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From function to structure: how
myofibrillogenesis influences the
transverse–axial tubular system
development and its peculiarities

Zuzana Sevcikova Tomaskova and Katarina Mackova*

Department of Biophysics and Electrophysiology, Institute of Molecular Physiology and Genetics,
Centre of Biosciences, Slovak Academy of Sciences, Bratislava, Slovakia

The transverse–axial tubular system (TATS) is the extension of sarcolemma
growing to the cell interior, providing sufficient calcium signaling to induce
calcium release from sarcoplasmic reticulum cisternae and stimulate the
contraction of neighboring myofibrils. Interestingly, the development of
TATS is delayed and matures during the post-partum period. It starts with
small invaginations near the sarcolemma, proceeding to grow an irregular
network that is later assembled into the notably transversally oriented tubular
network. Accumulating evidence supports the idea that the development
of TATS is linked to cell dimensions, calcium signaling, and increasing
myofibrillar content orchestrated by electromechanical stimulation. However,
the overall mechanism has not yet been described. The topic of this review
is the development of TATS with an emphasis on the irregular phase of
tubule growth. The traditional models of BIN1-related tubulation are also
discussed. We summarized the recently described protein interactions during
TATS development, mainly mediated by costameric and sarcomeric proteins,
supporting the idea of the coupling sites between TATS and the myofibrils. We
hypothesize that the formation and final organization of the tubular system is
driven by the simultaneous development of the contractile apparatus under
cycling electromechanical stimulus.

KEYWORDS

t-tubules, transverse–axial tubular system, postnatal development, cardiomyocyte,
sarcomere, Z-line, myofibrillogenesis, costameres

1 Introduction

An executive agent of cardiac contraction throughout life is muscle cells called
cardiomyocytes. The synchronous action of cardiomyocytes is described in a process of
excitation–contraction coupling (E-C coupling) (Bers, 2002). E-C coupling is allowed
by the constitution of Ca2+ release units (CRUs), which are junctional domains of the
junctional sarcoplasmic reticulum (SR) harboring calcium release channels (ryanodine
receptors, RyRs), with sarcolemma harboring L-type Ca2+ channels (also known as
dihydropyridine receptors, DHPRs) (Franzini-Armstrong et al., 1999). Interestingly,
cardiomyocytes are structurally underdeveloped in the post-partum period in almost
all mammals (Scuderi and Butcher, 2017). A relatively small amount of time is
necessary to catch up and build all structural features for mature Ca2+ signaling.
Sparse myofibrils in a close peripheral position represent the structural conditions for
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sufficient Ca2+ signaling through the sarcolemma (Brook et al., 1983;
Hirakow, 1970; Blatter et al., 2003). Different mechanisms of Ca2+

signaling have been documented in embryonal, fetal, and postnatal
periods in cardiomyocytes (Louch et al., 2015). The cardiomyocyte
growth in the postnatal period is marked by the process of switching
between hyperplasia and hypertrophy (Li et al., 1996) and other
transitional mechanisms (Ostadal et al., 1999; Ikenishi et al., 2012).
The initiation of tubular system development could be considered
the terminal phase of cardiomyocyte differentiation during growth.

The tubular system was previously referred to as transversal
tubules (t-tubules) (Brette andOrchard, 2003) because of prominent
transversal orientation in skeletal muscle (Edwards and Launikonis,
2008; Eisenberg and Eisenberg, 1968); nowadays, the preferential
name is the transverse–axial tubular system (TATS) (Ferrantini et al.,
2013). The TATS is formed to spread the sarcolemma to close
apposition with the SR and myofibrils. The main function of
the TATS is the conduction of action potential in order to
ensure synchronous and efficient Ca2+ release from intracellular
storage, which triggers cardiomyocyte contraction (Bers, 2002). The
functions of the TATS are discussed elsewhere; see Ferrantini et al.
(2013), Hong and Shaw (2017), Brette and Orchard (2003), and Lu
and Pu (2020). Briefly, Ca2+ influx through DHPR channels triggers
Ca2+ release from RyR2s in the SR, an amplification process known
as Ca2+-induced Ca2+ release (CICR) (Fabiato, 1983). An efficient
CICR is enabled by the TATS presence and establishment of special
CRUs (dyads), which allows synchronous centripetal propagation of
Ca2+ transients in ventricular cardiomyocytes (Louch et al., 2010).
Delayed Ca2+ transients in the cell center and dyssynchronous CICR
were observed in cardiomyocytes after formamide detubulation
(Brette et al., 2002), whereas, in atrial cardiomyocytes, CICR showed
great variability in synchrony, dependent on different distributions
of TATS and DHPRs among cardiomyocytes (Frisk et al., 2014).
Effective coupling of the CICR mechanism also needs a specific
positioning of DHPRs, RyR2s, and other proteins within the dyadic
neighborhood (Louch et al., 2010), which needs to be carefully
established during development.

The development of the tubular system exhibits some
peculiarities. In the rats, the first tubules are observed after the
first postnatal week (age postnatal day 7, P7) as small sarcolemmal
invaginations (Ziman et al., 2010; Hamaguchi et al., 2013). A sparse
and unorganized tubular system is then developed rapidly with a
prevalent longitudinal (axial) orientation (Mackova et al., 2017); its
prominent transversal orientation is observed after P21 (Han et al.,
2013). The irregular growth phase of the tubular network is an
unexplained period in the development of cardiomyocytes.

Abbreviations: ACTN2, α-actinin; BIN1, amphiphysin2; CAV3, caveolin
3; CICR, calcium-induced calcium release; CMYA5, myospryn,
cardiomyopathy-associated gene 5; CRUs, Ca2+ release units; DGC,
dystrophin-glycoprotein complex; DHPRs, dihydropyridine receptors;
DYSF, dysferlin; E-C coupling, excitation–contraction coupling; EHT,
engineered heart tissues; ECM, extracellular matrix; iPSCs, induced
pluripotent stem cells; iPSC-CMs, cardiomyocytes derived from induced
pluripotent stem cells; JP2, juncthophilin2; MTM1, myotubularin 1; NEXN,
nexilin, P, postnatal; PIP2, phosphatidylinositol-4,5-bisphosphate; PTPN23,
tyrosine phosphatase, nonreceptor type 23; RyRs, ryanodine receptors;
SR, sarcoplasmic reticulum; TATS, transverse-axial tubular system; Tcap,
titin-cap, telethonin.

FIGURE 1
Timescale of myofibrillogenesis and tubulogenesis from newborn to
adult stages of rat cardiomyocytes. The important steps of the
formation of tubules and myofibrils are indicated on the time scale
spanning from the day of birth (P0) to the adult stage (>P21). The
development of tubules is delayed and starts on day P7, whereas the
first, not oriented, myofibrils are already present during embryonic
development.

We review the development of the tubular system, which is
characterized by a low degree of organization in the first weeks post-
partum. During development, the irregularity in the tubular system
could relate to the simultaneous process of contractile apparatus
development (myofibrillogenesis, sarcomerogenesis; Figure 1). It
could be coupled with the cytoskeleton and sarcoplasmic reticulum.
Here, we present a hypothesis of tubular system formation driven by
contractile apparatus.

2 (Im)maturity of induced pluripotent
stem cells and engineered heart
tissue: key to the coupled
developmental mechanisms

In recent years, many laboratories have tried to overcome
the immaturity of induced pluripotent stem cell (iPSC) -
derived cardiomyocytes (iPSC-CMs) by several mechanisms.
One of the highest morphological hallmarks of iPSC-CM
maturity is the development of TATS (Giacomelli et al., 2020;
Miki et al., 2021; Li et al., 2024) as part of their functional
electrophysiological maturity.

The increase in adult troponin I expression via estrogen-related
receptor gamma agonist enhances cardiac maturation of iPSC-CMs,
including TATS development and enhanced metabolic function
(Miki et al., 2021). Combining the Matrigel mattress technique
with thyroid hormone triiodothyronine and dexamethasone
resulted in human iPSC-CMs exhibiting abundant TATS with
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synchronized Ca2+ release in whole cell volume. Compared
with adult cardiomyocytes, TATS was less organized and had
more longitudinal elements (Parikh et al., 2017) resembling
TATS from the translational postnatal stage (P10–15) of rats
(Mackova et al., 2017). It was determined that TATS was developed
in line with highly organized sarcomeres with present Z-lines and
regularly distributed myofilaments in a long-term 3D culture of
iPSC-CMs (more than 50 days) (Ergir et al., 2022). iPSC-CMs
seeded in 3D microtissues with cardiac fibroblasts also showed
improved sarcomeric structures with transversal tubules, enhanced
mitochondrial respiration, and contractility in comparison to
iPSC-CMs seeded without fibroblasts (Giacomelli et al., 2020).

