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Introduction:Constant-speed methods are widely applied and studied in rotary
blood pumps. However, various speed modulation which have been used in
commercial blood pump lacks validation of the ventricular assist capability and
hemolysis potential.

Methods: This study investigates the hydrodynamic performance and hemolysis
of a rotary ventricular assist device under sinusoidal speed modulation, focusing
on the combined effects of phase, baseline speed, and speed fluctuation
amplitude.

Results: Computational fluid dynamics (CFD) coupled with a dynamic
cardiovascular model revealed that counter-phase modulation reduces
hemolysis index (HI) fluctuations compared to in-phase conditions, while higher
baseline speeds increase time-averaged HI due to prolonged exposure to non-
physiological shear stress. Larger amplitudes expand the operational range but
exacerbate HI variability.

Discussion: These findings demonstrate that phase synchronization critically
balances pulsatility and hemocompatibility, providing actionable insights for
adaptive speed control strategies in clinical practice.

KEYWORDS

centrifugal blood pump, hemolysis, various speed modulation, computational fluid
dynamics, flow field

1 Introduction

Heart failure is a critical global health issue with increasing prevalence, highlighting
the urgent need for effective treatments. Mechanical circulatory support (MCS) devices,
such as ventricular assist devices (VADs), have become essential in managing heart
failure, especially as a bridge to transplantation or as destination therapy for patients
ineligible for heart transplants (MacIver and Ross, 2012; Gustafsson and Rogers, 2017;
Frankfurter et al., 2020; Han et al., 2022).

While most commercially available continuous-flow VADs operate at a constant
rotational speed, this fixed-speed approach has notable limitations (Slaughter et al.,
2010). The physiological demands on the cardiovascular system vary significantly with
changes in physical activity, posture, and emotional states. A constant-speed pump
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cannot adequately adapt to these dynamic conditions, potentially
leading to suboptimal hemodynamic support and increased
risks of adverse events, such as thrombus formation and
hemolysis (Alkan et al., 2007).

The human cardiovascular system inherently operates in a
pulsatile manner, driven by the rhythmic contraction of the heart.
This pulsatility is not merely a mechanical phenomenon but is
tightly coupled to physiological functions such as endothelial shear
stress regulation, nitric oxide release, and microvascular perfusion.
Constant-speed VADs, by suppressing natural pulsatility, may
disrupt these processes, leading to endothelial dysfunction and
impaired organ perfusion. Our study investigates how variable-
speed modulation can restore pulsatile flow characteristics, thereby
aligning mechanical support with the physiological requirements of
dynamic shear stress profiles and vascular adaptation. Variable-
speed blood pumps offer a promising solution by dynamically
adjusting the pump speed to align better with the patient’s
physiological needs (Ising et al., 2015).This adaptability can enhance
the hemodynamic performance, reduce complications, and improve
the patient’s quality of life (Choi et al., 2001; Liao et al., 2018). Both
HVAD and HeartMate 3 devices have adopted their own speed
modulation methods, called Lavage cycle and artificial pulse, to
create artificial pulses, thereby combining the benefits of continuous
flow with pulsatile flow characteristics, and preliminary clinical
trials have been conducted (Netuka et al., 2015; Bourque et al.,
2006; 2016). As new speed modulation types may emerge and
these variable speed modulations can be realized in practical
application (Soucy et al., 2015; Harada et al., 2021), understanding
hemolytic performance under varying conditions has
become crucial.

At present, some studies have reported the variable speed
issues of blood pumps. Wang et al. (2019) studied the effects
of pulsatile waveform speed and sinusoidal waveform speed on
hemolysis compared to steady speed blood pumps. Huang et al.
(2023) investigated the effects of variable speed blood pump
waveforms on the hemolytic performance of blood pumps,
concluding that the effects of triangular waves, sinusoidal waves,
and square waves on the hemolytic performance of blood pumps
are not significant. Huo et al. (2024) studied the effects of blood
pumps under constant and pulsatile speed modulation on local
hemodynamic parameters of the aorta, indicating that pulsatile
speed increases the blood flow fluctuation in the aorta. However, the
dynamic interactions between speedmodulation parameters (phase,
baseline speed, and amplitude) and physiological cardiac cycles
require further research. Furthermore, as blood pumps function
as fluid pumps, their operational states and characteristic curves
(e.g., pressure-flow hysteresis) are critical evaluation metrics in
hydraulic engineering.Therefore, when assessing speed modulation
strategies, it is essential not only to consider hemolytic properties
but also to analyze the pump’s working behavior under varying
cardiac states, such as ventricular pressure fluctuations and vascular
resistance changes.

