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A predictive model for body
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Background: Body fluid volumes, including total body water (TBW), extracellular
fluid (ECF), and intracellular fluid (ICF), are crucial indicators of body
composition, and the distribution of these fluids is essential for assessing
hydration status and fluid accumulation. Although fluid volumes are commonly
measured with bioelectrical impedance devices, several challenges hinder the
application of this technique. However, 3D smartphone scanning applications
that automate body volumes and other anthropometric estimates may provide
a viable alternative to body fluid assessments.

Methods: A total of 338 participants underwent fluid volume assessments using
bioelectrical impedance spectroscopy (BIS) and collected body volumes and
anthropometric data using a 3D smartphone scanning application. Then, LASSO
regression was used to develop new TBW and ECF prediction model in a
subset of participants (n = 272), which was subsequently tested in the remaining
participants (n = 66). Smartphone-derived ICF was calculated as the difference
between smartphone-predicted TBW and ECF. Fluid overload and imbalance
were determined using ECF/TBW and ECF/ICF, respectively, and subsequently
predicted from the retained variables using receiver operating characteristic
curve analyses and logistic regression.

Results: Estimates from each of the newly-developed prediction models were
not significantly different from the estimates produced using BIS (all p ≥ 0.70)
and revealed acceptable agreement (TBW: R2 = 0.91, RMSE = 3.24 L; ECF: R2

= 0.94, RMSE = 1.10 L; ICF: R2 = 0.87, RMSE = 2.29 L) when evaluated in the
testing sample (n = 66), although proportional bias was observed (p < 0.001).
Smartphone-predicted fluid overload (AUC: 0.81 [95%CI: 0.70, 0.92]; sensitivity
+ specificity: 1.53 [95%CI: 1.39, 1.67]) and imbalance (AUC: 0.76 [95%CI: 0.64,
0.88]; sensitivity + specificity: 1.40 [95%CI: 1.24, 1.56]) demonstrated acceptable
diagnostic performance.

Conclusion: Smartphone scanning applications can accurately assess body
fluid volumes and imbalances, presenting new possibilities for health screening
beyond clinical environments.
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anthropometry, body composition, 3D, body fluid, water retention, fluid balance,
overhydration, edema

Frontiers in Physiology 01 frontiersin.org

https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1577049
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1577049&domain=pdf&date_stamp=2025-06-19
mailto:austin.graybeal@tcu.edu
mailto:austin.graybeal@tcu.edu
https://doi.org/10.3389/fphys.2025.1577049
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1577049/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1577049/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1577049/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Graybeal et al. 10.3389/fphys.2025.1577049

1 Introduction

Fluid balance assessments are a critical part of health screening
and monitoring, particularly for older adults or individuals
with developing cardiovascular, renal, or hepatic pathologies
(Roumelioti et al., 2018). For instance, older adults are more
prone to reduced kidney function and musculoskeletal atrophy,
and assessing fluid balance can provide valuable insights that may
help in preventing the onset of dehydration and malnutrition-
related complications (Powers et al., 2009; Tanigu et al., 2017).
For conditions such as heart failure and kidney and liver disease,
regular monitoring of fluid volume and distribution is crucial
in preventing complications like fluid overload and imbalance,
which may further aggravate such conditions (Hara et al., 2009;
Nongnuch et al., 2015; Hür et al., 2014; Accardi et al., 2021;
Horino et al., 2023; Kim et al., 2017). While the clinical utility
of these assessments is clear in specific populations, abnormal
body fluid may also be indicative of worsening conditions more
commonly encountered in the broader population, such as obesity
and hypertension, that often precede more serious health issues
(Roumelioti et al., 2018; Chang et al., 2016; Cianci et al., 2006).
Regular fluid balance assessments may also provide valuable
insights beyond specific pathologies, with practical applications in
sports science (e.g., performance optimization, prevention of heat-
related illness), general health monitoring, and thermoregulation
(e.g., body temperature regulation during extreme environmental
conditions).

While often used to estimate body composition parameters
such as body fat percentage or fat-free mass ([FFM] standalone
or within multi-compartment models), assessing fluid balance
typically involves the direct or indirect volumetric measurement
of total body water (TBW), which constitutes approximately
45%–60% of an individual’s body mass, and the distribution of
that fluid across the extracellular (ECF) and intracellular fluid
(ICF) compartments (Bhave and Neilson, 2011). Isotope dilution
methods offer the most direct measurement of TBW and its
distribution across cellular membranes, but the complexity of this
approach limits its utility outside of research settings (Chan et al.,
2008). Alternatively, non-invasive bioelectrical impedance analyses
(BIA) are more commonly used, as they have been shown to
provide accurate and reliable estimates that agree with dilution
techniques (Moon et al., 2009; Moon et al., 2008; Cataldi et al., 2022;
Tinsley et al., 2023; Martinoli et al., 2003). However, due to costs,
the need for additional equipment, and the rigorous pre-assessment
standardization requirements of BIA, the adoption of this technique
in routine care outside of more specialized practice remains limited.
Simple anthropometric measurements are often used to predict
TBW, though their oversimplified nature limits their precision and
their ability to distinguish between ECF and ICF levels, which are
crucial for evaluating fluid overload and imbalance (Chamney et al.,
2007). Therefore, there is a critical need for accessible, cost effective,
and user-friendly anthropometric tools that can accurately estimate
body fluid without requiring additional equipment.