The iPSC-CMs seeded onto geometrically engineered substrates
exhibited more mature phenotypes like adult CMs, such as
elongated cell shape, alignment of myofibrils, and formation of
transverse tubules resulting in better electrophysiological properties
(Silbernagel et al., 2020; Hong et al., 2023; Khan et al., 2015;
Ribeiro et al., 2015). Rectangular 3D scaffolds enabled parallel
alignment of myofibrils and the development of tubules in cultured
iPSCs. Rectangular-shaped iPSC-CMs showed dense tubular axially
oriented invaginations mainly from the shorter poles of the cell. In
some cells, the rectangular 3D scaffold induced the development of
transverse tubules with a dyadic structure near Z-lines and strong
reorganization of DHPR and RyR2 channels relative to each other.
Interestingly, the reshaping of the cell from a planar to a rectangular
shape also induced a significant height increase that may enable
more complex organization of the organelles (Silbernagel et al.,
2020). Using a substrate with physiological stiffness (10 kPa) and
a rectangular micropattern also promoted increased maturity of
iPSC and development of a tubular system (Ribeiro et al., 2015).
The distinct mechanical scaffold uses the pillar inside the circular
dish, so the iPSC-CMs created the cellular sheet stimulated by a
traveling wave originating in a close-loop tissue. Stimulation via
loopedmechanisms enhanced iPSC-CMmaturation, highlighted by
the development of a tubular system. However, the tubules are not
precisely aligned with the Z-lines (Li et al., 2024).

Engineered heart tissues (EHT) have received much attention
recently [see more in Hong et al. (2023)]; EHT can provide
higher structural and functional maturation of human iPSC-
CMs by several mechanisms. The proper combination of cells
with electromechanical stimulation can improve the overall
maturation of iPSC-CMs. When early-stage iPSC-CMs (after
the onset of assembly of autonomous contraction) were used to
engineer heart tissues and were subjected to intense electrical
stimulation with periodically increasing frequency, the resulting
tissue displayed increased cell size, proper assembly of sarcomeres,
and intercalated discs with robust TATS having prominent
transverse components and functional CRUs. Interestingly, this
robust maturation of iPSC-CMs was achieved only by physical
conditioning with increasing intensity of mechanical stimulation
that mimicked mechanical loading during the perinatal heart
development (Ronaldson-Bouchard et al., 2018). The tubular
system, with a pronounced axial component, was present in
electro-mechanically stimulated EHTs created from neonatal rat
cardiac cells, comparable to TATS observed from P13 isolated
cardiomyocytes (Godier-Furnémont et al., 2015).

Kermani et al. (2023) recently reported that seeding of
iPSC-CMs in cuboid 3D micro-scaffolds and overexpression of

amphiphysin2 (BIN1) led to increased tubulogenesis and improved
Ca2+ handling at the level of E-C coupling. This finding opens new
avenues for future human iPSC-CM development and applications
based on a combination of engineering approaches with knowledge
of complex coupled developmental processes.

These techniques have unmasked tremendous coupled
mechanisms involved in cardiac maturation. It certainly seems that
mechanical stimulation, such as contraction, must be present to
promote the growth of TATS.

3 Cardiomyocyte growth in the
postnatal period

Heart development is also fueled bymechanical forces.Theheart
is the first organ developed during embryonic development and
starts to beat in an autonomous manner between embryonic days
8–9 (E8–E9) in mice (Chen et al., 2010). At birth, the mammalian
heart is not fully mature. The overall cardiac parameters rapidly
increase in the post-partum period (Papanicolaou et al., 2012). The
increasedworkload ismanifested by an increase in both pressure and
volume load, which causes the enlargement of ventricular volume
and the increase of wall thickness (Olivetti et al., 1980).

The cardiomyocyte growth is executed in three phases of growth
in newborn rat hearts (Figures 1, 2): i) an early phase of hyperplasia
(i.e., cell division) in postnatal days P0 to P5; ii) a transitional phase
from day P6 to P14; and iii) a hypertrophic phase between days
P15 and P21 (Clubb and Bishop, 1984). After P21, the rat reaches
the adult phase.

On the ultrastructural level, cardiomyocytes are not fully
assembled during the postnatal period (Hirakow, 1970; Brook et al.,
1983; Anversa et al., 1980). The early postnatal period (P0–P5;
Figure 2A) is mainly focused on the beginning of the binucleation
process and protein expression mirrored on organelle structure.
In rats, during P1–P3, cardiomyocytes are mononucleated with
constant cell volume. The binucleation starts after P4, and most
cardiomyocytes (90%) become binucleated at P12 (Li et al.,
1996). The shape of mouse cardiomyocytes changes from round
to polygonal during embryonic stages and post-partum to
spindle-like shapes at P4. Prominent empty cytoplasm with
scattered mitochondria around the nucleus is seen in P3 mouse
cardiomyocytes (Piquereau et al., 2010). Myofibrillogenesis begins
in the early embryonic period and continues in the postnatal period.
The nascent myofibrils are not oriented and occupy little space
between the sarcolemma and the massive nuclei in embryonic mice
cardiomyocytes (Hirschy et al., 2006; Legato, 1979; Brook et al.,
1983). Prominent cell growth in the longitudinal direction parallels
myofibril elongation, and costameric regions are formed on the
lateral membrane (Hirschy et al., 2006).

The myofibrillogenesis continues during the translational
growth phase (P6–P14; Figure 2B). In mouse cardiomyocytes,
myofibrillar bundles acquire the proper longitudinal orientation
at P7 (Papanicolaou et al., 2012). The rat ventricular myocardium
during P10 has areas with properly organized sarcomeres but also
undifferentiated areas (Hopkins et al., 1973). Delayed development
of the M-line of myofibrils was observed in rat myocardium, which
is clearly demonstrated after P11 (Anversa et al., 1981). Costameric
regions, manifested by laminin, are localized on lateral membranes
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FIGURE 2
The phases of postnatal growth of the rat ventricular cardiomyocyte. (A) Hyperplastic phase (P0–P5). The cardiomyocyte has a spindle-like shape with
a prominent nucleus. The immature myofibrils are localized near sarcolemma or loosely distributed in the cytoplasm. SR creates the CRUs (periphery
couplings) with the sarcolemma. (B) Translational phase (P6–P14). The cardiomyocyte has a more rectangular-like shape. Two nuclei are already
present in most of the cells. Short tubules are present coupled with myofibrils via costameres and longer tubules coupled with more mature myofibrils.
The SR creates the CRUs with this longitudinal tubule. The scaffold of cardiomyocytes is emphasized with a Z-line connected with titin filaments
surrounded by a developing network of microtubules and γ-actin. (C) Hypertrophic phase (P15–P21). The cardiomyocytes resembles the adults. The
myofibrils are almost the cell volume, although they are not fully laterally aligned. TATS creates a sparse and irregular network. CRUs are present at the
transversal and longitudinal elements of TATS. The transversal alignment of the tubules has started and is mediated by desmin. (D) Adult (>P21). The
cardiomyocyte has a rectangular shape; the proportions of the cellular components are schematic. The aligned mature myofibrils are interwoven with
the rows of mitochondria. The TATS has a prominent transversal orientation with well-developed CRUs (dyads). The scaffold of cardiomyocytes is
finished by the maturation of sarcomeres and lateral alignment of all myofibrils mediated by desmin.

in P10 mouse cardiomyocytes (Hirschy et al., 2006). At P14, mouse
cardiomyocytes are cylindrical, with well-developed cell-to-cell
connections and mature intercalary disks (Wilson et al., 2014). The
tubular system is present as irregular invaginations at this period.

The hypertrophic phase (>P14; Figure 2C) is marked by proper
structural assembly, resembling the adult condition (Hopkins et al.,
1973). Mitochondria with myofibrils are tightly assembled toward
P21 (Piquereau et al., 2010). Interestingly, a short but intense
proliferative burst of cardiomyocytes at P15 in the mouse left
ventricle (Naqvi et al., 2014) could point out more flexible postnatal
developmental processes, including myofibrillogenesis, following
heart output demands (Figure 2C).

Not only ultrastructural changes but also protein expression
changes and metabolic changes occur during this period

(Puente et al., 2014; Bartelds et al., 2000; Hoerter et al.,
1991; Vornanen, 1996), ultimately leading to the efficient E-C
coupling with fully assembled CRUs and optimally organized
TATS (Flucher and Franzini-Armstrong, 1996) in mature
cardiomyocytes (Figure 2D).

4 Development of the
transverse–axial tubular system

The TATS is developed later than other structures engaged in
E-C coupling; myofibrils and SR are detected during embryonic
development. TATS is observed for the first time after P7 in
ventricular cardiomyocytes of mice (Hamaguchi et al., 2013;
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Chen et al., 2013) and rats (Ziman et al., 2010; Mackova et al.,
2017), with no dependency on origin from right or left
ventricles (Chen et al., 2013).

In rodent ventricular cardiomyocytes, the development of a
tubular system occurs between P7 and P20 (Figure 2). At first, the
early tubules appear on P7 as small membrane bulks. On P9, tubules
are formed by small invaginations in the vicinity of the sarcolemma,
with approximately 2.0 µm length. On P11, tubules form not only
short invaginations but also several isolated longitudinal elements
(Figure 2B). Later, on P14–P16, tubules create a sparse irregular
network (Figure 2C) that reaches a higher degree of organization
after day P16 (Mackova et al., 2017; Ziman et al., 2010). The regular
organization of the tubular system, with prominent transversal
orientation and proper intertubular distance, appears after P20
(Han et al., 2013). Similarly to cardiomyocyte growth phases,
one can define phases of TATS development: i) early phase of
invagination (P7–P9); ii) transitional phase of irregular growth
from first longitudinal elements to the branched tubular system
(P10–P15); iii) phase of arrangement to the dominant transversal
orientation (≥P16); Figures 1, 2.