This research focuses on centrifugal blood pumps in
extracorporeal systems, highlighting their potential for variable
speed control to enhance patient outcomes. The study aims to
explore the relationship between different baseline speeds of
the blood pump, speed fluctuation amplitudes, and the phase
differences with the left ventricular pressure waveform using

numerical simulations. Additionally, the study aims to explore
the connections between hemolysis, flow distributions, and
hydrodynamic characteristics of the blood pump under various
variable speed waveform modulations ultimately aiming to advance
MCS device effectiveness.

2 Methodology

2.1 Geometry

The object of this research is a self-developed, magnetically
levitated centrifugal blood pump suitable for various external MCS
systems. As shown in Figure 1A, the pump housing and impeller
are made of transparent polycarbonate. The inlet and outlet ports
are designed as pagoda joints, featuring 90° angles. The blood
pump has a closed impeller with eight blades and a central
hole. The overall height of the pump is 56.5 mm, and the duct
diameter is 70 mm. The inlet and outlet diameters are 9.4 mm and
9.0 mm, respectively.

The blood pump’s impeller is suspended both axially and radially
during rotation, with rotor support achieved by a radial magnetic
suspension bearing. A magnet is located beneath the impeller.
The blood pump can provide a flow range of 1–7 L/min, with an
impeller speed range of 1,000–5,000 rpm. Under design conditions,
the pump achieves a flow rate of 4 L/min and a pressure difference
of 104 mmHg.

2.2 CFD setup and experiment validation

Commercial CFD software, CFX 2020R1 (ANSYS Inc.,
Canonsburg, PA), was employed for the numerical simulations.
The hematological properties of human blood were simulated
using an incompressible fluid with a density of 1.055 kg/m3 and a
dynamic viscosity of 3.5× 10−3Pa · s (Ghadimi et al., 2019; Liu et al.,
2019). The SST-ω turbulence model was chosen for the simulations
(Thamsen et al., 2015; Granegger et al., 2020; Li et al., 2023b).
Convergence criteria were set to a root mean square error (RMSE)
of less than 1× 10−4. Over 99.99% of the mesh elements met the
following criteria: maximum element volume ratio <170°, aspect
ratio <100, skewness <0.54, and orthogonal quality >0.45. The
y-plus value was kept below one to satisfy the requirements of
the SST turbulence model. We conducted steady-state simulation
calculations with the mesh elements ranging from 1.82 million
to 14.25 million, and verified mesh independence at the operating
point with a rotational speed of 2000 rpm, a flow rate of 4 L/min, and
an inlet static pressure of 10 mmHg. When the number of meshes
reaches 11.27 million, the change in the hemolysis index with the
number of mesh elements is no longer significant, and the change
in the hemolysis index obtained from the simulation compared to
the 14.25 million mesh number is less than 0.52%. Therefore, we
chose the 11.27 million mesh blood pumpmesh for further research
and analysis. The generation details are shown in Figure 1B with no
negative volume elements.

The initial condition of transient simulations was derived from a
simulation at steady-state operation. During the steady simulations,
a static pressure of 10 mmHg was defined at the inlet, and mass flow
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FIGURE 1
(A) The geometry of the centrifugal pump; (B) The mesh details of the centrifugal pump.

FIGURE 2
(A) The mock circulatory loop rig; (B) Normalized flow rate-pressure rise characteristic curve.

rate conditions were specified at the outlet. The transient simulation
results show that the difference of the pressure rise and hemolysis
index between the third cardiac cycle and the second cardiac cycle
is less than 1%. Therefore, the results in the third cardiac cycle
are chosen as the final calculated results after initializing for two
cycles (1.2 s) under the condition of a heart rate of 100 beats
per minute (bpm). The time step for all CFD simulations was
set to 0.001 s.

