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Diabetic wounds present a significant healthcare challenge due to impaired
healing mechanisms, with dermal fibroblasts playing a crucial role in
tissue repair. This study investigates the role of transient receptor potential
canonical-3 (TRPC3) in the dysfunction of diabetic fibroblasts and explores
the therapeutic potential of TRPC3 inhibition. Findings reveal that TRPC3
expression is significantly elevated in diabetic dermal fibroblasts, which
correlates with suppressed transforming growth factor-beta (TGF-β) signaling
and impaired differentiation into myofibroblasts. Inhibiting TRPC3 effectively
restores fibroblast functionality by upregulating TGF-β1 and its downstream
effector, SMAD4. This restoration enhances the expression of key myofibroblast
markers, such as α-smooth muscle actin (ACTA2) and type I collagen (COL1a1),
which are essential for wound contraction and extracellular matrix remodeling.
These results establish TRPC3 as a critical regulator of fibroblast activity and
present TRPC3 inhibition as a promising therapeutic strategy for improving
wound healing in diabetic patients.
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Introduction

The skin, the largest organ in the body, serves as a protective barrier to vital
internal structures, regulates temperature and proprioception, and importantly plays a
crucial role in the immune, nervous, and endocrine systems (Dąbrowska et al., 2018).
To maintain these vital functions, wound healing must occur in a timely and organized
manner (Wilkinson and Hardman, 2020). When this process is disrupted, chronic wounds
can develop, disproportionately affecting those with chronic diseases such as diabetes
mellitus (Sen, 2021). In people with diabetes, chronic hyperglycemia contributes to the
formation of non-healing wounds through mechanisms such as peripheral neuropathy,
increased susceptibility to infection, impaired microcirculation, delayed re-epithelization,
and prolonged inflammation (Burgess et al., 2021; Shakya et al., 2015; Tsourdi et al.,
2013). These chronic wounds place a significant burden on healthcare systems worldwide
(Ong et al., 2023), increasing hospitalization, medical costs (Nussbaum et al., 2018), and
the risk of severe complications such as limb amputation (Gandhi et al., 2020), while
profoundly diminishing patients’ quality of life (Olsson et al., 2019). Despite the incomplete
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understanding of the pathogenesis of diabetic wounds, it is crucial to
investigate potential pathways implicated in these wounds in order
to develop therapeutic targets that address the underlying causes.

Normal wound healing is a well-coordinated process
involving distinct phases: hemostasis, inflammation, re-
epithelialization, and remodeling. These phases are orchestrated
by the dynamic interplay of extracellular matrix (ECM)
components, growth factors, and cytokines (Rodrigues et al.,
2019). However, in diabetic skin, this process is disrupted,
particularly during the inflammatory phase, due to an
imbalance in pro-inflammatory and anti-inflammatory cytokines
(Silveira et al., 2024). This dysregulated inflammatory
response, driven by oxidative stress, impairs the transition
of fibroblasts to myofibroblasts, a critical step for effective
wound healing (Silveira et al., 2024).

Additionally, chronic inflammation in diabetes mellitus,
mediated by increased macrophage polarization, is also implicated
in poor wound healing (Wu et al., 2022).

Myofibroblasts are key in normal wound repair as they stimulate
wound contraction, ECM remodeling, and collagen deposition
(Wan et al., 2021). Impaired myofibroblast transdifferentiation,
therefore, results in poor wound healing (Cutolo et al., 2020;
Darby et al., 2014). This transition is primarily mediated by
transforming growth factor-beta (TGF-β) (Frangogiannis NG,
2020) which induces the expression of COL1a1, the most abundant
collagen in a wound matrix (Liu et al., 2012). As well, TGF-β
activates the transcription factors Smad2/3 and Smad4 which
translocate to the nucleus and regulate the gene expression
profile of the myofibroblast phenotype, including alpha-smooth
muscle actin (αSMA) (Evans et al., 2003). αSMA integrates
into actin stress fibers and enhances the contractile capability
of myofibroblasts.