An important part of tubular system development is the
assembly of CRUs (Figure 3). At first, the periphery couplings are
formed by the close position of junctional SR and the sarcolemma
(Sun et al., 1995); their number increases, and their formation is
followed by the development of dyads (Franzini-Armstrong et al.,
2005). In the guinea pig heart, the periphery couplings shift
continually deeper into the cell core with tubule growth (Forbes and
Sperelakis, 1976). In general, the docking of junction membranes
was specified as the first step of CRU formation. At the time of
docking, the sarcolemma does not contain an efficient amount
of DHPR clusters, and the SR contains few RyR channels; these
are delivered later. The formation of CRU is completed with the
assembly of DHPR and RyR channels to target membranes as well
as with the assembly of complex RyR with calsequestrin, with
supporting molecules triadin and junctin in the SR (Franzini-
Armstrong et al., 2005). Interestingly, the membranes of the
sarcolemma and SR have the capacity to form junctions in the
absence ofDHPRs (Powell et al., 1996), andRyRs are not essential for
membrane junctions (Takeshima et al., 1995; Takekura et al., 1995).
Taken together, CRU formation is a very important part of tubule
development and functionality, although it is not essential for tubule
biogenesis and growth.

4.1 Tubulation of sarcolemma

Three possible mechanisms for tubule formation have been
proposed: formation of tubules by sarcolemmal invagination,
additions of membrane vesicles via continuous fusion, or initial
formation of the internal network, which later will be connected
to the sarcolemma (Flucher et al., 1993). Ferritin-based tracing
of the extracellular space revealed 72%–88% of ferritin-filled
tubule/caveolae profiles in P2–P3, which were well-observed in
P14 rat cardiomyocytes (Di Maio et al., 2007). The remaining
observed profiles were called immature dyads, formed by tandem
vesicles containing junctional RyRs and DHPRs but not connected
to the sarcolemma. Most tubules grow inward to the cell,
connected to the sarcolemma (Forbes and Sperelakis, 1976;

FIGURE 3
Scheme of a single sarcomere with proteins involved in tubulogenesis
and myofibrillogenesis. The connection between tubules and
sarcoplasmic reticulum, including the calcium release unit (CRU,
dyad), is visualized on the left side of the sarcomere. The connection
of a tubule to a Z-line, mediated by many different proteins, is depicted
on both tubules. During postnatal development, the expression of
these proteins varies according to the developmental stage.

Hirakow, 1970; Franzini-Armstrong, 1991; Hagopian and Nunez,
1972), with the minor addition of prearranged tandem vesicles of
DHPRs and RyRs (Di Maio et al., 2007).

The initial step is not yet understood despite several proposed
mechanisms of membrane curvature induction reviewed by
Zimmerberg andKozlov (2006).The protein superfamily containing
the BAR domain has recently received much attention. The BAR
domain is a crescent-shaped dimer that binds to the negatively
charged membrane (Peter et al., 2004). The scaffolding protein
amphiphysin2 (BIN1; Figure 3) contains the BAR domain and can
induce membrane curvature (Becalska et al., 2013). In Chinese
hamster ovary cells and myoblastic cell line C2H12, the extensive
tubular system was revealed with fluorescently tagged BIN1
(Lee et al., 2002). Expression of BIN1 induced short invaginations
in C2C12 myoblasts, whereas co-expression of myotubularin 1
(MTM1; Figure 3) with BIN1 led to longer tubules creating a
network (Royer et al., 2013). The BIN1 is important in the process
of tubulation, as is seen from the studies of BIN1-knockout
Drosophila skeletal myocytes (Razzaq et al., 2001) and mouse
cardiomyocytes (Hong et al., 2014), which showed disruption
of the tubular system. Moreover, it was proposed that BIN1
localizes DHPR in the tubule membrane structure and enables its
targeted delivery.

Targeted delivery of DHPR-containing vesicles throughout a
dynamic microtubule network, tethered with a BIN1 membrane
scaffold, was observed in non-myocyte HeLa and HL-1 cell lines
(Hong et al., 2010). A potential association of actin filaments
with the trafficking of DHPRs from the perinuclear area to the
tubular system was indicated in a study on cultivated adult atrial
cardiomyocytes (Leach et al., 2005). In human and mouse left-
ventricular cardiomyocytes, BIN1 colocalized with DHPR in the
typical transversal organization and created protective inner folds
of the membrane. The loss of the BIN1 scaffold in BIN1 knockout
mice was manifested by prolongation of the action potential and
increased probability of ventricular arrhythmia (Hong et al., 2014).
Overexpression of BIN1 in human embryonic stem cell-derived
cardiomyocytes showed induction of TATS growth with DHPR
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clustering along the tubules. With increased expression of BIN1, the
length and width of tubules also grew (De La Mata et al., 2019).

Lipid phosphatidylinositol-4,5-bisphosphate (PIP2) was
revealed as being responsible for the localization of BIN1 to
the sarcolemma. Damaged BIN1 organization was induced
in cardiomyocytes with heart failure without reduced protein
levels when PIP2 was not present to provide BIN1 membrane
insertion (Zhou et al., 2021). Interestingly, a recent study of
murine ventricular cardiomyocytes in P10 showed preceding
localization of BIN1 in a regular, transverse pattern along Z-
lines consistent with future positions where TATS will grow
(Perdreau-Dahl et al., 2023). The study also observed that in both
mouse cardiomyocytes and human iPSC-CMs, BIN1-dependent
tubulogenesis is regulated in opposing directions by MTM1 and
dynamin 2. A high level of MTM1 is essential for enabling BIN1
to induce the growth of TATS. Dynamin 2, in contrast, plays
an inhibitory role, explaining declining expression levels during
postnatal maturation. Thus, these three proteins jointly regulate
cardiomyocyte t-tubule growth (Perdreau-Dahl et al., 2023).

The hypothesis of budding caveolae (Razani et al., 2002)
was considered to be the possible developmental mechanism
observed in chick skeletal muscle in vitro (Ishikawa, 1968). The
observation agrees with the increasing amount of the major protein
of caveolae—caveolin 3 (CAV3; Figure 3) in the tubular membrane
during development (Parton et al., 1997). This observation can
be partially challenged by the function of caveolae to respond
to acute mechanical stress (Sinha et al., 2011). The caveolae
have a mechanoprotective role from rupture during cardiac
output (Cheng et al., 2015). The increasing CAV3 abundance
could be associated with increased mechanical stress and load
during development. Their engagement in tubule growth is
a matter of question, as the TATS was observed, despite its
disorganization, in CAV3 knockout mice skeletal myocytes
(Galbiati et al., 2001) and in human skeletal muscle cells with the
CAV3 gene mutation (Minetti et al., 2002).

Recently, novel structures that were termed caveolae rings,
formed by CAV3 and BIN1, were discovered in differentiated
primary murine and human skeletal myotubes. Caveolae rings
are formed on BIN1 scaffolds that create contact sites with
RyR1-positive SR cisternae, are enriched in DHPR, and act as
a platform for tubule formation. In addition, the BIN1-induced
membrane tubulation requires proper CAV3 function. This would
suggest that caveolae rings are the sites for tubule initiation and
elongation (Lemerle et al., 2023).

Another protein, dysferlin (DYSF; Figure 3), is suspected to have
a role in the elongation of tubules. Dysferlin is a transmembrane
protein localized on sarcolemma and the tubular membrane of
muscle cells (Klinge et al., 2010). Moreover, the interaction between
DPHRs, CAV3, and DYSF was shown by immunoprecipitation
(Ampong et al., 2005). The DYSF protein is a member of
the ferlin protein family. It possesses several C2-domains for
linking to phospholipids, which could facilitate vesicle fusion and
membrane repair (Cárdenas et al., 2016). While DYSF can induce
membrane tubulation, other ferlin proteins, like myoferlin, have
not. This suggests the unique role of DYSF within the ferlin family
(Hofhuis et al., 2017). Interestingly, DYSF is associated with the
development of the tubular system in neonatal skeletal myocytes
(Klinge et al., 2010) and in non-muscle cells (Hofhuis et al., 2017).

In a study of regenerated skeletal muscle in vivo, DYSF was
temporarily localized in the cytoplasm during the regenerating
phase. Otherwise, DYSF colocalized with DHPRs in tubules. The
tubules were dominantly longitudinally oriented 4 days after muscle
injury. By the seventh day, DHPR- and DYSF-labeled tubules
were both transversal and longitudinal. DYSF relocated to the
sarcolemma 10 days after injury (Klinge et al., 2010). As was
proposed before, DYSF could contribute to resealing the injured
sarcolemma (Bansal et al., 2003). DYSF-deficient skeletal muscle
had an abnormal tubular system with dilated lumen and irregular
or longitudinal orientation (Klinge et al., 2010). Moreover, DYSF is
associated with the prevention and stabilization of stress-induced
Ca2+ signaling in the tubular system (Kerr et al., 2013) and
decreases the damage of the tubular membrane by glycerol in
the skeletal muscle (Demonbreun et al., 2014). These observations
suggest an additional supportive role of DYSF protein.

The shifting of the newly formed tubular system to an
organized transversal orientation might also be mediated by other
protein interactions. One such protein is juncthophilin2 (JP2;
Figure 3), a protein that spans the membranes of the sarcolemma
and sarcoplasmic reticulum (Takeshima et al., 2000). On day
P10, JP2 colocalizes with the sarcolemma, and this distribution
changes during tubular system development. The diminishing
distribution of JP2 on the periphery and its simultaneously
increasing localization on tubules could be connected with the
process of dyad assembly (Ziman et al., 2010). The expression of JP2
is detectable during P4, with a nearly 4-fold increase of expression at
P8. In murine myocardium, the expression of JP2 reached the adult
level at P14 (Chen et al., 2013).