Mobile digital anthropometrics, automated through three-
dimensional (3D) smartphone scanning applications, may offer a
potential solution. Initially used to generate 3D representations
and automate hundreds of body composition and anthropometric
estimates from 2D images, mobile digital anthropometrics are

continuously expanding their clinical utility. Recent studies
have demonstrated that the estimates produced by these
smartphone scanning applications can be used in clinical settings
to evaluate body image distortion and dissatisfaction (Braun-
Trocchio et al., 2023; Graybeal et al., 2023a), metabolic syndrome
(Medina Inojosa et al., 2024; Graybeal et al., 2024a), and, more
recently, bone mineral content (BMC) (Graybeal et al., 2024b).
Moreover, this technique has not only demonstrated validity against
multi-compartment body composition models (Graybeal et al.,
2022a; Graybeal et al., 2022b), but the body volume estimates
automated by these smartphone scanning applications have also
shown agreement with more invasive methods such as underwater
weighing (Fedewa et al., 2021), supporting their use as a valid non-
invasive proxy for body volume within multi-compartment models
(Sullivan et al., 2022). Given the well-established interplay between
body volume and fluid estimates (Nickerson et al., 2022), as well as
the surging clinical capabilities of this technique, 3D smartphone
anthropometry may be equipped to provide accurate estimates of
body water and fluid balance that improve upon the limitations
of existing methods. However, the ability of this technique to
provide such estimates is currently unknown. Therefore, this study
aimed to determine whether smartphone-derived body volume
measurements could be used to predict: 1) estimates of body
water and fluid distribution, and 2) fluid overload and imbalance
classifications. We hypothesized that the smartphone-based body
fluid prediction models would accurately estimate TBW, ECF,
and ICF, and effectively distinguish fluid overload and imbalance
classifications with acceptable accuracy.

2 Materials and methods

2.1 Participants

A total of 338 male and female (148 M, 190 F) participants
between the ages of 18 and 60 (age: 23.8 ± 8.2 yrs; BMI: 26.0 ±
5.8 kg/m2) were prospectively recruited and completed this cross-
sectional evaluation. Participantswere excluded if theywere younger
than 18 or older than 60 years; were missing any limbs or part
of a limb; had a pacemaker or any other electrical implant; had
a substantial amount of internal metal such as a metal plate or a
complete joint replacement; were diagnosed with renal, liver, or
cardiovascular disease; or if they were pregnant, breastfeeding or
lactating. All procedures were conducted in accordance with the
Declaration of Helsinki and were approved by the University of
Southern Mississippi Institutional Review Board (IRB#22-1012/23-
0446). Written informed consent was obtained from all subjects
prior to participation.

2.2 Procedures

Participants arrived at the laboratory for testing after
a minimum 8-h overnight fast from food, beverage, and
supplements/medications, and after abstaining from exercise
for at least 24-h. Upon arrival, participants were instructed to
remove any external metal or accessories (e.g., jewelry, shoes,
watches, etc.) and to wear only tight, form-fitting athletic
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clothing (females: compression shorts/tights and a sports bra;
males: compression shorts/tights only) before undergoing
testing. Once all pre-assessment requirements were confirmed,
participants underwent several anthropometric measurements,
including height via stadiometer, weight using a calibrated scale,
automated anthropometrics using a 3D body scanning smartphone
application, and body fluid estimates using bioelectrical impedance
spectroscopy (BIS).

2.3 Bioelectrical impedance spectroscopy

A comprehensive description of the BIS methods used in
this study have been presented elsewhere (Graybeal et al., 2024c;
Graybeal et al., 2023b; Brandner et al., 2022; Vallecillo-Bustos et al.,
2024). Accordingly, the following section is presented as a summary,
with specific aspects of this evaluation discussed in greater
detail. A tetrapolar, hand-to-foot BIS device (SFB7; ImpediMed® ,
Carlsbad, CA) was used to measure body composition (body
fat %, fat mass, FFM) and TBW, as well as the ICF and ECF.
Importantly, body composition and fluid estimates produced by
BIS have well-demonstrated agreement with criterion estimates
such as dual-energy X-ray absorptiometry (DXA) and deuterium
dilution, respectively (Moon et al., 2009; Moon et al., 2008;
Cataldi et al., 2022; Tinsley et al., 2023; Martinoli et al., 2003;
Esco et al., 2019; Earthman et al., 2007).

