in the present study.Theuse
of different statin concentrations in the studies on omental arteries,
as per studies in chorionic plate arteries, would have been insightful.
Additionally, the current study focused upon resistance vessels in a
closed system in the absence of flow, and hence, 2 h may not have
been sufficient time to observe an effect on the endothelium. It is
also possible that some of the statin pleiotropic effects, such as eNOS
activation or alleviation of inflammation or oxidative stress, failed to
occur within the timeline of these studies. Clinically, in a high-risk
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FIGURE 6
Effect of 2-h pitavastatin incubation on relaxation of CPAs from
normal pregnancies. Assessment of CPA relaxation to SNP with either
pitavastatin at 1 µM (A) or 10 µM pitavastatin (B). No significant effect
was seen between the statin-exposed and control groups; p > 0.05.
SNP dose–response curves were compared using two-way ANOVA
with Sidak’s post hoc test, where applicable. Data are expressed as
mean ± SEM; number of placentas in parentheses.

subpopulation, women may be given statins prophylactically during
pregnancy; thus, maternal vessels may be exposed to statins despite
the absence of disease. Thus, this study suggests that we did not
see any detrimental effects of pitavastatin on the vascular reactivity
of vessels from normal pregnancies. Clinically, this is an important
finding, but care should be taken in extrapolating these findings to
the clinic, given the ex vivo protocol and short-term statin exposure
in this study.

4.3 Vascular reactivity of chorionic plate
arteries in normal and PE pregnancies

In the limited ex vivo studies of statins on human placenta,
statins reduced IGF-1-mediated trophoblast proliferation, leading to
caution being expressed about their use in pregnancy, particularly
in the first trimester (Forbes and Westwood, 2008; Forbes et al.,
2015; Kenis et al., 2005). Additionally, Nanovskaya et al. carried
out dual perfusion of a placental lobule with 50 ng/mL pravastatin

(based upon achieved serum concentrations following a 40-
mg dose) and showed that pravastatin was transferred to the
fetal circulation. However, pravastatin was also transferred back
to the maternal circulation, hypothesized to be via the action
of the efflux transporters, MRP2 and BCRP, located on the
microvillous membrane (MVM) of the transporting epithelium of
the placenta, the syncytiotrophoblast (Nanovskaya et al., 2013),
likely limiting the concentrations of statins reached within the fetal
circulation.

In CPAs from normal pregnancy, contraction and endothelium-
independent relaxation were not significantly different compared
to PE. Functional studies have demonstrated conflicting results
regarding the aberrant dysfunction of CPAs from women with
PE compared to CPAs from normotensive women. Studies have
shown no difference in contraction (Ong et al., 2002), reduced
maximal contraction (Wareing and Baker, 2004), and significantly
greater contraction when comparing normal and PE placentas
(Benoit et al., 2007; Bertrand et al., 1993).

The data in this study do not support the current literature
suggesting that CPAs from PE pregnancies are less responsive
to SNP or show altered response to U46619. DMSO has been
suggested to cause the endothelium to release NO to trigger
cGMP production in the smooth muscle to promote relaxation
and decrease Ca2+ sensitivity, partially through inhibiting Rho-
kinase to attenuate constriction. However, we saw no evidence
of this in the current study compared to water (vehicle). Other
potential confounders that could have affected the results in the
current study include the presence of smokers in the PE group,
as smoking is associated with the production of carbon monoxide
(CO) (Karumanchi and Levine, 2010;Wei et al., 2015). Furthermore,
factors such as the effects of analgesia (Samanta et al., 2018)
and the use of anti-coagulants (Atallah et al., 2017), such as
aspirin and heparin, could alter vascular responses measured by
wire myography.

4.4 Vascular reactivity of chorionic plate
arteries following pitavastatin exposure in
normal and PE pregnancies

The levels of vasodilators and vasoconstrictors in the maternal
and placental circulation are regulated to ensure a homeostatic
balance of placental vascular function. From a safety perspective,
it is crucial that statins do not negatively affect this differential
vascular response of the placenta as this could affect any adaptive
responses the placenta may try to initiate in response to stimuli
or stresses (Myatt, 1992; Wang and Zhao, 2010). Balan et al.,
who utilized perfused normal placental cotyledons and placental
explants, demonstrated that feto-placental vascular tone or
vasoconstriction in response to the vasoconstrictor angiotensin-II
was unaltered following exposure to pravastatin from the maternal
circulation (Balan et al., 2017). A pilot randomized controlled
trial investigating the safety and pharmacokinetics of 10 mg
pravastatin in high-risk PE women also showed no difference in
infant birthweight between the pravastatin and placebo groups
(Costantine et al., 2016).