A mock circulatory loop rig was established for the validation
and numerical results as shown in Figure 2A. The rig includes a
reservoir, PVC pipes, two dynamic pressure sensors, an ultrasonic
flowmeter (10PXL probe, TS410 m, Transonic Systems, United
States), a flow control valve, and the centrifugal blood pump. The
mock loop is filled with a glycerol and deionized water mixture
(60/40mass percentage) to simulate the blood’s density and dynamic
viscosity of 3.5× 10−3Pa · s. Flow rates ranging from 1 to 7 L/min
(in 0.5 L/min intervals) were achieved by adjusting the flow control
valve, while the blood pump operated at rotational speeds of 1,600,
1800, 2000, 2,200, and 2,400 rpm in sequence.

The experiment data were normalized as the flow coefficient
ϕ and load coefficient ψ according to Equations 1, 2. This
normalization converges the pump flow-pressure characteristics of
different pump speeds into a specific curve.

ϕ = G
ρu2d

2
2

(1)

ψ = ΔP
ρn2d22

(2)

Where u2 represents the linear velocity at the trailing edge of
impeller, and can be obtained by u2 =

2πn
60
· d2
2
. d2 is the diameter

of the trailing edge of impeller, and n represents the pump
rotational speed.

The hydraulic characteristics of the blood pump under different
rotational speeds were obtained, with a maximum pressure rise
deviation of 1% between experimental and CFD results. Figure 2B
compares the normalized experimental results and CFD results,
showing good consistency and confirming the reliability and
accuracy of the numerical method.
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2.3 Hemolysis calculation in CFD

Scalar shear stress is a critical factor in hemolysis calculation.
The shear stress experienced by red blood cells and the residence
time within a certain region are the main factors causing
hemolysis, so the current evaluation of hemolysis in blood
usually adopts the power law model proposed by Gierschpen as
Equation 3 (Giersiepen et al., 1990):

HI = ∆Hb
Hb
(%) = Ctατβ (3)

Where Hb represents the total hemoglobin concentration, ∆Hb
is the released hemoglobin concentration, t is the exposure time, τ
stands for scalar shear stress.

The constant parameters of the original model was obtained
from the fitting measurement data discussed in the reference
(Wurzinger et al., 1985). Heuser and Opitz proposed a set of
parameters from experiments on pig blood (Heuser and Opitz,
1980), which have been widely used and validated (Li et al., 2023b;
Su et al., 2024). Zhang et al. proposed another set of parameters
from hemolysis experiments on ovine blood (Zhang et al., 2011)
and have been utilized in several studies (He et al., 2021; Han et al.,
2024). The constants C, α, β used in this study are from Heuser’s
model: C = 1.8× 10−8, α = 0.765, β = 1.991. The scalar shear stress τ
is determined using Equation 4 (Giersiepen et al., 1990):

τ = [1
6
∑(τii − τij)

2 +∑τ2ij]
1/2

(4)

Hemolysis was calculated within the CFD simulations
to assess the blood damage potential of the pump under
different operational conditions. The Euler method was used
to calculate the hemolysis distribution by solving Equation
5 (Bludszuweit, 1995; Yokoyama et al., 2010):

d(HI1/α)
dt
=
∂(HI1/α)

∂t
+ v ·∇HI1/α = C1/ατβ/α (5)

Where C1/ατβ/α is the source term, and was set as 0 at the
inlet to simulate the absence of hemolysis at the entrance and
was added into each subdomain in the pump model. Gauss’s flux
theorem is applied to calculate the average linear damage of blood
as Equations 6, 7, assuming a uniform distribution of damage
throughout the blood pump.

∫
V
(v ·∇HI1/α)dV = ∫

V
(C1/ατβ/α)dV = ∫

S
(v · n⃑)HI1/αdS =HI1/α ·Qout

(6)

HI = (HI1/α)
α
= ( 1

Qout
∫
V
(C1/ατβ/α)dV)

α
(7)

Where dS is the cross-section element at the outlet, Qout is the
outlet flow rate of the blood pump. The mass-weighted average
value of HI at the pump outlet is regarded as the final hemolysis
performance.

2.4 Hemodynamic conditions setup

The lumped parameter model (LPM) of the cardiovascular
system used in this study is based on the electrical analogy

method proposed by Simaan et al. (2009), Li et al. (2023a),
and was used to evaluate the coupled working state of blood
pumps and the cardiovascular system. Figure 3A illustrates the
complete model of the cardiovascular system and its connection to
the blood pump.