Prior to testing, participants were instructed to lie supine with
their hands flat and to spread their hands and feet away from
their body for at least 5 min to ensure the even distribution of
body fluids. Then, an investigator placed adhesive electrodes at four
distinct sites (Vallecillo-Bustos et al., 2024; Tinsley et al., 2022).
The first proximal electrode was positioned on the participant’s
posterior wrist, midway between the radial and ulnar processes.
The second proximal electrode was placed on the participant’s
anterior ankle, midway between the medial and lateral malleoli
of the tibia and fibula. The two remaining distal electrodes were
positioned approximately 5 cm below their corresponding proximal
electrodes (Vallecillo-Bustos et al., 2024; Tinsley et al., 2022). After
all electrodes were secured, a single measurement was performed
and immediately assessed for quality by a trained investigator via
visual inspection of Cole plots.

Quality assurance assessments were conducted each morning
prior to testing using the manufacturer provided test-cell, and
all testing was performed at a standard frequency of 50 kHz
using the default sex and body density, proportion, and hydration
coefficients suggested by the manufacturer (Moon et al., 2008).
To simulate a level of standardization most likely to be employed
outside of a research setting, participants were not required
to void their bladder, and hydration status was not confirmed
using urine specific gravity or an eight-point color chart
(Graybeal et al., 2020) prior to testing. Instead, participants were
simply instructed to remain hydrated leading up to the start of
their overnight fast, as both bladder fluid volume and hydration
status have shown to have minimal effect on BIA assessments when
compared to standardization techniques (Ferri-Morales et al., 2024;
Randhawa et al., 2021; Ritz and Source Study, 2001) that control for
each component.

2.4 Smartphone 3D body scanning
application

The procedures for obtaining automated anthropometric
estimates using a 3D smartphone body scanning application, along
with its precision and agreement with criterion body composition
techniques, have been described in detail elsewhere (Graybeal et al.,
2024b; Graybeal et al., 2022a; Graybeal et al., 2022b; Graybeal et al.,
2022c; Graybeal et al., 2023c; Graybeal et al., 2024d; Tinsley et al.,
2024). In summary, a 3D smartphone body scanning application
(MeThreeSixty® , Size Stream LLC, Cary, NC, USA) was used to
automate digital anthropometric estimates. Although this method
can automate hundreds of anthropometric estimates through
advanced digital imaging and machine learning techniques, we
chose to use only the raw estimates for appendicular limb lengths
and total and segmental body volumes for our analysis based on
their well-established relationships with body fluid measurements
(Nickerson et al., 2022; Nishimura et al., 2020). Furthermore, body
shape and adiposity indices were calculated from our automated
anthropometrics (described in Section 2.5) and used for analysis.

For testing, participants removed all external metal and
accessories, wore only tight-fitting athletic clothing, and tied their
hair up so that it was above their shoulder line. After entering
the participant’s age, sex, height, and weight into the application,
the smartphone was placed in a stationary tripod in a position
confirmed by application’s internal quality assurance protocols.
Participants were then instructed to stand on a foot guide positioned
in front of a neutral-colored (grey) background at a standardized
distance from the smartphone. Once positioned, a single image
was captured using the smartphone’s front-facing camera while
the participant performed two distinct poses, resulting in two 2D
images that were subsequently used to generate the 3D avatar. For
the first pose, participants faced the smartphone while automated
verbal prompts instructed them towiden their feet and laterally raise
their arms. For the second pose, participants turned to the side so
that their shoulder faced the smartphone while automated verbal
prompts instructed them to look forward, bring their feet together,
and fully extend their arms with their hands flat against their lateral
thighs. All images were collected in a room without external light
(i.e., windows).

2.5 Model development

The methods used to develop the prediction models have
been described in detail in prior publications and are summarized
hereafter (Graybeal et al., 2024b). Least absolute shrinkage and
selection operator (LASSO) regression procedures were employed to
develop prediction equations for TBW and ECF using demographic
and smartphone-generated anthropometric predictor variables
(18 total predictors). Demographic predictor variables included
age (yrs), height (cm), weight (kg), sex (male/female), race
(White/Black/Asian), and ethnicity (Hispanic/non-Hispanic).
Anthropometric predictor variables included lengths (cm) of the
arms and outer legs, and volumes (cm3) of the whole-body, arms,
legs, torso, and busts. To produce single estimates for analysis, right
and left limb lengths were averaged, and right and left volumes of
the arms, legs, and busts were summed. Additionally, a body shape
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TABLE 1 Descriptive characteristics of the combined, training, and
testing samples.

