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Introduction: Tongue diagnosis is a fundamental technique in traditional
Chinese medicine (TCM), where clinicians evaluate the tongue’s appearance
to infer the condition of pathological organs. However, most existing research
on intelligent tongue diagnosis primarily focuses on analyzing tongue images,
often neglecting the important descriptive text that accompanies these images.
This text is an essential component of clinical diagnosis. To overcome this
gap, we propose a novel Cross-Modal Pathological Organ Diagnosis Model
that integrates tongue images and textual descriptions for more accurate
pathological classification

Methods: Our model extracts features from both the tongue images and
the corresponding textual descriptions. These features are then fused using a
cross-modal attention mechanism to enhance the classification of pathological
organs. The cross-modal attention mechanism enables the model to effectively
combine visual and textual information, addressing the limitations of using either
modality alone

Results:Weconducted experiments using a self-constructed dataset to evaluate
our model’s performance. The results demonstrate that our model outperforms
common models regarding overall accuracy. Additionally, ablation studies,
where either tongue images or textual descriptions were used alone, confirmed
the significant benefit of multimodal fusion in improving diagnostic accuracy.

Discussion: This study introduces a new perspective on intelligent tongue
diagnosis in TCM by incorporating visual and textual data. The experimental
findings highlight the importance of cross-modal feature fusion for improving
the accuracy of pathological diagnosis. Our approach not only contributes to
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the development of more effective diagnostic systems but also paves the way
for future advancements in the automation of TCM diagnosis.

KEYWORDS

tongue diagnosis, pathological organ, tongue images analysis, textual descriptions,
cross-modal attention

1 Introduction

Traditional Chinese Medicine (TCM) is a longstanding medical
system that has gained global recognition as a complementary
and alternative therapy (Gan et al., 2021a; Gan et al., 2021b).
Among TCM’s diagnostic methods, tongue diagnosis stands out as
a unique and essential approach, having been extensively validated
in clinical practice for its ability to reveal various pathological
conditions (Zhang et al., 2022; Liu and Han, 2013). With the
rapid development of medical technology and artificial intelligence,
there is a growing interest in harnessing intelligent systems to
analyze tongue data (Zhang et al., 2023; Gan et al., 2023). Although
recent studies havemade strides in image acquisition, segmentation,
color calibration, and feature extraction, most such efforts remain
confined to single-modality approaches relying exclusively on visual
cues Zhang et al., 2021; Jiang et al., 2018). In real-world practice,
however, TCMphysicians not only inspect a patient’s tongue but also
document critical observations—such as tongue color, coating, and
shape—together with their professional judgment of pathological
signs in textual form.

These textual descriptions often provide a more detailed and
in-depth assessment of the appearance and potential pathological
organs of the tongue. Therefore, the seamless integration of text
and visual data not only brings tongue diagnosis closer to the
clinical workflow, but also enables more accurate identification
of pathological organs. However, little research has focused on
systematically leveraging these complementary data sources in a
unified framework.

In response to this need, this paper proposes a Cross-Modal
Pathological Organ Diagnosis (CMPOD) model that unifies tongue
images and textual information through a refined cross-attention
mechanism based on the Transformer architecture. By fusing
textual and visual features more precisely, the model seeks to
achieve higher accuracy and robustness in identifying diseased
organs. Departing from prior research, which typically processes
images and text separately, our approach systematically incorporates
textual notes from clinical practice, thus preserving both local
and global pathological indicators. Specifically, we utilize Vision
Transformer to capture image features and text descriptions are
encoded using a transformer based bidirectional encoder, then fuse
these representations using an enhanced cross-attentionmechanism
that avoids the shortcomings of simplistic weighting or direct
concatenation.

Guided by established TCM principles mapping the abnormal
lesions of the tongue to the corresponding internal organs,
we further formulate the recognition task as a single-label
classification problem covering heart–lung, liver–gallbladder,
spleen–stomach, and kidney pathologies, closely mirroring actual
diagnostic workflows. We conducted extensive comparative

and ablation experiments on our self-constructed dataset.
The results demonstrate that the proposed model effectively
integrates image and text features, achieves strong performance
in diagnosing pathological organs, and significantly outperforms
single-modality methods.

This paper proposed a novel method (image-text fusion) for
identifying visceral lesions through tongue diagnosis. By leveraging
multimodal fusion, our approach not only enhances the objectivity
and accuracy of TCMdiagnostics but also serves as a bridge between
traditional medical practices and state-of-the-art technologies.
Moreover, it lays a foundation for developing intelligent diagnostic
systems in personalized medicine, exploring for more accurate,
efficient and accessible healthcare solutions. In addition, this study
has important practical significance for pathological inference
in clinical practice. By systematically analyzing the correlation
between tongue features and visceral conditions, ourmodel provides
a more consistent and repeatable diagnostic tool that reduces
reliance on subjective expert experience. This can enhance early
disease detection and help practitioners make more informed
decisions. By illustrating the potential of multimodal learning in
medical applications, this work also advances artificial intelligence
methodologies, offering novel insights into the integration of
heterogeneous data for complex decision-making tasks.