The left ventricular assist device (LVAD) is connected from
the left ventricle to the aorta, with catheter inertia and resistance
included in the model. The cardiovascular model comprises the
left heart circulation and other systemic pathways. The heartbeat
is modeled as a time-varying nonlinear elastic system, where
the elasticity values represent the heart’s contractility. These
values are adjusted to simulate different heart failure conditions.
Valves are represented by ideal diodes to prevent blood backflow.
The systemic arterial system is modeled using a four-element
Windkessel model, which simulates resistance, compliance, and
inertia (Wang et al., 2019). The venous system, acting as the
primary blood reservoir, exhibits concentrated compliance under
the influence of resistance. The specific parameters are provided
in Table 1.

The dynamic hydraulic characteristic of the blood pump is
governed by an ordinary differential equation together with the
cardiovascular system as Equation 8. Specifically, the pressure
rise of the blood pump depends on the flow rate and rotational
speed, which were determined by regression analysis of the
experimentally measured pressure head and flow rate. Besides, it
also includes a term to account for the inertia effect of the blood
pump (Tang et al., 2012):

P = a0 + a1Q+ a2Q2 + a3n+ a4n2 + L
dQ
dt

(8)

Where P is the pump pressure head, Q is the flow rate, n is
the pump rotational speed, t is the time, L represents the inertia
effect. The coefficients ax were calculated from the steady results
from the experiments: a0 = − 0.199, a1 = 0.6676, a2 = − 0.0088, a3 =
− 0.0208, a4 = 2.94× 10−5.

To analyze various operational conditions, the study simulated
eight different support modes based on two types of sinusoidal
waveforms. One waveform was in-phase with the left ventricle,
meaning the peak left ventricular pressure coincided with the
highest pump speed. The other waveform was out-of-phase,
meaning the peak left ventricular pressure coincided with the
lowest pump speed. Baseline pump speeds were set at 2,200 rpm
and 2,000 rpm, with speed fluctuations of 200 rpm and 100 rpm,
respectively. The pump’s rotational speed followed a sine waveform,
and its phase position relative to the left ventricular pressure
waveform is shown in Figure 3B. In this study, the heart rate is
set to a constant 100 beats per minute to explore the impact of
different rotational speed modulation on blood pump assistance.
Therefore, the period of the waveforms was set to 0.6s, which has
the same period as the heartbeat. All the speed setups are shown
in Table 2.

The input parameters of CFD transient simulations were
calculated by the integrated numerical model that combines the
hysteresis model with the cardiovascular system under the heart
failure conditions, and the inlet pressure was set as left ventricular
pressure PLV(t), and the outlet pressure was set as the sum of PLV(t)
and the pump pressure PP(t), where PLV(t) and PP(t) are pressure
functions of time, calculated by the integrated numerical model that
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FIGURE 3
(A) The LPM of the coupled system; (B) The eight pump speed modulations, (C) the aortic pressure and (D) the left ventricular pressure within a
cardiac cycle.

combines the hysteresismodel with the cardiovascular system under
the heart failure conditions.

3 Results

3.1 Characteristics under variable speed
conditions

The simulated flow rate-pressure rise characteristic loops during
one heart beat cycle are shown in Figure 4A and (B) for the
eight different speed modulation conditions. As indicated in
Figures 3C, D, the aortic pressure is always higher than the left
ventricular pressure, ensuring the aortic valve remains closed. For
comparison, each characteristic loop is divided into four parts:
n0∼n0+A, n0+A ∼ n0, n0∼n0-A, n0-A ∼ n0, where n0 is the baseline
speed and A is the speed fluctuation in each speed modes. To
analyze the flow distribution characteristics of blood pumps under
different speed modulations, the time spent by flows in different

ranges within a cardiac cycle was statistically evaluated as shown
in Figures 4C, D. The nondimensionalized time percentage was
calculated by Equation 9:

tn = t/TC × 100% (9)

Where t is the residence time that pumpoperates at a certain flow
range, and TC is the total time of one cardiac cycle. The modulation
method of the speed will be discussed below as two cases: in-phase
and counter-phase conditions (May-Newman, 2023).

3.1.1 In-phase condition
When the variable speed modulation is in-phase with the

left ventricle (Modes 3, 4, 7, and 8 in Figure 4), the resulting
characteristic loop is larger, maintaining a counterclockwise
rotation. With the same baseline speed but varying speed
fluctuations, an increase in speed variation (Mode 3 vs Mode 4,
Mode 7 vs Mode 8) enlarges the characteristic loop. This indicates
that when the blood pump operates in complete synchronization
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TABLE 1 The LPM parameters.