Combined
sample

Training
sample

Testing
sample

N 338 272 66

Sex (F/M) 190/148 152/120 38/28

Race (W/B/A) 158/109/71 124/88/60 34/21/11

Ethnicity
(H/NH)

16/322 11/261 5/61

Age (y) 23.8 ± 8.2 23.7 ± 8.1 24.3 ± 8.5

Height (cm) 169.0 ± 74.6 168.7 ± 9.7 170.0 ± 9.4

Weight (kg) 74.6 ± 19.9 74.8 ± 20.5 73.9 ± 17.4

BMI (kg/m2) 26.0 ± 5.8 26.1 ± 5.9 25.4 ± 5.1

Body fat (%)a 29.4 ± 8.5 29.5 ± 8.5 28.9 ± 8.7

Fat mass (kg)a 22.4 ± 11.0 22.6 ± 11.4 21.6 ± 9.3

Fat-free mass
(kg)a

52.2 ± 12.9 52.2 ± 12.9 52.2 ± 12.9

TBW (L)a 38.3 ± 9.40 38.3 ± 9.4 38.2 ± 9.4

Predicted TBW
(L)b

- - 38.2 ± 7.4

ECF (L)a 16.0 ± 3.9 16.0 ± 4.0 15.9 ± 3.9

Predicted ECF
(L)b

- - 16.0 ± 3.2

ICF (L)a 22.3 ± 5.60 22.3 ± 5.6 22.3 ± 5.7

Predicted ICF
(L)b

- - 22.3 ± 4.2

ECF/TBWa 0.42 ± 0.02 0.42 ± 0.02 0.42 ± 0.02

Predicted
ECF/TBWb

- - 0.42 ± 0.01

ECF/ICFa 0.72 ± 0.06 0.72 ± 0.07 0.72 ± 0.06

Predicted
ECF/ICFb

- - 0.72 ± 0.03

Overhydration
ECF/TBW

a
115 (34.0%) 93 (34.2%) 22 (33.3%)

Predicted
Overhydration
ECF/TBW

b

- - 31 (47.0%)

Excess Fluid
ECF/ICF

a
83 (24.6%) 66 (24.3%) 17 (25.8%)

Predicted Excess
Fluid ECF/ICF

b
- - 27 (40.9%)

(Continued on the following page)

TABLE 1 (Continued) Descriptive characteristics of the combined,
training, and testing samples.

Combined
sample

Training
sample

Testing
sample

Arm length (cm) 58.3 ± 3.6 58.2 ± 3.7 58.7 ± 3.2

Outer leg length
(cm)

102.9 ± 5.4 102.7 ± 5.5 103.5 ± 5.3

Body volume
(cm3)

72,689 ± 21,142 72,578 ± 21,763 72,407 ± 18,512

Arm volume
(cm3)

7,848 ± 2,513 7,836 ± 2,542 7,900 ± 2,410

Leg volume
(cm3)

18,880 ± 4,748 18,841 ± 4,905 19,040 ± 4,063

Torso volume
(cm3)

45,882 ± 14,563 46,000 ± 15,017 45,395 ± 12,613

Bust volume
(cm3)

773 ± 476 768 ± 488 796 ± 426

TLV (cm3) 2.41 ± 0.31 2.43 ± 0.31 2.37 ± 0.28

ABSI 0.79 ± 0.06 0.79 ± 0.06 0.79 ± 0.05

ATI 2.88 ± 0.15 2.87 ± 0.15 2.91 ± 0.14

Data are presented as mean ± standard deviation, N, or N (percent of the column total).
Appendicular and bust volumes were calculated as the sum of the right and left sides. For
ATI, all variables were collected using smartphone-derived measurements.
aestimates produced using bioelectrical impedance spectroscopy.
bestimates produced using the new smartphone prediction model in the testing sample.
F: female; M: male; W: white; B: black; H: hispanic; NH: non-Hispanic; BMI: body mass
index; TBW: total body water; ECF: extracellular fluid; ICF: intracellular fluid; TLV:
trunk-to-leg volume; ABSI: a body shape index; ATI: appendage-to-trunk
circumference index.

index (ABSI) (Krakauer and Krakauer, 2012) and an appendage-to-
trunk circumference index (ATI) (Harty et al., 2020) were included
and calculated using the following equations:

ABSI = waistcircumference
BMI2/3 × height1/2

ATI =
Lupperarm+Rupperarm+ Lthigh+Rthigh+ Lcalf+Rcalf

stomachcircumference

where all estimates represent smartphone-derived circumference
(cm) estimates other than BMI (kg/m2) and height. Trunk-to-
leg volume (TLV), which has also shown to be indicative of
chronic disease (Bennett et al., 2024), was also included and
calculated as the smartphone-derived trunk volume divided by the
summed leg volume.