One potential regulator of TGF-β is the transcellular calcium
channel transient receptor potential canonical-3 (TRPC3). Elevated
TRPC3 expression has been associated with decreased expression of
TGF-β (He et al., 2019). TRPC3 is thought to play a role in various
human pathologies, including cancer, cardiac arrhythmias, and
scar formation due to the mediation of inflammatory regulation
and cellular proliferation (Li et al., 2023; Tiapko and Groschner,
2018). TRPC3-mediated inflammation occurs via Reactive Oxygen
Species (ROS) and nuclear factor kappa beta (NF-kβ) (Yan et al.,
2024). Prior studies have demonstrated that TRPC3 has higher
expression in dermal fibroblasts following injury, via activation of
NF-kβ and leading to maladaptive healing thought to be secondary
to prolonged inflammation (Kitajima et al., 2016; Yan et al.,
2024). Given TRPC3’s role in the regulation of TGF-β and
inflammation, it is an interesting candidate to be further
investigated in the role of fibroblast to myofibroblast transition in
diabetic wounds.

We hypothesize that increased expression of TRPC3 in
diabetic (Db) dermal fibroblasts results in inhibition of TGF-
β thereby impairing the fibroblast to myofibroblast transition.
This impaired transition may underlie the development of
chronic wounds in diabetes mellitus. Understanding the role
of TRPC3 in this process may lead to the identification of
novel therapeutic targets for improved wound healing in
diabetic patients.

Results

TRPC3 expression in Db dermal fibroblasts

We first examined the expression of TRPC3 in Db dermal
fibroblasts using quantitative real-time PCR (qRT-PCR) and found
that TRPC3 mRNA levels were significantly upregulated compared
to non-diabetic (non-Db) control fibroblasts (Figure 1A). This
suggests that TRPC3 expression is elevated in the diabetic wound
environment, potentially influencing fibroblast function.

To assess myofibroblast differentiation, we analyzed the
expression of ACTA2 (αSMA), a well-established marker of
myofibroblast differentiation, using qualitative Real-Time PCR
(qRT-PCR). qRT-PCR results showed that ACTA2 mRNA levels
were significantly lower in Db fibroblasts compared to non-
Db controls (Figure 1B). This data supports the notion that Db
fibroblasts exhibit impaired myofibroblast differentiation under
basal conditions.

TGF-β induces myofibroblast
differentiation in Db dermal fibroblasts

To further assess ACTA2 expression, immunostaining with
anti-αSMA was performed to visualize protein localization in the
cells. As shown in Figure 2A left, Db dermal fibroblasts exhibited
lower fluorescence intensity compared to non-Db fibroblasts,
indicating reduced αSMA expression. The fluorescence intensity
of αSMA staining was quantified using ImageJ, revealing a
significantly reduced signal in Db dermal fibroblasts compared
to controls (Figure 2B, n = 10 cells).

To determine whether Db fibroblasts retain the capacity for
myofibroblast differentiation, both non-Db and Db fibroblasts
were treated with TGF-β1. Following treatment, αSMA staining
was detected in both groups, confirming their differentiation
into myofibroblasts (Figure 2A middle). Treatment with TGF-β1
markedly increased αSMAfluorescence inDb fibroblasts (Figure 2B,
n = 10 cells). In addition to αSMA staining, TGF-β1 treatment
significantly increased the expression of key myofibroblast marker
genes, including ACTA2 (Figure 3A), COL1a1 (Figure 3B), and
VIM (vimentin, a cytoskeletal protein often associated with cells
undergoing differentiation) (Figure 3C). These markers serve as
critical indicators of myofibroblast differentiation, reinforcing that
Db fibroblasts retain the potential to differentiate in response
to TGF-β1 stimulation. Thus, despite their diabetic origin, Db
fibroblasts remain responsive to external pro-differentiation
signals, activating myofibroblast-specific pathways when
exposed to TGF-β1.

TRPC3 inhibition promotes myofibroblast
differentiation

To test whether TRPC3 inhibition affects myofibroblast
differentiation, we identified a suitable blocker, Pyr3, the most
common TRPC3 inhibitor. Pyr3 has metabolic instability and
off-target toxicity (Kiyonaka et al., 2009). We optimized the
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FIGURE 1
TRPC3 and ACTA2 Expression in Diabetic and Non-Diabetic Dermal Fibroblasts. (A) QRT-PCR analysis of TRPC3 gene expression in non-Db and Db
dermal fibroblast (mean ± SD, n = 4 per group). (B) QRT-PCR analysis of ACTA2 gene expression in non-Db and Db dermal fibroblast (mean ± SD, n = 4
per group).∗∗P < 0.01.