Late disorganization of the TATS, with dominant longitudinal
orientation, was described in JP2 knockout mice (Han et al.,
2013). Moreover, the JP2 deficiency caused a decrease in the
density of transversal tubules with no effect on the longitudinal
elements. JP2 probably has a secondary role in the tethering
of tubules to the cisternae of the sarcoplasmic reticulum, while
the longitudinal tubules seem to have JP2-independent regulation
(Chen et al., 2013). The role of JP2 in the anchorage of
tubules to SR and in the tubular organization was demonstrated
by a mouse model with overexpression of JP2 in the heart.
Whereas at P5, there was no difference in tubular organization,
the tubular growth in myocardium with overexpressed JP2 was
accelerated at P8 (Reynolds et al., 2013).

Apart from JP2, other proteins were shown to be engaged
in the process of transversal orientation of TATS. Royer et al.
(2013) suggested that MTM1 regulates transversal localization
of BIN1 during maturation. BIN1 lost clear transversal tubule
doublet localization in the skeletal muscle of Mtm1 knockout mice
(Royer et al., 2013). Junctin (Figure 3) is a membrane protein
that binds to RyR, calsequestrin, and triadin in junctional SR.
Overexpression of junctin in mouse cardiomyocytes leads to an
increased association of SRwith tubules in terms of both the number
of interactions and the size of the interacting area (Zhang et al.,
2001). Junctin could have a role in the deposition of tubules
in transversal orientation, which is supported by the significant
increase in the expression of junctin during the postnatal period in
rabbit myocardium (Wetzel et al., 2000). However, in the study of
P7 and P14 old mouse myocardium with overexpression of junctin,
calsequestrin, or both, detailed analysis of phenotypes revealed
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only a minor effect of junctin for docking tubular membrane to
junctional SR (Tijskens et al., 2003).

5 Longitudinal and irregular tubules in
adult cardiomyocyte

In rat adult left-ventricular cardiomyocytes, the tubular system
comprises approximately 3.6% of cellular volume. The prominent
organization of the tubular system has a transversal direction,
but tubules occurring also in close proximity to the Z-lines
have been observed (Soeller and Cannell, 1999), along with
less abundant longitudinal or oblique elements and branches
(Ogata and Araki, 1994). Some studies also mentioned oddly
shaped tubules during development: ampulla-like dilatation beneath
plasmalemma, oblique tubules with a rib-like profile, flattened
cisternae (Nakamura et al., 1986), or vesicular-like structures
(Dan et al., 2007). Recently, more tubular shapes were described
in a study of TATS sheep atrial cardiomyocytes recovered after
heart failure induced by fast ventricular pacing. Most transversally
oriented tubules were supplemented with longitudinal and more
branched tubules in recovered cardiomyocytes. Additionally, the
tubules with angled, stumped, cactus-like pairs, oak-tree-like, or
lattice shapes were described (Caldwell et al., 2024). The average
diameter of a tubule is 200–300 nm, with a high variability from
45 nm to 450 nm (Soeller and Cannell, 1999). The variability in
diameter can be explained by the unusual tubule shape or simply
by the local tubule position if it is located in a narrow space between
myofibrils or between a myofibril and mitochondria (Bennett et al.,
2016).The dilatation of tubules near dyadic junctions was described,
possibly due to regional specialization for the depletion of tubular
lumen (Wong et al., 2013). The tubules consist of extensive
microfolds. It has been proposed that these microfolds are formed
by the BIN1 protein (Hong and Shaw, 2017).

Whereas transversal tubules are engaged in spreading Ca2+

transients through dyads, the role of longitudinal or irregular tubules
inmature cardiomyocytes is blurred. Longitudinal tubules run along
the myofibrils and at least along one sarcomere (Wagner et al.,
2014; Sperelakis and Rubio, 1971). These tubules can also be at a
close distance to the nucleus, often bridging several neighboring
sarcomeres (Jayasinghe et al., 2010).Not every observed longitudinal
element is the result of branching of adjacent transversal tubules;
it could also be a single long sinuous tubule penetrating to the
cytoplasm (Pinali et al., 2013).

Longitudinal elements of the tubular system can have a different
role than the transversal elements. JP2 deficiency caused interrupted
maturation of transversal elements but had no effect on the density
of longitudinal elements, probably due to their distinct regulation
by JP2 (Chen et al., 2013). A study of frog skeletal muscle (Voigt and
Dauber, 2004) revealed longitudinal or tangled tubules in myofibril-
free cytoplasm near nuclei, Golgi apparatus, and mitochondria.
The involvement in the depletion of metabolic products has been
suggested as a distinct function of the tubular system, unrelated to
E-C coupling. On the other hand, it has been reported that action
potential propagates also through longitudinal elements in skeletal
muscle. It may be important in the reduction of possible action
potential failure (Posterino et al., 2000). The propagation velocity
of the action potential is approximately 25% slower in longitudinal

tubules than in the transversal (Edwards et al., 2012). Almost 75%
of longitudinal tubules created longitudinal junctions with adjacent
SR, having an average length of 510 nm and undistinguishable
structure from dyads on transversal tubules (Asghari et al., 2009).
These observations suggest that dyads on longitudinal tubules are
functionally involved in the process of E-C coupling (Das and
Hoshijima, 2013). The simulation of the effect of tubular orientation
on calcium transients revealed that the low density of transversal
tubules, with at least a few longitudinal tubules, ensures centripetal
wave propagation (Marchena and Echebarria, 2020).

The function of the tubular system with dominant axial
orientation is documented in rat atrial cardiomyocytes. If the tubular
system was present, it appeared as reticular, with a low degree
of organization and strong longitudinal orientation. Simultaneous
labeling of the sarcolemma and Ca2+ release showed two types
of Ca2+ transients. The presence of Ca2+ sparks was associated
with the localization of these longitudinal tubules, which was in
line with the distinct shapes of Ca2+ transients (Kirk et al., 2003).
Brandenburg et al. (2016) studied TATS in the murine heart using
super-resolution confocal microscopy and electron microscopy. The
central axial tubular structure, with remarkably large width and
surface area, exhibited high levels of DHPR clusters and extensive
SR junctions. Surprisingly, the observed onset of a Ca2+ transient
on central axial tubules was faster than on peripheral sites. The
authors also demonstrated that the proliferation of the tubular
system is an effect of atrial hypertrophy (Brandenburg et al., 2016).
The accelerated Ca2+ release from RyR2 clusters was associated with
their faster activation due to more abundant longitudinal tubules in
thicker atrial cardiomyocytes.

5.1 Tubules under pathological conditions

The longitudinal or disorganized elements of the tubular system
receive much more attention during pathological conditions. An
increased incidence of longitudinal tubules was observed in relation
to the loss of cross-striation and misalignment of myofibrils in
the denervated rat skeletal muscle (Takekura and Kasuga, 1999)
as well as in skeletal myocytes affected by congenital muscular
dystrophy (Miike et al., 1984). A remodeled tubular system was
observed in post-myocardial infarcted rabbit cardiomyocytes. In the
border zone of infarction, tubuleswere altered and created “t-sheets,”
with the structure dilated in the longitudinal direction and at the
same time connected to the sarcolemma (Seidel et al., 2017b). A
similar structure was described at the end stage of human heart
failure (Seidel et al., 2017a).The regional differences aftermyocardial
infarction (MI) in sheep hearts were observed: TATS were
fragmented, sparse, and irregular in the border zone of MI, whereas
in remote regions, TATS was slightly fragmented, not significantly
different from the control (Perera et al., 2022). Disease-related
structural abnormalities of TATS (Crocini et al., 2017) also include
a reduction in the number of tubular openings to the sarcolemma
(Lyon et al., 2009) or increased average diameter and length of
tubular elements (Ibrahim et al., 2012a; Wagner et al., 2012).

Importantly, disorganized TATS leads to pathological
functionality. Graded changes in mouse ventricles after aortic
constriction were connected with graded cellular hypertrophy,
TATS loss, decreased expression of JP2 and CAV3, and decreased
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L-type Ca2+ current density (Bryant et al., 2018). Loss of TATS
regularity and dyads during heart failure leads to the presence of
orphaned RyR2s and insufficient Ca2+ transients, which in turn
causes slower contraction and reduced cardiac force (Song et al.,
2006). The dyssynchronization of local Ca2+ release contributes to
the broadening and slowdown of the overall Ca2+ transient in heart
failure (Lyon et al., 2009). It has been suggested that the reliance of
Ca2+ release on TATS density even accelerates as TATS remodeling
increases during conditions of heart failure (Yamakawa et al., 2021).
It was also shown that in a rat model of post-ischemic heart failure,
some elements of disorganized TATS exhibit abnormal electrical
activity, which leads to failure of action potential propagation. These
failing tubular elements can fire local spontaneous depolarizations
without propagation to the whole TATS (Sacconi et al., 2012),
which can sometimes trigger local Ca2+ release as a possible new
arrhythmogenic phenomenon (Crocini et al., 2016a). Interestingly,
the tubules failing to propagate action potential represented a
significant proportion of all tubules and caused abnormalities of
Ca2+ transient even without overall TATS network changes in the
model of hypertrophic cardiomyopathy (Crocini et al., 2016b).
Recently, the loss of TATS structures during heart failure led to
a redistribution of L-type Ca2+ channels to the “sarcolemmal crests,”
which caused their hyperactivity and more frequent spontaneous
Ca2+ release (Medvedev et al., 2021; Sanchez-Alonso et al., 2016).