To formulate and cross-validate the new TBW and ECF
prediction equations, a training dataset comprising 80% of the
sample (n = 272) and a testing dataset consisting of the remaining
20% (n = 66) were generated using random sampling techniques
(The R Project, 2024). The descriptive characteristics of the training
and testing samples, as well as the combined sample (n = 338)
are presented in Table 1. Using the 10-fold cross-validation and
one SE rule (McCarthy et al., 2023) to identify the optimal λ
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value, LASSO regression was applied to fit models in the training
dataset. This method works by identifying the predictor variables
that reduce prediction error while simultaneously shrinking the
coefficients of unnecessary variables towards zero, effectively
omitting the variables from the model (McCarthy et al., 2023;
Friedman et al., 2010; Tibshirani, 1996). This approach aims to
produce the most parsimonious model, in addition to minimizing
both multicollinearity and model overfitting. After the TBW
and ECF prediction models were formulated using the training
sample, the models were applied to the testing sample to
predict each variable. Notably, smartphone-predicted ICF was
calculated as the difference between the smartphone-predicted
TBW and ECF estimates in the testing sample. Similar to recent
investigations (Haynes et al., 2024), ICF was calculated (as opposed
to predicted) to ensure that the summation of smartphone-derived
ECF and ICF were equivalent with smartphone-predicted TBW.

2.6 Statistical analyses

The smartphone-predicted body fluid estimates were evaluated
against those produced by the criterion BIS in the testing
sample using various agreement analyses, including null hypothesis
significance tests, equivalence tests, coefficients of determination
(R2), root mean squared error (RMSE), standard error of the
estimate (SEE), concordance correlation coefficients (CCC), and
Bland-Altman and Deming regression analyses. For equivalence
testing, equivalence regions were defined as ±1.0 L for TBW using
two-sided TOST tests (Dixon et al., 2018). Given that ECF and ICF
constitute approximately 40% and 60% of TBW, respectively, ECF
equivalence regions were defined as ±0.40 L, and ICF equivalence
regions were defined as ±0.60 L (Bhave and Neilson, 2011). The
95% limits of agreement (LOA) were determined using Bland-
Altman analyses, and linear regression techniques were used to
evaluate proportional bias. Agreement between the smartphone-
predicted body fluid estimates and the line-of-identity fromDeming
regression was confirmed if the 95% confidence intervals for the
intercept and slope contained the values 0 and 1, respectively.
Mean difference (MD) between methods was calculated as the
smartphone-predicted body fluid estimates minus the estimates
produced by BIS (reference method).

Considering the significant clinical implications of assessing
fluid overload and imbalance in the context of cardiovascular, renal,
and hepatic abnormalities (Hara et al., 2009; Nongnuch et al.,
2015; Accardi et al., 2021; Horino et al., 2023; Kim et al., 2017;
Park et al., 2018), we also evaluated the ability of the retained
smartphone variables to accurately predict fluid overload and
imbalance classifications in the testing sample. Using the estimates
produced by BIS, fluid overload was classified as having an
ECF/TBW ≥0.43, and fluid imbalance was classified as having
an ECF/ICF ≥0.76. Notably, these cutoffs correspond to the 75th
percentile values for these measurements in our training sample,
and align with previously reported values (Chamney et al., 2007). A
receiver operating characteristic (ROC) curve analysis was used to
identify the optimal cutoff values for both ECF/TBW (cutoff: ≥0.30)
and ECF/ICF (cutoff: ≥0.25), defined as the point at which the sum
of the sensitivity and specificity was maximized (Park et al., 2018).
Then, the ability of the retained smartphone variables to accurately

predict fluid overload and imbalance classifications was evaluated
using binomial logistic regression. Although the final TBW and
ECF prediction models retained different variables (see Section 3),
all predictor variables from both models were included in each
logistic regression analysis, as both ECF/TBW and ECF/ICF are
predicted using the outputs of each smartphone prediction model.
Specifically, calculating the smartphone-derived ECF/TBW ratio
requires the use of bothmodels. Similarly, determining the ECF/ICF
also necessitates both models, as ICF is derived from the difference
between smartphone-predicted TBW and ECF. The positive and
negative proportions of the smartphone-predicted fluid overload
and imbalancewere compared to the proportions determined by BIS
using the ROC area under the curve (AUC), chi-square tests with
corrections for continuity, R2

McFadden, and sensitivity, specificity,
accuracy, and positive (LR+) and negative (LR-) likelihood ratios.
Acceptable accuracy of the smartphone-predicted classifications
were defined as having an AUC ≥0.70 (Mandrekar, 2010) or having
a summed sensitivity and specificity of ≥1.50 (Power et al., 2013).

3 Results

The coefficients of the variables retained in both the TBW
and ECF models are presented in Supplementary Table S1. For
TBW, the retained variables included sex, race (Asian), height,
weight, arm volume, ABSI, and TLV, which produced following
prediction model:

Totalbodywater (L) = 1.9547+ 2.3819( female = 0;male = 1)

− 1.0516(0 = non‐Asian;1 = Asian)

+ 0.1714(height) + 0.2243(weight)

+ 0.0004(armvolume) − 18.9566(ABSI)

+ 0.5808(trunk‐to‐legvolume)

For ECF, retention of the variables age, sex, height, weight, arm
volume, and ABSI resulted in the following model:
Extracellular fluid (L) = − 5.9009+ 0.0007(age) + 1.9928

( female = 0;male = 1)

+ 0.0832(height) + 0.1057(weight)

+ 0.00005(armvolume) − 1.7374(ABSI)

All variance inflation factors and tolerance statistics were ≤5.77
and ≥0.173, respectively, when evaluated in the training sample.