The current study failed to demonstrate a beneficial effect of
statins on the relaxation of CPAs from normal or PE pregnancies;
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FIGURE 7
Effect of 2-h statin incubation on contraction of CPAs from PE pregnancies. Assessment of U46619-induced contraction with either 1 µM pitavastatin
(A,B) or 10 µM pitavastatin (C). There was no significant effect when expressed as tension (kPa) or as % KPSS; p > 0.05. However, a significant effect was
seen for 10 µM pitavastatin (D) when data were expressed as % KPSS; p < 0.05. U46619 dose–response curves were compared using two-way ANOVA
with Sidak’s post hoc test, where applicable. Data are expressed as mean ± SEM; number of placentas in parentheses. ∗∗∗p < 0.001.

however, 10 µM pitavastatin was able to attenuate U46619
contraction in CPAs from both normal and PE pregnancies. This
suggests that pitavastatinmay target the thromboxaneA2pathway to
diminish its contractile effects, via antagonism of the thromboxane
A2 receptor and/or thromboxane synthase in the endothelium
(Kontogiorgis and Hadjipavlou-Litina, 2010). Alternatively,
pitavastatin could diminish the anti-inflammatory effects of
U46619 by blocking the ERK pathway and reducing expression
of U46619-stimulated IL-1ß, IL-6, iNOS expression, and IL-
1ß (Yang et al., 2016). Impaired vascular function in PE CPAs
was not demonstrated, and the addition of statins did not have a
biologically significant effect on vascular function; however, it was
encouraging to see that no acute detrimental effect on vascular
function occurred.

Limitations of the present study include the choice of
statin concentration used in the ex vivo acute study. A
suprapharmacological concentration was chosen because, for
ex vivo myography experiments, a higher dose than those
typically achieved in vivo is generally needed to result in similar
effects. Furthermore, the endothelin-1 pathway was not explored

directly. In addition, due to the relative lack of differences
in the present study, extensive mechanistic studies were not
performed, but future studies could include assessments of
whether statins altered eNOS signaling/activation and levels of
oxidative stress/damage. These may also help explain the lack of
any effects of statins on omental artery function in the current
study. Finally, it is important to acknowledge that several women
in the PE group were prescribed aspirin and antihypertensive
medication at various points within their pregnancy, and this
may have contributed to altered vascular functional responses
ex vivo.

5 Conclusion

Taking into account the data from this study using pravastatin,
pitavastatin, and simvastatin, statins did not negatively affect
vascular function in placental vessels, suggesting that these drugs
are unlikely to have a large vasoactive effect within the placenta
at physiological doses. The outcome of the in vitro data does
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FIGURE 8
Effect of 2 hr statin incubation on relaxation of CPAs from PE
pregnancies. Assessment of CPA relaxation to SNP with either 1 µM
pitavastatin (A) or 10 µM pitavastatin (B), there was no significant effect
on relaxation between statin-exposed and control groups; p > 0.05.
SNP dose response curves were compared using two-way ANOVA.
Data are expressed as mean ± SEM; number of placentas in
parenthesis.

not provide convincing evidence for pitavastatin as an optimal
treatment to modify endothelial function in PE, but there are
limitations to this study, such as the acute exposure time, as detailed
above. Mechanistic studies, such as increased exploration of statins’
pleiotropic effects, are essential to providing a greater understanding
of the potential clinical applications of statins in PE. This study
focused on short-term effects of statins on vascular function but
investigating the effects of longer-term statin exposure in pregnancy
will be important to demonstrate its potential as a therapy in PE.
This requires appropriate preclinical in vivo models to provide the
necessary safety and mechanistic data to underpin further clinical
trials. Overall, these data give greater confidence that, if statins are
shown to be beneficial in the clinical treatment/management of
PE, the doses used, at least in the short term, are unlikely to be

detrimental to fetoplacental vascular function.While we failed to see
a positive effect of pitavastatin on maternal omental artery function,
this does not mean that other statins will not show beneficial
effects. The future studies suggested above will provide improved
mechanistic understanding of the validity of statin use in individuals
with preeclampsia.
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