FIGURE 2
Immunohistochemical Staining with α-Smooth Muscle Actin (αSMA) in Dermal Fibroblasts. (A) Left: non-Db vs. Db fibroblast with treatment; Middle:
non-Db vs. Db fibroblast treated with 10 ng/mL TGF-β1; Right: non-Db vs. Db fibroblast treated with 1 μM SZ-2-141. (n = 4 per group). (B) Flourence
intensity measured and analyzed by ImageJ (n = 10 per group).
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FIGURE 3
Effects of TGF-β1 Treatment on Fibroblast to Myofibroblast Transition. Dermal fibroblasts were treated with 10 ng/mL TGF-β1 for 24 h, then analysis for
genes expression. The gene expression levels of ACTA2 (A), COL1a1 (B) and VIM (C) were determined by qRT-PCR in TGF-β1treated fibroblast or
non-treated fibroblasts (mean ± SD, n = 4 per group).∗∗P < 0.01.

chemical structure of Pyr3, developing JW-65 and later SZ-2-
141, a safer, metabolically stable TRPC3 inhibitor with high
selectivity (Wang et al., 2025). Interestingly, when Db dermal
fibroblasts were treated with a TRPC3 inhibitor, SZ-2-141,
we observed a marked increase in αSMA staining, similar to
the effects seen with TGF-β1 treatment (Figure 2A right) and
confirmed by fluorescence intensity analysis (Figure 2B). Evenmore
notably, TRPC3 inhibition by SZ-2-141 resulted in a significant
upregulation of key myofibroblast marker genes, including ACTA2,
COL1a1, and VIM (Figures 4A–C). These findings suggest that the
inhibition of TRPC3 not only mimics the effects of TGF-β1 but also
actively promotes myofibroblast differentiation in Db fibroblasts.
Thus, in addition to external pro-differentiation signals like TGF-
β1, blocking TRPC3 can serve as a potent driver of themyofibroblast
phenotype in diabetic fibroblasts.

TRPC3 inhibition upregulates TGF-β1 and
SMAD4 expression

To further explore the mechanism by which TRPC3 inhibition
enhances myofibroblast differentiation, we examined the expression
of key components of the TGF-β/Smad signaling pathway.
Treatment of Db dermal fibroblasts with the TRPC3-selective
inhibitor SZ-2-141 significantly increased the mRNA expression
levels of TGF-β1 and SMAD4 (Figures 5A,B). At protein level,
Western blot analysis revealed elevated TRPC3 protein expression
and reduced αSMA levels in untreated Db fibroblasts (Figure 6A),
aligning with the gene expression patterns shown in Figure 1.
Notably, treatment with SZ-2-141 led to a marked decrease in

TRPC3 protein levels and a concurrent increase in αSMA, TGF-
β1, and SMAD4 protein expression in Db fibroblasts (Figure 6A).
These results indicate that TRPC3 inhibition enhances the activation
of the TGF-β/SMAD4 signaling pathway, which subsequently drives
myofibroblast differentiation. Figure 6B provides a mechanistic
illustration of these findings. The right panel demonstrates that
in diabetic fibroblasts treated with the TRPC3 inhibitor SZ-2-
141, there is an increase in TGF-β signaling, leading to enhanced
myofibroblast differentiation. In contrast, the left panel depicts
the diabetic condition, where TRPC3 is upregulated, potentially
contributing to the suppression of TGF-β signaling and the impaired
differentiation of myofibroblasts.

Materials and methods

Dermal fibroblast isolation and culture

Primary dermal fibroblasts were isolated from the skin of
17-week-old non-Db and diabetic (Db/Db) mice. They were
cultured in full medium comprisingDulbecco’smodified eagle high-
glucose (DMEM) (Sigma-Aldrich, St. Louis, MO, United States)
supplemented with 10% fetal bovine serum (FBS; Gibco, MA,
United States) and maintained at 37°C in a humidified atmosphere
containing 5% CO2. For further experiments, cells were seeded
in 6 - well plates or 8 -well chamber slide and cultured for
12 h. Thereafter, cells were starved for 16 h and were stimulated
with 10 ng/mL TGF-β1 (PeproTech, Rocky Hill, NJ, United States)
or 1 μM SZ-2-141, provided by Dr. Wei Li, TRPC3 selective
inhibitor for 24 h.
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FIGURE 4
Effects of SZ-2-141 Treatment on Fibroblast to Myofibroblast Transition. Dermal fibroblasts were treated with 1 μM SZ-2-141 for 24 h, then analysis for
genes expression. The gene expression level of ACTA2 (A), COL1a1 (B) and VIM (C) were determined by qRT-PCR in SZ-2-141 treated fibroblast or
non-treated fibroblasts (mean ± SD, n = 4 per group).∗∗P < 0.01.