Figures 1A–F shows linear regression and equivalence tests
demonstrating the agreement between the TBW, ECF, and
ICF estimates produced by the smartphone prediction model
and those measured using BIS, while Figures 2A–F presents
the agreement between each method using Bland-Altman
and Deming regression analyses. All body fluid estimates
produced using the smartphone application (TBWMD: 0.048;
ECFMD: 0.053; ICFMD: 0.006) demonstrated equivalence with BIS
(Figures 1B,D,F; all TOST 90%CI: p ≤ 0.020) and null hypothesis
significance tests revealed no significant differences between
methods (Figures 2A,C,E; all p ≥ 0.701). R2 (0.87-0.94), CCC
(0.89-0.97), RMSE (1.10-3.24 L), and SEE (0.27-0.97 L) values
revealed excellent agreement between methods (Figures 1A,C,E),
though proportional biases (Figures 2A,C,E; all p < 0.001),
moderate-to-large 95% LOA (Figures 2A,C,E; TBW: ±6.41 L; ECF:
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FIGURE 1
(A-F). Simple regression (A,C,E), and equivalence plots (B,D,F) demonstrating the agreement between smartphone-predicted and BIS TBW, ECF, and
ICF in the testing sample (n = 66). For the simple regression plots, the solid blue line and its corresponding shaded area represents the regression line
and its 95%CI, respectively. For the equivalence plots, the average MDs and TOST 90%CIs are presented, where the colored regions represent the TOST
CIs displayed in the CI legend, the black circles and intersecting horizontal lines represent the MD and the TOST 90%CIs, respectively, and the vertical
dashed lines indicate the equivalence regions. BIS: bioelectrical impedance spectroscopy; CCC: concordance correlation coefficient; CI: confidence
interval; ECF: extracellular fluid; ICF: intracellular fluid; MD: mean difference calculated as the smartphone-predicted fluid estimate minus the actual
estimate produced by BIS; R2: coefficient of determination; RMSE: root mean square error; SEE: standard error of the estimate; TBW: total body water;
TOST: values from the TOSTER package in R.

±2.18 L; ICF: ±4.52 L) and differences from the line-of-identity
were observed (Figures 2B,D,F).

Figures 3A,B illustrates the accuracy of detecting fluid overload
and imbalance using the retained smartphone predictor variables.
The smartphone prediction models revealed a prevalence of 47.0%
(n = 31) for overhydration and 40.9% (n = 27) for fluid excess,
overestimating the 33.3% (n = 22) and 25.8% (n = 17) prevalence
determined by BIS, respectively. While chi-square tests were
significant for both fluid overload (χ2: 14.1, p < 0.001) and imbalance
(χ2: 6.8, p = 0.009), both model AUCs (overload [95%CI]: 0.81
[0.70, 0.92]; imbalance [95%CI]: 0.76 [0.64, 0.88]) exceeded the
0.70 threshold, indicating acceptable model performance. Although
the diagnostic accuracies of smartphone-predicted fluid overload
(Figure 3A; 74%) and imbalance (Figure 3B; 70%) were similar, only
smartphone-predicted fluid overloadmet the threshold for summed
sensitivity and specificity of 1.50 (Figures 3A,B; overload [95%CI]:
1.53 [1.39, 1.67]; imbalance [95%CI]: 1.40 [1.24, 1.56]).

4 Discussion

BIA is becoming increasingly popular in clinical settings. This
is particularly true for raw bioelectrical impedance parameters,
which are used to monitor shifts in cellular health in many chronic
disease states (Mattiello et al., 2020). However, recent findings
indicate that raw impedance information may having conflicting
associations with chronic disease risk factors (Graybeal et al.,
2024c; Oliveira et al., 2022; Bučan Nenadić et al., 2022), resulting
in a lack of clinical confidence in these measurements. Given
the inconsistent findings for the expanded use of BIA, traditional
body fluid and distribution estimates remain crucial for tracking

the dynamic fluid shifts that mirror many chronic diseases.
However, there are inherent barriers to the widespread use of BIA
(discussed in Section 1.). To address the concerns with existing
methods, our study aimed to determine whether the automated
anthropometrics produced by a smartphone scanning application
could be adapted to provide accurate predictions of body water
and fluid distribution, as well as distinguish more clinically relevant
measures such as fluid overload and imbalance. This is the first
study, to our knowledge, to demonstrate that all body fluid
estimates predicted by a newly-developed smartphone prediction
model showed excellent agreement with those produced by BIS
and revealed acceptable accuracy in classifying fluid overload and
imbalance. This advancement further expands the utility of this
technique, addressing the critical need for mobile and remote health
assessment options in modern healthcare systems.