Resistance
(mmHg ·
s/mL)

Compliance
(mL/mmHg)

Inertia
(mmHg ·
s2/mL)

Elasticity
(mmHg ·
s/mL)

RS 1.0000 C(t) 1/E(t) LS 0.0005 Emax 1.05

RMV 0.0050 CR 4.4000 LIN 0.0001 Emin 0.1

RAV 0.0010 CS 1.3300 Lp −0.0035

RC 0.03968 CA 0.0800 LOUT 0.0099

RIN 0.0001 L 0.01

ROUT 0.0065

Symbols: P, pressure (mmHg); I, blood flow rate, L, inertia, R, resistance, C, compliance, D,
unidirectional flow of the valve (diode function), C(t), Left ventricular compliance, HP,
pressure rise generated by LVAD, Q, flow rate across LVAD.
Subscripts: AO, aorta, A, arteries, AV, aortic valve, S, systemic vascularity, LA, left atrium,
MV, mitral valve, LV, left ventricular, IN, inflow cannula of the LVAD, OUT, outflow
cannula of the LVAD.

with the heart, its pumping capacity aligns with that of the left
ventricle. As a result, the blood pump outputs higher pressure flows
during high pumping capacity and lower pressure flows during low
pumping capacity.

Under in-phase conditions, the blood pump’s flow distribution
is wide, with prolonged periods at both minimum and maximum
flow rates. Increasing the amplitude of speed fluctuations and the
baseline speed expands the flow range within a cycle. This leads to
more pronounced changes in the pump’s operating point, potentially
enhancing the pulsatile effect of the blood flow, which could also
increase the risk of hemolysis.

3.1.2 Counter-phase condition
When the pump speed modulation is out of phase with the

left ventricle (Modes 1, 2, 5, and 6 in Figure 4), the characteristic
loop is smaller compared to the condition without pulsation, and
the rotation direction shifts to clockwise (Modes 1, 2, and 5) or
forms an “8”shape (Mode 6). Under counter-phase conditions, the
direction of the pressure rise cannot be easily inferred from the
flow direction. For the same baseline speed but different amplitudes,
as the speed fluctuation increases (e.g., from Mode 6 to Mode 5),
the reverse characteristic loop enlarges, shifting from an “8”shape
to a fully clockwise loop. This suggests that when the blood pump
operates entirely out of sync with the heart, a counterclockwise
characteristic loop may form with low-speed pulsations. But as
the speed fluctuations intensify, the reverse effect becomes more
pronounced, indicating that the pumping capacity of the blood
pump in this mode can exceed that of the left ventricle and a
clockwise characteristic loop forms. The impact of speed variation
on the working point across the current baseline speed surpasses the
effect of the left ventricle’s natural pulsations.

In counter-phase conditions, the flow and pressure rise ranges
are no longer evenly distributed across the four stages. For example,
in Mode 1, with a baseline speed of 2,200 rpm and a modulation
amplitude of 200 rpm, the flow range in the n0∼n0+A stage is
from 94% to 3%, and the pressure rise range is from 100% to

90%. However, during the third stage, an increase in pressure rise
occurs with little change in flow. In the fourth stage, a significant
increase in flow occurs with little change in pressure rise. These
stages correspond to a reduction in the left ventricle’s functional
capacity, yet they do not result in the pressure or flow reductions
in constant speed or in-phase modulation conditions.

Theflowdistribution graph of the blood pump reveals that under
out-of-phase conditions, the flow distribution is narrow. With a
baseline speed of 2000 rpm and modulation amplitudes of 200 rpm
and 100 rpm, the pump remains in the mid-range flow for the
longest duration. This is due to the characteristic loop exhibiting an
“8”shape. At low-pressure rise points, there is a repeated fluctuation
of flow decrease, increase, and decrease, causing the flow to remain
near the mid-range. Consequently, in this condition, the high-risk
area for blood damage is near the low-pressure rise point.

3.2 Hemolysis performance

The influence of phase, baseline speed, and speed fluctuation
amplitude on the hydrodynamic performance of the blood pump
was evaluated using CFD simulations. As shown in Figures 4A, B,
the characteristic curve of the blood pump exhibits a “8” pattern,
with a point where both the flow rate and pressure rise are identical,
but the trends differ. The appearance of the point indicates that the
transient changes in the flow field within the pump are closely linked
to the flow field formed in the previous time point, as well as to
the varying conditions at the pump’s inlet and outlet. This is an
issue not typically considered in the operation of a constant-speed
blood pump. Therefore, it is necessary to further analyze the HI
distributions within the pump (Fraser et al., 2012; Roberts et al.,
2020; Yun et al., 2020). Figure 5 present the HI distribution within
the pump over one cycle in Mode 1, Mode 5, Mode 6 and Mode 7,
with the corresponding time points marked as Figure 6.