FIGURE 5
SZ-2-141 Treatment on TGF Signaling Pathway. Dermal fibroblasts were treated with 1 μM SZ-2-141 for 24 h, then analysis for genes expression. The
gene expression level of TGF-β1 (A) and SMAD4 (B) were determined by qRT-PCR in SZ-2- 141 treated fibroblast or non-treated fibroblasts (mean ± SD,
n = 4 per group).∗∗P < 0.01.
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FIGURE 6
SZ-2-141 Treatment Modulates TGF Signaling Pathway at Protein Level in Dermal Fibroblast. (A) Western blot analysis revealed the differential
expression of TRPC3, αSMA, TGF-β1 and SMAD4 in non-Db (nd), and diabetic (db) dermal fibroblast and the effects of SZ-2-141 treatment on their
expression (mean ± SD, n = 4 per group,∗P < 0.05,∗∗P < 0.01). (B) Cartoon illustration of possible mechanisms of TRPC3/TGF-β signaling in diabetic
dermal fibroblast.

Immunocytochemistry

Db and non-Db dermal fibroblasts were cultured on 8-well
chamber slide treated with or without TGF-β1 or SZ-2-141. Twenty-
four hours later, cells were fixed with 4% paraformaldehyde for
15 min then permeabilized with 0.1% Triton X-100 in PBS. After
washing with PBS, cells were preincubated in blocking solution (1%
bovine serum albumin, BSA) in Phosphate-Buffered Saline with
0.05% Tween 20(PBST) for 1 h at room temperature) and incubated
with primary mouse antibody against αSMA (ab5694, Abcam,
Waltham,MA,United States) over-night. After rinsing with PBS, the

cells were incubatedwith a second anti-mouse antibody labeledwith
Alexa 488 (Abcam) for 1 h. Nuclei were stained with 4,6-diamidino-
2- phenolindole (DAPI) dihydrochloride. Fluorescence images were
captured by an Olympus microscope (Westborough, MA, United
States) and analyzed.

Real-time quantitative PCR

TRIzol reagent (Invitrogen, Carlsbad, CA, United States) was
used according to the manufacturer’s protocol to extract total
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RNA. RNA was converted to cDNA using SuperScript First-Strand
Synthesis System (Invitrogen). GAPDH housekeeping gene was
used to achieve internal normalization. Genes expression of TRPC3,
ACTA2, COL1a1, TGF-β1, SMAD4, VIM were analyzed by qRT-
PCR. Samples (n = 4 per group) were amplified in triplicate and
averaged for each sample. DDCTmethod was used to calculate gene
expression.

Western blot

Non-Db and Db dermal fibroblasts, either untreated or
treated with the TRPC3-selective inhibitor SZ-2-141, were lysed
for protein extraction. Cell lysates were prepared in standard
NP-40 lysis buffer (Abcam) supplemented with proteinase and
phosphatase inhibitors. Protein lysates were quantified using
the Pierce BCA protein assay kit (Thermo Fisher Scientific,
Waltham, MA, United States). Equal masses of total protein were
separated on 4%–12% SDS-polyacrylamide mini-gels, and blotted
onto PVDF membranes (Millipore, Bedford, MA, United States).
Membranes were subsequently blocked, incubated with primary
antibodies, and incubated with secondary antibodies according
to WesternBreeze Chromogenic Kit (Thermo Fisher Scientific).
Alkaline phosphatase was detected on the PVDF membranes using
a ready-to-use BCIP/NBT substrate (Thermo Fisher Scientific)
for ready visualization of enzyme-linked antibodies. Rabbit anti-
TRPC3, mouse anti- αSMA, rabbit anti-TGF-β1, anti-SMAD4,
and anti- β-actin antibodies were obtained from Cell Signaling
(Danvers, MA, United States). Quantification of relative intensities
was achieved by ImageJ analysis (version 1.48v, National Institutes
of Health, Bethesda, MD, United States).

Statistical analysis

Differences in gene expression and protein levels between the
groups were assessed by Student’s t-test. p < 0.05 was considered
statistically significant.