Body volumes obtained from smartphone scanning applications
have previously shown to be a reliable body volume replacement
method for underwater weighing and DXA, and have demonstrated
acceptable accuracy when applied to multicompartment models
(Fedewa et al., 2021; Sullivan et al., 2022). Given that BIS
produces volumetric fluid estimates, and considering the overlap
between body volume (shown to be accurately assessed using
smartphone anthropometry) and body water, it is unsurprising that
this smartphone scanning application exhibited excellent accuracy
in predicting body fluid. Since ECF and ICF are encapsulated
in total body water (TBW) estimates, often within a narrow
range, it is also unsurprising that the fluid compartment estimates
derived from smartphone-based body volumes showed excellent
agreement. With the addition of our newly-developed TBW
prediction model, smartphone scanning applications can now
accurately quantify multicompartment body composition estimates
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FIGURE 2
(A-F). Bland-Altman (A,C,E) and Deming regression (B,D,F) plots demonstrating the agreement between smartphone-predicted and BIS TBW, ECF, and
ICF in the testing sample (n = 66). For the Bland-Altman plots, the upper and lower dashed lines represent the 95% LOA, the middle-dashed line
represents the MD (bias) between the smartphone-predicted fluid estimate and the measurement produced by BIS, and the solid blue line represents
the regression line. The shaded areas within each Bland-Altman plot represent the 95%CI for each intersecting dashed line. For the Demming
regression plots, the solid black line represents the line of identity and the red dashed line represents the regression line. β: proportional bias
coefficient; BIS: bioelectrical impedance spectroscopy; CI: confidence interval; ECF: extracellular fluid; ICF: intracellular fluid; LOA: 95% limits of
agreement; MD: mean difference calculated as the smartphone-predicted fluid estimate minus the actual estimate produced by BIS; TBW: total body
water. ∗statistically significant at p < 0.050.

(Graybeal et al., 2022a; Harty et al., 2020), as well as each
major body composition compartment independently (TBW, BMC,
FM, body volume). Given the continual advancement of mobile
anthropometry, the increasing preference for mobile health tools,
and the joint and standalone relevance of these measurements in
both research and clinical practice, mobile applications may soon
be integrated into routine and remote health screening procedures.

Though smartphone-derived body volumes were our primary
variables of interest, other variables were retained that are worthy
of further discussion. Notably, our final models included indices
of ABSI, which estimates WC relative to body stature, and TLV,
which represents the volume of the torso relative to the summed
volume of the legs. Interestingly, ABSI (Dhana et al., 2016) and TLV
(Wilson et al., 2013) have shown to be positively and negatively
associated with fat mass (FM) and FFM, respectively—associations
often used to indicate sarcopenic obesity. Given that the largest
proportion of FFM consists of ICF, which overlaps with skeletal
muscle mass (Serra-Prat et al., 2019), it is unsurprising that greater
ABSI resulted in lower TBWconcentrations in our study. Supporting
these findings, ABSI has previously been retained in smartphone
BMC prediction models, where higher ABSI resulted in lower BMC
estimates (Graybeal et al., 2024b). The skeletal muscle and bone
reflect a singular system (i.e., musculoskeletal) (Battafarano et al.,
2020), where forces exerted by the muscle are required to effectively
remodel the bone (Graybeal et al., 2024b). Therefore, if higher ABSI
indicates lower FFM, its consistent inclusion in models predicting

variables highly related to skeletal muscle is expected. Our findings
for TLV contradicted these results, as greater TLV resulted in
greater TBW. When combined with arm volume, TLV accounts for
the volumes of each major body segment, potentially providing a
more mathematically parsimonious model for predicting whole-
body estimates such as TBW. However, unlike ABSI, TLV was not
retained in the ECF model. This may be because TLV does not
adequately represent ECF, often used to indicate fluid retention and
disease risk, in a younger, healthier sample like our own, which is at
a lower risk of developing discernible lower-leg edema. Importantly,
ABSI and TLV serve as indirect indicators of body composition and
require careful consideration when used for clinical inference.