2 Related work

2.1 Tongue diagnosis and machine learning

Tongue diagnosis has been a fundamental diagnostic method
in TCM for thousands of years, playing an indispensable role
in assessing patient health. According to TCM theory, tongue
images change rapidly and significantly during the progression of
disease (Rogers and Bruce, 2004), making the observation of tongue
features a valuable non-invasive method for evaluating a patient’s
physiological and pathological state. By examining characteristics
such as tongue coating, texture, and color, practitioners can diagnose
conditions related to internal organs and track the severity or
progression of diseases (Li et al., 2020).

Clinical studies in TCM have established a systematic
correlation between tongue regions and internal organs. For
example, cardiopulmonary conditions are reflected at the tongue
tip, spleen and stomach issues in the central area, kidney-related
diseases at the root, and liver problems along the edges (Zhen,
2016). In the clinical study of tongue diagnosis, Li et al. (2014)
randomly selected 50 confirmed cases of primary liver cancer, peptic
ulcer, pulmonary/pleural tuberculosis, coronary heart disease,
chronic glomerulonephritis and other diseases, observed the main
manifestations of their tongue image changes, and found that
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the tongue image characteristics had a significant corresponding
relationshipwith specific diseases. For example, 96% of patients with
primary liver cancer had red and red tongue, 64% of patients with
coronary heart disease had mushroom papillae hyperplasia in the
anterior heart area of the tongue, and 82% of patients with chronic
glomerulonephritis had gray or grayish-yellow thick fur at the base
of the tongue (corresponding to the kidney area). These results
clearly show that the pathological features of different diseases are
significantly reflected in the tongue image, and the distribution law
is highly consistent with the TCM tongue differentiation theory.
These findings, viewed from the perspective of integrating TCM
and Western medicine, further validate the connection between
tongue features and internal organ pathology.

In previous research on tongue images, many efforts have
targeted image collection (Lu et al., 2017), segmentation (Zhou et al.,
2019), and color calibration (Wang and Zhang, 2013), enabling
high-quality data for diagnostic applications. Beyond image
preprocessing, various studies have addressed constitution
identification, syndrome differentiation, and disease recognition.
For example, Kanawong et al. (2012) verified the link between
tongue color and syndromes using SVM, MLP, and RF, while
Shi et al. (2021) integrated tongue and pulse data with four classifiers
(random forests, logistic regression, SVM, and neural networks)
to distinguish Qi deficiency from Yin deficiency. Ma et al. (2019)
employedResNet50 andVGG-16 for nine-constitution classification
under varying difficulties, whereas Wen et al. (2024) embedded
tensor reshaping and wavelet attention in ResNet18 to improve
constitution recognition and attribute prediction. Zhang and Zhang
(2014) used geometric features and sparse representation to separate
healthy fromdiseased conditions, andMansour et al. (2021) adopted
ResNet50 to detect 12 diseases including nephritis, coronary heart
disease, and verrucous gastritis. Although these works demonstrate
the feasibility of automated tongue image analysis, most rely solely
on image data, leaving textual descriptions largely unexploited.

However, current research has largely overlooked the textual
descriptions of tongue images recorded by clinicians. Given the
importance of textual records in clinical diagnosis, there is an urgent
need to integrate textual information with tongue image features for
more accurate diagnosis. In this paper, we propose using theViT and
Bidirectional Encoder Representations from Transformers (BERT)
based on the Transformer, extract textual and image features, as well
as employ an improved cross-attention mechanism to fuse them for
enhanced diagnostic performance.

2.2 ViT, BERT, and cross-attention in
transformer

Since the introduction ofTransformer architecture (Vaswani et al.,
2017), it has led to a series of landmark advances in various
research fields, including natural language processing and computer
vision. Models designed based on this architecture not only
consistently outperform traditional methods in text understanding
and generation tasks, but have also demonstrated superior abilities
in image recognition and other visual tasks.

As typical applications of Transformer, ViT (Dosovitskiy,
2020), BERT (Devlin et al., 2019) and cross-attention
mechanisms (Chen C.-F. R. et al., 2021) offer unique advantages

in computer vision, natural language processing and multimodal
tasks respectively. ViT is a model designed for computer vision tasks
that captures long-range dependencies between pixels in an image,
offering improved capabilities in complex image understanding.
BERT is a model based on the encoder portion of the Transformer,
used for natural language processing. By introducing bidirectional
encoding, BERT excels in maintaining contextual coherence when
processing both preceding and following text. The Cross-attention
mechanism is a key attention mechanism in the Transformer
decoder. Unlike traditional attention mechanisms, Cross-attention
not only focuses on the current input of the target sequence but
also attends to relevant information from the source sequence,
enhancing the model’s ability to handle complex tasks.