The development of dyadic structures remarkably resembles the
reverse process of dyad unpacking during heart failure, as discussed
by Lipsett et al. (2019). They stated that the resemblance is just
apparent; the developing tubular elements are functional shortly
after growing, whereas failing tubules and dyads are functionally
deficient in conditions of heart failure (Lipsett et al., 2019). As
was mentioned previously, irregularities of TATS were consistently
observed during cardiac development, with structural similarities of
TATS during various pathological conditions. It is not clear whether
the underlying mechanism is the same under developmental and
pathophysiological conditions, even though the “last in, first out”
paradigm of Lipsett and colleagues sounds appealing.

6 Structure follows function: Why
does TATS even exist?

The organization of the tubular system is directly connected
to the state and function of myocytes (Watson et al., 2016).
The rudimentary tubular system was described in rat atrial
cardiomyocytes (Bootman et al., 2006); however, several recent
studies observed a more abundant tubular system in murine
(Brandenburg et al., 2016) and rat (Frisk et al., 2014) atrias.
The variability of the atrial tubular system in rats was associated
with tissue variability: approximately 30% of atrial cardiomyocytes
possessed a tubular system, of which 10% was well-organized
(Frisk et al., 2014). In higher mammals, like sheep (Dibb et al.,
2009), atrial cardiomyocytes were observed to have a tubular system
with a prominent longitudinal orientation. The left ventricular
tubular system is tricky as well. Highly reticular patterns and 4-fold
higher tubular density were observed in rat and mouse ventricles,
whereas a simpler, beam-like tubular system was observed in
higher mammals such as humans or horses (Jayasinghe et al.,
2015). In amphibians (Galli et al., 2006) or birds (Jewett et al.,

1971), the TATS is not formed at all. High variability of the
tubular system within myocytes relates to the surface-to-volume
ratio, cardiomyocyte dimensions, myofibrillar content, and cardiac
frequency (Hirakow, 1970). The structure of the tubular system is
highly dynamic and able to react, change, and grow according to the
cell's needs (Ferrantini et al., 2013).

With the formation of the tubular system, Ca2+ transients
have faster kinetics in the central part of the cell, thanks to the
development of dyads (Tohse et al., 2004). The requirement for
tubule development could be associated with the increasing cell
diameter. The tubular system is not present in a cell with a smaller
diameter because the amount ofCa2+ influx through the sarcolemma
is sufficient for contraction (Bers, 2001). According to a model of
centripetal Ca2+ diffusion in cardiomyocytes, it is apparent that
the contribution of tubules to Ca2+ synchrony is more critical with
increased cell diameter (Gadeberg et al., 2016). The diameter of
cardiomyocytes is relatively constant in the first postnatal week,
with the increase in diameter observed after P11 (Mackova et al.,
2017; Vornanen, 1996). In the mammalian left ventricle, the tubules
start to grow when a critical cardiomyocyte diameter of ∼7 µm
is reached (Hirakow, 1970). Hence, every fiber of contractile
apparatus in myocardial ventricular myocytes has, in close distance
of up to ∼1 μm, either a longitudinal or a transversal tubule
(Sperelakis and Rubio, 1971). A strong relationship between cell
dimensions, Ca2+ signaling, myofibrillar content, and development
of the tubular system is apparent. More and more studies reveal
closemechanic relationships between “excitation apparatus (tubules,
SR)” and contractile apparatus (myofibrils) (Stanczyk et al., 2018;
Wilson et al., 2014; Bennett et al., 2016; Kostin et al., 1998).

The developmental processes are tightly coupled with increased
mechanical requirements. Sheldon et al. (1976) postulated the
idea of mutual development of TATS and myofibrils. The electron
microscopy scans of lamb left ventricles from different gestation
phases (90–110 days) showed clear physical attachment of tubules
with Z-lines during myofibrillogenesis. During the splitting and
branching of myofibril, the adherence of the tubule allowed it to
follow the Z-line, which induced the transversal growth of the
attached tubule. The axial growth of attached tubules was induced
by the occasional elongation of the myofibril (Sheldon et al., 1976).

7 Coupling of TATS and myofibrils

The tubules are attached to the myofibrils, as was observed
on electron microscopy images (Brook et al., 1983; Anversa et al.,
1981; Hirakow, 1970; Nassar et al., 1987; Sheldon et al., 1976).
There are many candidates for the connection of tubules and
myofibrils (Figure 3). We summarize the proteins that could be
involved in this process because their function, localization, or
expression profile correlates with tubule development.

7.1 Proteins of extracellular matrix and
costameric proteins

The tubular system has a basal lamina formed by proteins of
the extracellular matrix (ECM), mainly laminin and collagen. In
idiopathic dilated cardiomyopathy, the increased level of collagen
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type IV in the lumen of tubules caused their increasing diameter
(Crossman et al., 2017). The proteins of ECM are also assembled
during days P2-P20 in rat and hamster cardiomyocytes (Borg, 1982),
which is strongly correlated with TATS development.

The myofibrils are attached to the ECM (through sarcolemma)
by structures called costameres (Ervasti, 2003). Two major
protein complexes have been identified at costameres: the
dystrophin–glycoprotein complex (DGC) and the integrin-talin-
vinculin complex; see more in Peter et al. (2011). It was proposed
that costameric proteins are important for the mechanical stability
of the tubular system (Kostin et al., 1998).

Dystrophin is a subsarcolemmal protein (Figure 3) involved in
the mechanical stability of the membrane (Woolf et al., 2006). It is
present in the tubular system of human (Kaprielian et al., 2000),
sheep, and rabbit cardiomyocytes (Klietsch et al., 1993) and is
associated with the regulation of DHPR channels (Sadeghi et al.,
2002; Woolf et al., 2006; Koenig et al., 2013). Analysis of dystrophin
mRNA transcripts revealed distinct isoforms of protein in different
stages of development and in adulthood (Bies et al., 1992). The early
expression of dystrophin has an essential role in the assembling of
costameres during fetal development of skeletal and cardiac muscle
(Chevron et al., 1994).Thedistribution of dystrophin correlatedwith
the development of the tubular system in rabbit cardiomyocytes:
dystrophin was on the lateral sarcolemma at P4, when tubules were
absent, whereas, at P7, dystrophin was localized on short tubular
invaginations (Frank et al., 1994).

Recently, protein PTPN23 (tyrosine phosphatase, nonreceptor
type 23; Figure 3) was identified as a new dystrophin-associated
protein that could coordinate the formation of TATS and their
attachment to Z-lines (Xu et al., 2024). Immunostaining of CAV3
and JP2 confirmed postnatal patterning: a lack of colocalizationwith
PTPN23 in P5 cardiomyocytes, but PTPN23 partially overlapped
with CAV3 and JP2 at P10. The genetic deletion of PTPN23, α-
actinin, or dystrophin resulted in similar defects in TATS patterning.
In each model, tubules were enlarged, became less organized, and
were more longitudinally oriented. The hypothesis was proposed
that the recruitment of PTPN23 to Z-lines is required for the
assembly of the DGC complex and to anchor tubules to the
sarcomeres (Xu et al., 2024).

Dystroglycan is a transmembrane receptor linking the ECM
to the cell membrane (Figure 3), which is present together with
matriglycan within TATS (Klietsch et al., 1993). Recently, it has
been shown that mice with defects in glycosylation of dystroglycan
developed normal TATS but were susceptible to stress-induced
TATS loss. Similar stress-induced cardiac TATS disruption was
observed in a cohort of mice that solely lacked matriglycan. The
data indicate that dystroglycan in TATS anchors the luminal ECM
to the tubular membrane via the polysaccharide matriglycan, which
provides the TATS resistance to mechanical stress and prevents
disruptions in TATS integrity (Hord et al., 2024).

Spectrin is the main component of the membrane skeleton
(Figure 3), which permits withstanding very strong mechanical
stresses (Machnicka et al., 2014). Spectrins are flexible rods with
binding sites for F-actin at each end (Bennett and Healy, 2008).
Their βII isoform forms complexes with ankyrins and actins
(Derbala et al., 2017; Kee et al., 2009). In CRUs, spectrin is
one of the spanning molecules between the tubular membrane
and SR (Mohler et al., 2005). However, there was no difference

in DHPR localization or TATS structure in the βII spectrin
conditional KO mice (Smith et al., 2015). Postnatal localization
of spectrin in hamster cardiomyocytes changes continually: at P5,
immunolabeled spectrin was localized on the sarcolemma and
short invaginations, and it progressively moved transversally in the
striated pattern (Messina and Lemanski, 1991). In mice with dilated
cardiomyopathy, the elongation of myofibrils was observed at the
top of the intercalated disc folds. The spectrin-rich loops in this
area were enlarged and often associated with junctional SR vesicles,
which could be future CRUs on transversal tubules at the Z-line
after the insertion of a new sarcomere (Wilson et al., 2014). Spectrin
also facilitates the development of branched and dilated tubules after
osmotic shock in some cells (Herring et al., 2000), which supports
the role of spectrin in the development of the tubular system in
cardiomyocytes (Messina and Lemanski, 1991).