Predicting rawbody fluid estimates froma smartphone scanning
application has broad applicability and improves clinical flexibility,
but these continuous estimates may provide little value as a
prognosticator of disease risk when clinical decision-making most
often relies on discrete diagnostic cutoffs. Therefore, our finding
that smartphone anthropometrics could accurately identify fluid
overload and imbalance classifications may have several clinical
implications. For instance, BIA is not typically implemented during
routine care outside of specialized healthcare settings or fitness
facilities and requires frequent assessments (sometimes within a
single day) that present additional constraints for both patients
and staff. Due to the limited alternative assessment methods, early-
stage fluid imbalances often go undiagnosed, leading to disease
progression that eventually necessitates more rigorous testing.
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FIGURE 3
(A, B). ROC curves and corresponding AUCs demonstrating the ability of the predictor variables retained during LASSO regression to predict fluid
overload (A) and imbalance (B) in the testing sample (n = 66). Fluid overload was classified as having an ECF/TBW ≥0.43, and fluid imbalance was
classified as having an ECF/ICF ≥0.76, which correspond to the 75th percentile values for these measurements in our training sample. Using the
measurements produced by BIS, an ROC curve identified the optimal cutoff values, defined as the point at which the sum of the sensitivity and
specificity was maximized, for both ECF/TBW (cutoff: ≥0.30) and ECF/ICF (cutoff: ≥0.25). Positive and negative cases are presented for both
smartphone-predicted and BIS fluid overload and imbalance, as well as the AUC (acceptable performance = ≥0.70) sensitivity, specificity, joint
sensitivity and specificity (acceptable performance = ≥1.50), and accuracy of the smartphone-predicted fluid estimates. 95%CI: 95% confidence
intervals; AUC: area under the curve; BIS: bioelectrical impedance spectroscopy; ECF: extracellular fluid; ICF: intracellular fluid; LASSO: least absolute
shrinkage and selection operator; ROC: receiver-operating characteristic; TBW: total body water.

Given the simplicity of our newly-developed smartphone scanning
model, this technique could be easily implemented as an early
screening tool at point-of-care, with the potential to better inform
preventative measures before disease progression or the need for
more comprehensive cardiorenal and hepatic health assessments.
Moreover, the remote capability of this technique increases the
ease of continual monitoring, eliminating the need for frequent or
prolonged office visits that are often burdensome for both patients
and practitioners. However, while the performance of our models
was adequate, the minor discrepancies between methods warrants
consideration when employed as a screening tool or when used in
clinical decision-making. At present, further follow-up testing is still
recommended.

There are a few notable limitations of this study that warrant
discussion. Swim caps, which are often recommended duringwhole-
body volume assessments, were not worn during the smartphone
scanning assessments.However, this likely represents the assessment
attire that would be used in practice and does not impact
the segmental volume estimates that were retained in our final
prediction models. Our study sample was primarily young and
apparently healthy, limiting our ability to generalize findings tomore

clinical populations at the greatest risk of cardiovascular, renal, or
hepatic diseases.However, the aimof our studywas to provide proof-
of-concept for the ability of this smartphone scanning application
to evaluate body fluids and imbalances. Including individuals
with known diseases experiencing more dynamic day-to-day fluid
shifts or undergoing treatments (including the use of prescription
medication to manipulate body fluids) may have inhibited our
ability to provide such evidence. It should be noted that, at present,
smartphone-based assessments cannot be extrapolated to older or
more clinical populations without further validation and should
be used as a screening tool that informs further testing. Those
at the greatest risk of cardiovascular, kidney, or renal disease
should undergo more thorough testing provided by a healthcare
professional until further evaluation of this technique confirms its
diagnostic ability (Graybeal et al., 2024b). We did not perform
repeated scans for BIS nor the smartphone scanning application, so
we are unable to demonstrate the repeatability of either technique.
However, BIS (Brandner et al., 2022; Siedler et al., 2023; Looney et al.,
2024) and the smartphone application (Graybeal et al., 2022b;
Graybeal et al., 2023c; Smith et al., 2022) have well-established
precision and reliability. Proportional biases and LOA were large,
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potentially limiting clinical applicability; however, large limits of
agreement and proportional biases are common due to systemic
differences between methodologies. So, while these biases do not
completely invalidate this technique, users should interpret results
with caution. Although stringent model development techniques
that limit multicollinearity were performed, it is possible that this
model performs differently in alternate samples due to its specificity
to the developmental population. Therefore, while we cannot
guarantee its performance in external groups that significantly
differ from our training sample, we showed excellent performance
of the model during cross-validation (and low multicollinearity),
which should improve confidence in its application. Finally,
anthropometrics collected by various smartphone applications may
differ from those used in our study and should not be used
interchangeably within our newly-developed prediction model.

In conclusion, this study demonstrated that that all body
fluid estimates produced by our smartphone prediction model
showed excellent agreement with those predicted by BIS and
revealed acceptable accuracy when classifying cutoffs for fluid
overload and imbalance. Given the expansion of this technique,
smartphone body scanning applications demonstrate promise as a
clinically meaningful body fluid assessment tool that addresses the
growing need for mobile and remote health assessments. As digital
anthropometry continues to advance, there may soon be a time
when this automated method replaces the need for highly-trained
technicians/specialists and larger, more sophisticated equipment
for anthropometric evaluation in routine healthcare. Although
our models demonstrated excellent agreement, further research in
external samples is required before broad implementation. Because
the findings of our study are preliminary, they should not be used
to guide clinical decisions, and those choosing to employ these
models should do so with caution until future research can confirm
our findings.
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