The left ventricle pressure remains stable at points a-d, after
which the left ventricle begins to contract and work, with the
pressure gradually increasing to point g and then gradually
decreasing.

As shown in Figure 5, high HI is observed in the rotating region
of the impeller blades and near the outlet. As the rotational speed
and the coupling effect with the heart change, the distribution
characteristics of HI change. Compared to Mode 5, Mode 7 changes
the phase, Mode 6 changes the amplitude, and Mode 1 changes
the baseline. During the period from n0 to n0+A (a-c), high HI
gradually appears at the pump’s tongue and outlet in Mode 5. Due
to the increase in left ventricular pressure starting from point d, and
the severe deceleration of the blood pump speed at point e, there
is a strong shear stress within the blood pump, which leads to the
elevated hemolysis during this period.

According to Figure 4B, the characteristics of Mode 6 fit the
steady-state characteristic curve most closely, indicating a smaller
change in hemolysis within the blood pump in this operating
condition. The point a and d of Mode 6 have almost the same
pressure rise and flow rate, but the hemolysis at point a is still mainly
concentrated at the outlet and the blades near the outlet, while at
point d, hemolysis begins to occur at the trailing edge and volute.

Mode 7 has a relatively high possibility of hemolysis throughout
a cardiac cycle, with its high HI distribution in all blade rows.
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TABLE 2 Variable pump speed modulations.

Speed setting mode name Baseline speed (n0, rpm) Speed fluctuations (A, rpm) Phase condition

Mode 1 2,200 200 counter-phase

Mode 2 2,200 100 counter-phase

Mode 3 2,200 200 in-phase

Mode 4 2,200 100 in-phase

Mode 5 2000 200 counter-phase

Mode 6 2000 100 counter-phase

Mode 7 2000 200 in-phase

Mode 8 2000 100 in-phase

FIGURE 4
(A, B) The characteristic loops in eight different modes divided into four stages; (C, D) The flow rate distributions during a cardiac cycle.
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FIGURE 5
HI distribution contour maps at half the blade span height of the pump during a cardiac cycle in Mode 5, 7, 6, 1.

Its in-phase adjustment method can cause irregular suction on
the ventricle, thereby changing the inlet conditions and potentially
increasing the risk of hemolysis.

Mode 1 has a baseline speed modulation at 2200 rpm,
with an average speed higher than the other speed modulation
methods, leading to higher shear stress. According to the
research of Chen et al. (2016), non-physiological high shear
stress can lead to platelet activation and hemolysis. Areas
inside the blood pump with high shear stress are potential
danger zones for blood damage, which is consistent with
the high hemolysis risk we observed in Mode 1. Within a
cardiac cycle, the hemolysis distribution in Mode 1 varies in

a consistent with Mode 5, indicating that under similar inlet
and outlet conditions, flow field characteristics inside the blood
pump is similar.

Figure 7 shows the plotted curve of the mass-weighted average
HI value at the pump outlet under four speed modulation
conditions.There is a consistent trend between the average HI value
and pump speed. Mode 1 causes the most significant fluctuation
in HI under the counter-phase speed modulation mode, reaching
a maximum HI value when the speed reaches its peak. Other
reverse-phase speed modulation modes maintain relatively stable
pump operating characteristics, resulting in less fluctuation in HI
throughout a cardiac cycle. Mode 7, as a in-phase speed modulation
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FIGURE 6
The pump speed, flow rate and pressure rise within a cardiac cycle in Mode 1, 5, 6, 7.

mode, also reaches a maximum HI value when the speed is at
its peak, but at the lowest speed, HI will also experience a slight
increase. The average hemolysis value for all modulation modes is
9.49−6, withMode 6having the lowest averageHI andMode 1 having
the highest average HI, consistent with the analysis results above.