Vinculin is a 117-kDa membrane-associated protein that is
present as a key component of costameres and intercalated disks
(Tangney et al., 2013). Vinculin has a role in the attachment
of myofibrils to the sarcolemma and TATS (Pardo et al., 1983).
It is present in Z-lines in newborn hamster cardiomyocytes
(Osinska and Lemanski, 1989). Vinculin is associated with
DYSF (De Morrée et al., 2010), desmin (Osinska and Lemanski,
1989), and dystrophin (Kaprielian et al., 2000). Dystrophin and
vinculin together provide mechanical support for sarcolemma
(Tangney et al., 2013; Kaprielian et al., 2000).

Talin is a costameric protein (Figure 3) that predominantly
interacts with the actin cytoskeleton. Talin isoforms 1 and 2 are
required for the proper assembly of sarcomeres and myoblast fusion
during the development of skeletal muscle (Senetar et al., 2007).

7.2 Sarcomeric proteins

Tubules are connected to the sarcomeric proteins
(Furukawa et al., 2001; Liu et al., 2019). Sarcomeres are essential
for the regulation of the ultrastructural maturation of neighboring
organelles; however, it is unclear whether sarcomeres modulate
the signal transduction pathways involved in cardiomyocyte
maturation (Guo et al., 2021).

Protein α-actinin (ACTN2; Figure 3) is the main component
of Z-lines and serves to cross-link F-actin (Guo et al., 2021).
ACTN2-mutant cardiomyocytes showed less TATS content; the rest
of the tubules were disorganized and showed dramatic dilatation
of the tubular lumen. It was also revealed that ACTN2 regulates
signal transduction and transcription beyond its canonical role as
a structural protein (Guo et al., 2021).

Titin is a large, abundant protein that stabilizes the thick
filaments and prevents the overstretching of sarcomeres (Granzier
and Labeit, 2004). During contraction-relaxation cycles, titin
maintains the structural organization of the sarcomere, as well as
the organization of the SR and TATS (Granzier and Labeit, 2004).
Developmental changes in the expression and location of titin
were observed. In chicken skeletal muscle, the cross-striation of
titin was observed at E14, concomitantly with an accumulation of
SR cisternae near Z-line complexes where the first tubules appear
(Flucher et al., 1993). A switch from higher to lower molecular
mass titin isoformwas observed during P5-P12 in developing hearts
(Opitz et al., 2004). In mice suffering from dilated cardiomyopathy,
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the expression of higher molecular mass titin isoform resulted in a
reduction of sarcomeric passive stiffness (Makarenko et al., 2004).

The initiating process of tubule growth could be associated with
the maturation of Z-lines. Tcap (titin-cap, telethonin; Figure 3) is
a small protein located on the Z-line periphery that defines titin
borders and serves as a structural and anchoring center between
the M-line and Z-lines (Valle et al., 1997). Tcap assembles later
into Z-lines (Zhang et al., 2009). The level of Tcap expression
is increased in cardiac and skeletal muscles during development
(Mason et al., 1999). The interaction of Tcap with the tubular
membrane is mediated via a mink subunit of K+ channels
in cardiomyocytes (Furukawa et al., 2001). Tcap knockout in
zebrafish skeletal muscle (Zhang et al., 2009) and in mouse
cardiomyocytes (Ibrahim et al., 2012b) led to the development
of the tubular system with a weaker or absent transversal
organization. Ibrahim et al. (2012b) showed that Tcap interaction
with the tubular membrane is particularly important in load-
sensing. Under the condition of thoracic aortic constriction of
Tcap knockout mice, the orifices of tubules in cardiomyocytes were
damaged.

Obscurin is a Z-line protein that interacts with titin
(Borisov et al., 2004). In the skeletal muscle of obscurin-deficient
mice, the structure of longitudinal SR was damaged, and some
alterations were observed with associated SR ankyrins (Lange et al.,
2009). The docking, clustering, and lateral alignment of E-C
coupling machinery, especially SR cisternae, in precise positions
with newly formed myofibrils is mediated by obscurin. The delayed
incorporation of obscurin into myofibrils coincided with the lateral
fusion of newly formed myofibrils into large myofibrillar bundles
(Borisov et al., 2004; Borisov et al., 2008). Obscurin mediates
the interaction of longitudinal SR with the sarcomeric M-lines
via myomesin (Lange et al., 2009).

Nexilin (NEXN; Figure 3) is an actin filament-binding
protein that has been identified as a Z-line protein abundant
in striated muscles. Global loss of NEXN leads to severe
dilated cardiomyopathy, resulting in the death of all mice by
P8 (Aherrahrou et al., 2016). The global cardiomyocyte-specific
knockout of NEXN caused completely absent TATS in P10 even
though the TATS was present at P5 in control mice. The building
of periphery couplings between the sarcolemma and SR was
impaired at E18.5 in NEXN cardiomyocyte-specific knockout
of cardiomyocytes (Liu et al., 2019). However, it is not clear
if the development of TATS was only delayed or completely
abolished.

Myospryn (encoded by the cardiomyopathy-associated gene
5, CMYA5; Figure 3) is a recently described protein associated
with the establishment of CRU architecture and positioning.
The disorganization of TATS with the prevalence of longitudinal
elements, along with the altered position of SR proteins (RYR2s,
JP2s), was observed in CMYA5-knockout cardiomyocytes.
Interestingly, administering a low level of CMYA5 in a minority
of cardiomyocytes without impairing heart systolic function also
caused transversal tubule disorganization. In P7 cardiomyocytes,
RYR2 and CMYA5 were already colocalized in a striated pattern
corresponding to Z-lines. If CMYA5 was ablated, a disrupted Z-line
distribution of RYR2was observed, which further demonstrates that
CMYA5 is required for the positioning of RYR2 and jSR to Z-lines
preceding the formation of tubules (Lu et al., 2022).

7.3 Intermediate filaments

More connections between TATS and myofibrils can be found
among intermediate filaments.

The connection between the tubular system and Z-lines could
be mediated by desmin (Lazarides, 1980). Intermediate filaments
of desmin were described as 90 Å-wide, non-branched filaments,
which form bundles running perpendicularly to the longitudinal
axis of the myofibrils. These filaments seem to penetrate or encircle
the Z-discs and form dense patches on sarcolemma and transversal
tubules, penetrating the whole cytoplasm (Behrendt, 1977). An
incomplete assembly of intermediate filaments could be seen in
immature rabbit cardiomyocytes at P21, where the intermediate
filaments connect only peripheral myofibrils, whereas, in the adult
state, they cross the central mass and connect the opposite sides
of the cell (Nassar et al., 1987). The arrangement of desmin in P3
hamster cardiomyocytes has been detected in the area of Z-lines and
intercalated discs (Osinska and Lemanski, 1989). At P21, the desmin
appeared to merge with TATS in rabbit hearts (Nassar et al., 1987).
Desmin is concentrated in the periphery of Z-lines. It interlinks the
myofibrils with sarcolemma (Capetanaki et al., 1997). Desmin keeps
myofibrils in the register during cardiac hypertrophy (Watkins et al.,
1987). Severe disruptions were observed in desmin-deficient mice,
including loss of lateral alignment of myofibrils, damaged anchoring
to the sarcolemma, and abnormal mitochondrial organization
or nuclear position (Capetanaki et al., 1997). Desmin could
be a strong candidate for the transversal alignment of TATS,
as was proposed by Lazarides (1980). Thornell et al. (1997)
described a detailed ultrastructure of desmin-deficient mice hearts
in the early postnatal period (P5, P11) and 3–4 weeks; a dilated
tubular system was observed. Colocalization of desmin and
obscurin revealed (Borisov et al., 2004) initial lateral alignment
of obscurin with myofibrils, whereas desmin only created diffuse
filaments along the longitudinal axis.

Another intermediate filament, γ-actin (Figure 3), links
sarcomeres with DGC in costameres (Ervasti, 2003), and γ-actin
itself is connected to SR (Gokhin and Fowler, 2011). In a study
of neonatal cardiomyocytes in culture, the function of DHPR
channels was influenced by the assembly and disassembly of actin
filaments. The addition of a stabilization agent led to a massive
increase in Ca2+ current, whereas the addition of an agent for actin
filaments disruption caused its decrease (Lader et al., 1999). The
binding proteins α-actinin and dystrophin regulate the function
of DHPR channels on the tubular membrane in cardiomyocytes
(Sadeghi et al., 2002). The interaction of DHPRs on the tubular
membrane with the actin cytoskeleton is regulated by the protein
AHNAK in left ventricular cardiomyocytes (Hohaus et al., 2002).

7.4 Microtubules

Microtubules are non-sarcomeric filaments (Figure 3), oriented
mostly along the longitudinal axis and running between myofibrils
in cardiomyocytes (Watkins et al., 1987; Robison and Prosser, 2017).
The microtubules interact with the TATS and SR (Zhang et al.,
2014; Osseni et al., 2016). The microtubules grow from one Z-
line to another, and they increase their density near the place
where myofibrillogenesis and nuclei occur during hypertrophy
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(Watkins et al., 1987). The increase in microtubule density
caused tubular remodeling in mice with induced cardiomyopathy
(Zhang et al., 2014). Their relationship was revealed after the
addition of colchicine, a microtubule depolymerizer. Its addition
ameliorated the tubular remodeling. A similar response was
observed in cultured cardiomyocytes. The distribution of JP2
was disorganized in failing hearts, although JP2 distribution was
maintained if the colchicine was administered (Zhang et al., 2014).
The microtubules of rat cardiomyocytes are modified and become
stabilized during the postnatal period P2–P13 (Webster, 1997).
Microtubules could play a mechanistic role in TATS development
as stretch agents. A study by Meunier et al. (2009) on HeLa cells
observed the interaction of microtubules and BIN1 via a linker
protein. Overexpression of BIN1 caused the formation of tubules,
which were closely aligned with microtubules. A driving force in
tubulation induced by cholera toxins was mediated by molecular
motors of microtubules (Day et al., 2015). These observations
suggest that the interaction of microtubules with plasmalemmal
patches enhances or allows the formation of tubules. Similarly,
microtubules could have a role in tubulation mediated by DYSF
protein; see Section 4 (Azakir et al., 2010).