Discussion

The findings of this study highlight the critical role of TRPC3 in
the dysfunction of diabetic dermal fibroblasts and its potential as a
therapeutic target for improving wound healing in diabetic patients.
The elevated expression of TRPC3 in diabetic fibroblasts and its
correlation with impaired TGF-β1 signaling and myofibroblast
differentiation provide new insights into the molecular mechanisms
underlying diabetic wound healing deficiencies. TRPC3, a non-
selective cation channel, has been implicated in various cellular
processes, including calcium homeostasis and cell differentiation
(Dietrich et al., 2010). This study demonstrates that TRPC3 is
significantly upregulated in diabetic dermal fibroblasts, which
aligns with previous findings suggesting that TRPC channels are
involved in pathological conditions, including diabetes (Mita et al.,
2010). The elevated TRPC3 levels in diabetic fibroblasts appear
to disrupt TGF-β signaling, a key pathway for fibroblast-to-
myofibroblast differentiation. TGF-β is essential for wound healing,

as it promotes the expression of ECM components and facilitates
wound contraction (Hinz et al., 2007). The suppression of TGF-β
signaling in diabetic fibroblasts,mediated byTRPC3overexpression,
likely contributes to the delayed wound healing observed in
diabetic patients (Brem and Tomic-Canic, 2007).

The inhibition of TRPC3 emerges as a promising therapeutic
strategy, as it effectively restores TGF-β1 signaling and enhances
fibroblast differentiation into myofibroblasts. The upregulation of
SMAD4, a downstream effector of TGF-β1, following TRPC3
inhibition, underscores the importance of this pathway in fibroblast
functionality as indicated in our study. The restoration of TGF-β
signaling leads to increased expression of myofibroblast markers,
such as ACTA2 and COL1 a 1, which are critical for wound
contraction and ECM remodeling (Tomasek et al., 2002). These
findings suggest that TRPC3 inhibition could reverse the impaired
healing phenotype of diabetic fibroblasts, offering a potential avenue
for therapeutic intervention.

Mechanistically, TRPC3 may influence intracellular calcium
homeostasis, thereby affecting the activation of signaling
cascades such as calcineurin/NFAT (Nuclear Factor of
Activated T cells) or CaMK(calmodulin-dependent protein
kinase) pathways (Pigozzi et al., 2006), which in turnmodulate TGF-
β1 transcription.Alternatively, TRPC3 activitymaydirectly suppress
transcription factors involved in TGF-β1 gene expression. Further
studies are needed to dissect the precise molecular intermediates
linking TRPC3 inhibition to TGF-β1 induction.

Diabetic wounds are characterized by chronic inflammation,
reduced angiogenesis, and impaired fibroblast function, all of which
contribute to delayed healing (Falanga, 2005). The identification
of TRPC3 as a key regulator of fibroblast dysfunction provides
a novel target for addressing these challenges. By restoring
fibroblast activity and promoting myofibroblast differentiation,
TRPC3 inhibition could enhance wound contraction and ECM
deposition, thereby accelerating the healing process. This approach
could complement existing therapies, such as growth factor
supplementation and advanced wound dressings, to improve
outcomes for diabetic patients (Brem et al., 2007).

While this study provides compelling evidence for the role of
TRPC3 in diabetic fibroblast dysfunction, several questions remain.
First, the precise mechanism by which TRPC3 suppresses TGF-β
signaling requires further investigation. Additionally, the in vivo
efficacy of TRPC3 inhibition in diabetic wound healing models
needs to be validated. Future studies should explore the long-
term effects of TRPC3 inhibition, potential off-target effects, and
its interaction with other pathways involved in wound healing
(Eming et al., 2014). Moreover, the development of specific and
potent TRPC3 inhibitors will be crucial for translating these findings
into clinical applications (Zhang et al., 2021).

Conclusion

In conclusion, this study establishes TRPC3 as a critical regulator
of fibroblast activity in diabetic wound healing and highlights its
potential as a therapeutic target. By restoring TGF-β signaling and
promoting myofibroblast differentiation, TRPC3 inhibition offers
a promising strategy for improving wound healing in diabetic
patients. These findings contribute to a deeper understanding of
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the molecular mechanisms underlying diabetic wound healing
deficiencies and pave the way for the development of novel therapies
to address this significant healthcare challenge.
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