4 Discussion

This study aims to provide a rapid estimation of the performance
of a variable speed blood pump under coupled working conditions
with the cardiovascular system using CFD and LPM methods.
Specifically, it investigates the impact of two types of sinusoidal
speed variations of the blood pump: one in-phase and one out-
of-phase with the left ventricular pressure pulsation waveform. By
setting baseline speeds at 2,200 rpm and 2000 rpm, with speed
fluctuations of 200 rpm and 100 rpm respectively, the study explores
eight different support modes to simulate the blood pump’s support
scenarios in heart failure patients.

Hemolysis is a key performance indicator for blood pumps.
Many researchers have adopted numerical hemolysis assessment
using CFD methods in the design optimization of pumps
(Wu et al., 2006; Wiegmann et al., 2018). It serves as a good

FIGURE 7
The average HI during a cardiac cycle in Mode 5, 7, 6, 1.

supplement to in vivo and in vitro hemolysis tests. Although
there have been numerous studies on the effects of constant
rotational speed on blood pumps, research on the impact of
variable speed modulation on centrifugal pump performance is still
insufficient. This study employs CFD and 0D modeling techniques
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FIGURE 8
Velocity vector distributions during a cardiac cycle in Mode 5, 7, 6, 1.

to conduct a comprehensive comparative study of the numerical
hemolysis performance of a centrifugal pump under constant speed
and eight different speed modulation curves. The findings have
significant reference value for the actual clinical speed operation of
blood pumps.

According to Figure 5, themain changes inHI occur at the blade
trailing edge, volute tongue, and outlet duct.The increase inHI at the
blade trailing edge and volute tongue is mainly due to the increase
in shear stress, while the outlet duct has lower shear stress but a
significant increase in residence time leads to an increase in HI.
The settings of the blood pump’s phase, baseline speed, and speed
fluctuation amplitude all affect the hemolytic performance of the
blood pump. Mode 6, compared to Mode 5, reduces the amplitude,
making it have a smaller risk of hemolysis, but it results in a smaller
blood flow pulsation as shown in Figure 3E. Mode 1, compared to
Mode 5, has a higher baseline speed, and the increase in speed leads

to an increased risk of hemolysis (Jahren et al., 2014). Mode 7, as
an in-phase speed modulation method, works in synchronization
with the left ventricle and produces a more noticeable pulsatile flow.
However, due to the fluid inertia within the blood pumpblades, large
shear stress can occur here when the rotor suddenly decelerates or
accelerates, leading to an increased risk of hemolysis.

As shown in Figure 8, to further explore the relationship
between the flow structure inside the blood pump and hemolysis, we
conducted a comparative analysis of the velocity vector distributions
inside the blood pump under these modulations (Yang et al., 2015;
Wu et al., 2010; Chassagne et al., 2023). The distribution indicates
that when the left ventricular pressure is relatively stable (a-d),Mode
7 shows a significant large separation zone at the outlet due to the
decrease in rotational speed, leading to blockage at the outlet and a
reduced flow rate, which is corresponding to the complex hemolysis
characteristics at the outlet in the hemolysis distribution diagram.
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With the synchronous increase in pump speed and left ventricular
pressure, vortices appear in the blade area, the flow rate increases,
and a high-speed zone appears at the tongue of the volute, but
the flow distribution inside the outlet conduit is relatively uniform.
During point a to d, both Mode 5 and Mode 6 have high-speed
zones of the tongue and large separation at the outlet, caused by an
increase in pump speed but insufficient inlet pressure, preventing the
increase in flow. As the rotational speed gradually decreased and the
inlet pressure gradually increased, the turbulence within the blade
passage was significantly enhanced, but the separation at the outlet
improved. The flow field distribution and variation trend of Mode
1 are similar to those of Mode 5 and Mode 6, but due to its higher
reference velocity, the internal flow structure is more complex, the
separation zone is larger, and thus causes more severe hemolysis.