8 Hypothesis: irregularity of tubular
formation is a result of coupling to the
developing myofibrils

The present review and the most recent studies from iPSC and
EHTs prove an extensive relationship between the development
of contractile apparatus and TATS induced by mechanical and
electrical stimuli. The question is how this process is mediated. Our
hypothesis emphasizes TATS development coupled with ongoing
myofibrillogenesis (Figures 1, 4).

The ongoing myofibrillogenesis during postnatal myocardial
growth refers to the period when cardiomyocytes have an essential
number of myofibrils for cardiac work, but the contractile apparatus
needs to be enlarged to react to increased cardiac output.
Hypertrophy of cardiomyocytes in terms of the growth of myofibrils
is greatly influenced by the type of acting mechanical force. In the
case of diastolic strain, cardiomyocytes add sarcomeres in series, and
the cells are lengthened. In the case of cyclic strain from contraction,
myocytes add myofibrils in a parallel way, and the cells are widening
(Russell et al., 2010; Göktepe et al., 2010). Cardiac function is rapidly
changed in the postnatal heart with increasing contraction force as
well as increasing blood volume,which possibly leads to the dynamic
change of diastolic strain and systolic wall stress.

In brief, the model of myofibrillogenesis proposes de novo
myofibrillogenesis via the formation of premyofibrils to nascent
myofibrils to mature myofibrils (Liu et al., 2012; Rhee et al., 1994).
The assembly of premyofibrils is initiated either at the spreading ends
or at the lateral sides of muscle cells. Premyofibrils are composed of
small sarcomeres containing α-actinin-enriched Z-bodies attached
to F-actin-enriched thin filaments. Z-bodies in adjacent fibrils
align in nascent myofibrils, forming beaded Z-bodies that will
metamorphose into mature Z-lines. Titin and thick filaments are
first detected in the nascent myofibrils, whereas M-band proteins,
likemyomesin, are assembled later inmaturemyofibrils, presumably
to help with the lateral alignment of thick filaments side by side.

Tcap is another late-assembling protein, present only in mature Z-
lines (White et al., 2014).

The leading mediators of TATS development are most likely the
anchoring proteins between contractile apparatus and tubules, as
we declared before; see section 7. When the functional demands
rise with an increasing number of myofibrils shifting to the cell
center, the first membrane invaginations coupled with premyofibrils
are created. The assembly of mature contractile apparatus influences
the development of tubules and the change of growth pattern from
irregular into mostly transversal mode (Figure 4). The docking of
sarcolemma to the Z-lines and to existing myofibrils, mediated
by anchoring proteins, allows the growth of tubules into the cell
center. The new myofibrils are formed in the proximity of peripheral
sarcolemma, and the elongation of the tubules in the transversal
direction is led by the anchorage to the already existing myofibril,
which ismoving closer to the cell center.Moreover, with the addition
of new sarcomeres to the existing myofibril, the tubule growth also
proceeds in the longitudinal direction. A combination of elongation
of existing myofibrils with additions of new myofibrils might create
a sparse tubular network with low-level organization, observed in a
transitional phase of tubular network development.

The concomitant development of TATS, facilitated by ongoing
myofibrillogenesis, can be described by three phases:

i) the first contact of premyofibril and sarcolemma;
ii) lateral alignment of nascent myofibrils, the maturation of Z-

lines and sarcolemmal invaginations;
iii) lateral alignment of myofibrils in cell volume and final tubular

arrangement.

8.1 The first contact of premyofibril and
sarcolemma

Studies of rat and lamb heart development (Anversa et al., 1981;
Brook et al., 1983; Hopkins et al., 1973) reported that myofibrils
from earlier periods are sparse and show little organization, but
later, with advancing development, there is an increasing number
of myofibrils with well-defined striations. The myofibrils in rat
ventricular cardiomyocytes at P5 were generally narrow, loosely
distributed, and not well aligned with the longitudinal axis. The
peripheral assembly of myofibrils was well documented in hamster
cardiomyocytes at P5 (Messina and Lemanski, 1991). This state
is in line with the expectation that there are some present
myofibrils, but further postnatal myofibrillogenesis is ongoing.
Moreover, the myofibrillogenesis is ongoing rather by elongation
due to the addition of sarcomeres, while the number of myofibrils
does not increase rapidly, as was observed in the early postnatal
period (P0–P4) (Hirschy et al., 2006).

The initiation of adhesion site assembly for premyofibrils is
facilitated by costameric proteins (especially integrins vinculin and
talin).They also serve as nucleation sites for α-actinin accumulation,
causing the assembly of premyofibril-associated Z-bodies (Sparrow
and Schöck, 2009; Yang et al., 2015). Importantly, costameres are
present in the tubular system as well (Kostin et al., 1998). An
interesting phenomenon demonstrating the strength of structural
attachment is the scalloping of membrane, which is induced by
adhering sarcolemma with Z-lines, commonly featured in the
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FIGURE 4
The hypothesis of tubular growth coupled with ongoing myofibrillogenesis. (A) Scalloping of sarcolemma: the first contact of premyofibrils and
sarcolemma (P5–P7). The figure depicts the adhesion sites of the sarcolemma and the premyofibrils. For simplicity, one growing presarcomere of
premyofibril is constructed from several Z-bodies connected with F-actin. The presarcomere is finished with myosin filaments among actin filaments.
The environment of tubules is depicted differently in the left and the right tubules. The extracellular matrix (ECM) continues to both tubules. The left
tubule emphasizes the talin–vinculin costamere units coupling with the Z-bodies. The right tubule shows the protein environment participating in the
initial tubulogenesis as BIN1 assembled with PIP2 and CAV3 rings. The BIN1 can be pulled by microtubules. DHPR channels interacted with γ-actin
filament through protein AHNAK. (B) Lateral alignment of nascent myofibrils and maturation of Z-lines (P8-P10). The tubules now grow like small

(Continued)

Frontiers in Physiology 12 frontiersin.org

https://doi.org/10.3389/fphys.2025.1576133
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Sevcikova Tomaskova and Mackova 10.3389/fphys.2025.1576133

FIGURE 4 (Continued)
transversal sarcolemmal invaginations, closely attached to the mature Z-lines. The sarcomere is now more mature (depicted by the created M-line),
Z-bodies are transformed into Z-lines, and titin filaments are assembled, spanning across two Z-lines. The left tubule highlights the attachments with
sarcomere Z-line proteins, strengthened by DGC costameric units (dystroglycan, spectrin, and dystrophin) pulled by γ-actin. Protein PTPN23 and
nexilin improve the interaction of tubules with the Z-line. The right tubule shows the agents involved in tubulation (BIN1, dysferlin) with an emphasis
on the CRU formation on tubules, provided by the assembly of cisternae of SR (jSR) with RyR2 channels facing tubular DHPRs. The tubule-jSR cleft is
supported by the presence of myospryn. (C)Irregular growth of TATS (P11-P14). The image depicts the irregular growth of tubules by ongoing
myofibrillogenesis. Transversal growth is induced by subsarcolemmal growth of new nascent sarcomeres (in lighter shades of original colors, in
rectangles), whereas axial tubular growth is stimulated by the elongation of myofibril by the addition of sarcomere(s) in series. To simplify the image,
only costameres are depicted as anchoring sites of tubules and sarcomeric Z-lines. (D)Lateral alignment of sarcomeres in cell volume (P15-P21). The
left part (BEFORE) depicts the tubules and several sarcomeres before the final alignment, and the right part (AFTER) depicts the state of the final
alignment of cell compartments. Desmin filaments provide the transversal scaffold for the coupled alignment of tubules and Z-lines, whereas
microtubules support the axial alignment. The lateral alignment of myofibrils as the last stage of development is completed with Tcap assembly to
the titin end and obscurin assembly among adjacent Z-lines and M-line-longitudinal SR interface. CRU formation is finished with the assembly of JP2
with junctin. The right tubule depicts the elongation of tubules induced by MTM1.

myocardium of reptiles as well as mammals (Hirakow, 1970;
Chiesi et al., 1981). The attachment of protocostameres with
premyofibrils could also be a starting point for the anchoring
of the tubular system and its first invaginations. The membrane
curvature inducers such as BIN1 or CAV3 can aid in creating
the orifice of the first tubules, showing like scalloping of
the membrane (Figure 4A, P5–P7).