The change in pump speed resulted in the formation of more
vortices within and at the outlet and blade passage, and a more
complex vortex structure was observed at the time points when
hemolysis was more severe, flow separations are noticed in the
domains of impeller and outlet tube. As mentioned, these irregular
flow patterns may aggravate the hemolysis. Due to the fact that the
work of a centrifugal pump mainly comes from centrifugal force,
the design of a centrifugal blood pump typically requires a certain
volume to ensure a significant radius difference between the leading
and trailing edges of the impeller. At high rotational speeds, the
tangential velocity at the trailing edge is further increased. During
the acceleration process, the velocity gradient between the blade
trailing edge and the centrifugal pump volute increases, leading to
an increase in shear stress and thus an increase in the possibility of
hemolysis. The quality of the blood flow at the outlet of the blood
pump is closely related to the quality of the blood supply. Blood with
larger separation or vortex structures flowing into the aorta through
the catheter may lead to imbalanced blood flow supply to different
arteries or hemolysis caused by impacts. Moreover, the excessive
suction of blood flow into the left ventricle caused by blockage at
the outlet can easily lead to ventricular collapse or direct suction
into the myocardium. Therefore, conducting effective simulations
of variable-speed blood pumps before actual variable-speed blood
pump configurations is of utmost importance.

Understanding how different operational modes affect blood
pump performance and blood damage potential is crucial for
optimizing LVAD therapy. The findings from this study could
lead to improved LVAD designs and operational protocols,
ultimately enhancing patient outcomes by providing more tailored
and effective mechanical circulatory support. This research also
highlights the importance of personalized medicine in managing
advanced heart failure, ensuring that each patient receives the
most appropriate and beneficial therapy based on their unique
physiological characteristics. The focus on variable speed operation
underscores the potential for more natural and effective support
strategies, moving beyond the limitations of constant speed pumps.

This study still has some limitations. The research is based
on a 0-dimensional human circulatory model, which provides
boundary conditions for CFD simulations that have a certain
degree of physiological significance and have been recognized for
their accuracy by various scholars. However, in clinical practice,
factors such as baroreflex effects and variations in left ventricular
elasticity can influence physiological states, which are often not
static. Therefore, in the future, we might consider adding a speed

input function to the blood pump’s speed controller to achieve
active control. Additionally, since the results indicate that there
are different characteristic curves for the eight speed modulation
methods, but these are only implemented under conditions that
are in sync with the cardiac cycle, future research could explore
hemolysis assessment when the cardiac cycle is independent of the
blood pump speed modulation cycle.

5 Conclusion

This study demonstrates that the hydrodynamic performance
and hemolytic risk of rotary blood pumps are profoundly shaped
by the interplay of phase, baseline speed, and speed fluctuation
amplitude. Through computational modeling and dynamic
cardiovascular coupling, we have identified distinct impacts on
flow patterns and blood damage potential. The results indicate
that both the in-phase and counter-phase speed modulations offer
specific benefits and drawbacks, with varying degrees of impact on
hemolysis, especially in areas of high shear stress within the pump.
The study highlights the importance of optimizing pump speed
amplitudes, baseline speed and phase differences to align more
closely with the patient’s physiological needs. In-phase modulation
tends to enhance pulsatile flow but may increase hemolysis under
certain conditions, while counter-phase modulation appears to
provide more stable flow characteristics, albeit with a more complex
flow structure that can still pose risks.

The analysis of pressure-flow hysteresis curves further
highlights the complexity of heart-pump interactions: counter-
phase modulation generates “8”loops, indicative of transient flow
reversal thatmitigates hemolysis, while in-phase conditions produce
clockwise loops (Mode 7) and pulsatility-driven shear stress in the
volute tongue.

Flow distribution statistics reveal that under counter-phase
modulation, the pump operates within the mid-flow range for most
of cardiac cycle, significantly reducing exposure to high-shear zones.
These findings collectively emphasize that timing precision in speed
modulation—rather than waveform shape alone—determines the
balance between pulsatility and blood compatibility.

This study demonstrates that variable-speed modulation is not
merely an engineering optimization problem but a physiological
adaptation strategy. By dynamically adjusting pump speed to
match cardiac cycle phases, VADs can preserve the endothelial cell
response to pulsatile shear stress—a key mechanism for vascular
homeostasis. Furthermore, minimizing hemolysis through speed
control aligns with the physiological need to maintain erythrocyte
integrity, thereby preventing hemoglobin-induced nephrotoxicity
and oxidative stress. These insights advance the translational goal
of designing VADs that not only support circulation but also
actively promote cardiovascular system resilience. Future work
should explore the clinical implications of these findings, potentially
integrating real-time physiological feedback to optimize pump
performance dynamically. Moreover, expanding the simulation to
account for more complex patient-specific factors such as baroreflex
and variable ventricular elasticity could further refine the use of
variable-speed pumps in heart failure management. The ultimate
goal is to enhance mechanical circulatory support, making it safer
and more effective for patients with heart failure.
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