8.2 Lateral alignment of nascent myofibrils
and maturation of Z-lines

Cardiomyocytes from the left ventricle of the mouse increased
their width by lateral addition ofmyofibrils after P5 (Leu et al., 2001),
which agrees with proceeding differentiation. Nascent myofibrils
are displaced more to the interior, and the protocostameres mature
into costameres in subsarcolemmal myofibrils and inter-Z-line
bridges between internal myofibrils (Sparrow and Schöck, 2009).
The dimensional restrictions due to the large nucleus centrally
positioned in cardiomyocytes are slowly changing by binucleation
during P4–P12 (Li et al., 1996).The space restrictions could partially
explain the lateral addition of myofibrils and the increase in size, but
only in sarcolemmal proximity (Figure 2A). Approximately fromP9,
the first tubules are visible as short transversal invaginations of the
sarcolemma, which agrees with the ongoing maturation of Z-lines,
such as titin positioning (Flucher et al., 1993). The Z-line protein
nexilin also facilitates the connection between tubular invaginations
(Liu et al., 2019). The tubular invaginations are more pronounced
and reinforced by the presence of costameric proteins spectrin and
dystrophin (Figure 4B, P8-P10) (Frank et al., 1994; Messina and
Lemanski, 1991).

The transitional growth phase is marked by an outburst of
developmental processes. The functional demands are growing:
myofibrillogenesis is still ongoing. The M-line in sarcomeres
appeared later, at P11, but only in 60% of the viewed sarcomeres
(Anversa et al., 1981). During the transitional phase (at P10), the
development of sarcomeres was not synchronous in all myofibrils
of the cells, not even of adjacent sarcomeres of the same myofibril
(Hopkins et al., 1973; Anversa et al., 1981). The combined
development of mechanical force led to a dynamic model of
myofibrillogenesis (Yang et al., 2016). The study demonstrated the
dynamic addition of sarcomeres in live cells under stretch in a
3D culture of neonatal ventricular myocytes. Under longitudinal

stretch, the elongation was observed in the longitudinal direction,
but a lateral extension was also observed. The elongation consists of
sarcomeres addition at the end and/or the insertion of sarcomeres
in the middle of the existing myofibril. The formation of a
new myofibril, using an existing one as a template, occurred
during combined longitudinal and lateral stretches. The splitting
of myofibrils was predicted by the model under lateral stretch
(Yang et al., 2016). The acute rebuilding of sarcomeres and
myofibrils in cardiomyocytes was observed after 3 h under static
sustained stretch (Yang et al., 2016).

The question is whether the model is applicable also later
in the postnatal period. The elongation of cardiomyocytes
from the mouse's left ventricle was more pronounced after P12
(Leu et al., 2001). The attached tubules are probably pulled by
developing myofibrils. The elongation of myofibrils and adding
sarcomeres to the series of already-created myofibrils could explain
the longitudinal growth of tubules (Figure 2B, P11–P14). The
combination of ongoing maturation of subsarcomeric myofibrils
with elongation of myofibrils supports the observation of the
transitional phase of TATS development as an irregular network
of tubules. Dysferlin and myotubularin are present to aid the
elongation of tubules and the creation of networks. The formation
of internal CRUs and indirect coupling of TATS with cisternae
of SR around sarcomeres is further enabled by JP2 (Chen et al.,
2013) and myospryn (Lu et al., 2022). Myospryn is localized to
Z-lines and subsequently contributes to tethering cisternae of
SR adjacent to these structures. TATS is subsequently formed
close to cisternae, yielding organized, properly positioned dyads
(Lu et al., 2022) (Figure 4B, P8-P10).

8.3 Lateral alignment of myofibrils in cell
volume

One of the last assembled proteins during myofibrillogenesis
is Tcap, which is inserted into the mature Z-lines (Zhang et al.,
2009). Tcap in Z-lines facilitates the transversal organization of
TATS (Zhang et al., 2009; Ibrahim et al., 2012b). Zhang et al.
(2009) claimed that skeletal muscle movement facilitates the early
invaginations of tubules by sensing the stretching force during
twitch movement via Tcap. The expression of Tcap increased with
increasing stretch force.One can speculate that the impulse for TATS
development is then facilitated by increasing mechanical load and
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sensing it via lately assembled Tcap in the myofibrils, which are then
pulled from the subsarcolemmal space deeper to the cell center.

Fully formed mature myofibrils were centrally positioned in
the cell center, premyofibrils were closest to the cell periphery, and
nascent myofibrils were located between the premyofibrils and the
maturemyofibrils in chicken embryonic cardiomyocytes (Rhee et al.,
1994). The displacing of more mature myofibrils to the cell center
also includes the lateral alignment of mature myofibrils at the Z-
lines. The simultaneous lateral alignment of the sarcomeres was
observed in skeletal muscle, with the rearrangement of tubules to
the transversal orientation. Interestingly, locations with retained
misalignment of the striation in the adult skeletal muscle were
associated with longitudinal tubules (Franzini-Armstrong, 1991;
Takekura and Kasuga, 1999). Thus, the regularity of the tubular
system could be associated with the lateral alignment of myofibrils.
That could also be true in cardiomyocytes, where the last phase
of TATS development is marked by the alignment to pronounced
transversal orientation (Figure 4C). Intermediate desmin filaments
have the function of interlinking the adjacentmyofibrils and keeping
them in line together with the coupling of concurrent transverse
tubules, as was previously proposed (Lazarides, 1980). The M-
line protein obscurin is also involved in the lateral alignment of
myofibrils in the bundles (Lange et al., 2009).

8.4 Possible contradictions of the
hypothesis

Certainly, there are several contradictories of mutual
connection—some authors declare sarcomerogenesis is ongoing
near the polar ends of cells. Wilson et al. (2014) observed
hypertrophy in mouse ventricular cardiomyocytes from P14 to
maturity by electron microscopy. They proposed a model of
sarcomere addition at the end of the myofibril, where it is connected
to an intercalated disc. The tubule growth was given by the
interaction of created sarcolemma folds, SR, and spectrin. They gave
little hope for sarcomere addition elsewhere in cardiomyocytes.
These results are contradictory to previously mentioned studies
(Liu et al., 2012; Yang et al., 2016).

Perhaps the most recurring argument of our presented
hypothesis is a synchronous observation of developing E-C coupling
structures and myofibrillogenesis. Lainé et al. (2018) studied the
development of E-C coupling machinery and myofibrillogenesis
on iPSC-derived skeletal myocytes by electron and confocal
microscopy. They observed the fully matured myofibrils after 22
days of differentiation, whereas the E-C coupling machinery was
not placed. The question could be the maturation level of iPSC-
derived skeletal muscle cells and their Ca2+ signaling because
CRUs were atypically in the cell periphery and misaligned to
their usual position in the A-I region. Moreover, there was no
mechanical stimulation that could improve the overall iPSC
maturity. However, in the more recent works from iPSC cells
(Ronaldson-Bouchard et al., 2018; Godier-Furnémont et al., 2015),
it appears that mechanical stimulation is a key factor to induce the
growth of TATS. Moreover, the tubulation provided by curvature-
inducing agents like BIN1 can be independent, but the coupling
with other subcellular components, such as myofibrils, could

explain why TATS is an organized, well-oriented network with
determined density.

8.5 Research directions

The outlooks presented here might encourage mutual
experimental approaches in the development of myofibrils and
tubular systems. The development of the tubular system is not only
the assembly of functional coupling between ion channels of the
sarcolemma and sarcoplasmic reticulum but also a complicated
process involving induction of membrane curvatures, membrane
fusion and tubulation, protein trafficking, and docking ion
channels probably orchestrated by the cytoskeleton and other
proteins. The iPSCs crafted in mechanically stimulated engineered
heart tissues (Godier-Furnémont et al., 2015) could be labeled
with sarcolemma and TATS-sensitive dyes such as di-8-ANEPPS
or FM-143FX together with labeled structures of myofibrils (such as
RFP-tagged α-actinin, nexilin) by viral transfection and visualized
by light sheet fluorescencemicroscopy in time-dependentmanner to
observemutual development ofmyofibrils and TATS. A relationship
between themagnitude of stimulation andTATSorganizationwould
be interesting to analyze.

Another approach could involve the stretching conditions of
cardiomyocytes and dynamic sarcomere addition visualization, as
was observed by Yang et al. (2016), using cardiomyocytes with
present TATS such as iPSC-derived cardiomyocytes stimulated by
thyroid hormone and dexamethasone (Parikh et al., 2017). These
experiments might reveal whether the tubulation is independent
of myofibrillogenesis or whether the assembly of structural units is
coupled. Several models of myofibrillogenesis in embryonic state or
in vitro were proposed.Whether the proposed models are also valid
in the early postnatal period during the physiological hypertrophic
response needs further analysis.

The possible synchronized and mutual development of
structures to fulfill their physiological roles needs to be investigated
thoroughly to understand the process

9 Conclusion

In this review, we summarized the postnatal development
of the tubular system and contractile apparatus of cardiac cells.
Cardiomyocytes are terminally differentiated cells pumping blood
for the entire life of the organism. During the early period of life,
cardiomyocytes need to not only work but also build the mechanics
for future work. Each developmental process is usually observed
separately. As one of the last specialized structures, the tubular
system is developed in the post-partum period. While the tubular
system is regularly spaced in adult cardiomyocytes, during postnatal
growth, the tubular system is quite disorganized. A comparable
phenotype was also observed during pathological conditions or
in atrial cardiomyocytes. We summarize when and where these
irregular tubular systems were observed. Because of the function of
the tubular system in excitation and synchronization of Ca2+ waves
in whole cell volume to all myofibrils, we hypothesized that the
development of contractile apparatus—myofibrillogenesis—could
influence the development of the tubular system. We summarize
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several interesting interactions, like PTPN23 or nexilin, which could
be “the hot spots” in the development of TATS. Several authors
also discussed this idea, but the overall picture of developmental
processes has not yet been fully drawn.
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