Given Transformer’s advantages in capturing long-range
dependenciesanditsattentionmechanisms,several recentstudieshave
applied Transformer models to medical diagnostic tasks. Particularly
in the field ofmedical image recognition, significant progress has been
made. For example, G. Van Tulder et al. used Transformer models to
differentiate between COVID-19 and other forms of pneumonia in
CT or X-ray images (Van Tulder et al., 2021), while Haoyuan Chen
et al. combined Transformer models with CNNs for gastric tissue
pathology image diagnosis (Chen et al., 2022). In tongue diagnosis,
there are also studies exploring the applicationofTransformermodels.
Xinshen Zhao et al. combined ResNet with the Swin-Transformer
module to classify tongue features such as tooth marks. Their model
achieved high classification accuracy rates of 98.32% formild, 97.92%
for severe, and 98.90% for no tooth marks (Zhao et al., 2023).
Furthermore, Baochen Fu et al. compared Transformer-based vision
models with ResNet in diagnosing gastrointestinal diseases using
tongue images, finding that the Transformer model achieved the
highest recognition accuracy (Fu et al., 2024).

The core idea behind the Transformer is to determine
relationships among sequence elements using a self-attention
mechanism, which captures global information by examining
the correlations between all elements. This capability endows
Transformer-based models with enhanced reasoning and
pathological diagnosis abilities compared to conventional
approaches. Additionally, these models generate isomorphic
feature representations—outputting sequence vectors with unified
dimensions regardless of whether the input is an image or
text—which naturally facilitates cross-modal fusion. This unified
representation simplifies the application of cross-modal attention
mechanisms without requiring additional transformations. In
contrast, traditional methods often contend with heterogeneous
feature spaces (e.g., spatial-structural features versus sequential
features), necessitating complex alignment strategies during
multimodal integration.

2.3 Multimodal fusion

Modality refers to the form or type of information or data,
such as text, images, audio, and video, each of which has unique
attributes and modes of expression. Multimodal Fusion involves
integrating data from multiple modalities to achieve information
complementarity and synergy across modalities, thereby enhancing
the comprehensive utilization of data. In machine learning,
multimodal fusion combines various data sources to extract
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richer features, improve reasoning capabilities, and enhance model
performance.

In the medical field, multimodal fusion has also played
a significant role. For example, F. Ali et al. combined sensor
waveform data with electronic medical record text data, extracted
features from both modalities, and employed information gain
techniques for feature selection. They ultimately used an ensemble
deep learning model to successfully diagnose heart disease
(Ali et al., 2020). Additionally, M. Liu et al. integrated demographic
information (text data) with MRI image data for Alzheimer’s
Disease classification and clinical score regression, achieving
remarkable results (Liu et al., 2018).

Multimodal fusion is generally categorized into feature-level
fusion and decision-level fusion. Feature-level fusion, also known
as early fusion, integrates data from different modalities before
analysis to capture fine-grained semantic relationships between
modalities. Decision-level fusion, also known as late fusion, entails
independently training each modality and subsequently combining
their prediction results during the decision-making stage.

In the multimodal fusion task of tongue image and textual
description, specific regions in the images may have direct semantic
connections with certain keywords in the text. In this paper,
we adopt a feature-level fusion approach designed to capture
these implicit cross-modal relationships and improve classification
accuracy. By modeling cross-modal attention between image and
text features within the feature space, our model effectively extracts
both independent features and their interactions, allowing the
classifier to leverage the complementary nature of the visual and
textual information.

3 Materials and methods

3.1 Construction of dataset

3.1.1 Data source and ethical considerations
As mentioned earlier, no research has specifically addressed

the analysis of tongue images alongside their descriptive text,
nor is there a publicly available dataset that meets the objectives
of this study. Therefore, we compiled tongue-related images and
descriptive text from publicly available literature (Zhang, 2017; Lai
and Lai, 2017; Jia and Gu, 2008; Song and Song, 2022; Zhang, 2021;
Chen et al., 2021b; Xu, 2017; Luo, 2018).The tongue images and their
corresponding textual descriptions, as provided in the literature,
are shown in Figure 1a.

It should be stated that these data are all derived from publicly
available literature. According to relevant laws and academic norms,
the reuse of such data for research purposes is appropriate. All
sources have been duly acknowledged, and this study strictly
adheres to the ethical principles established by the Declaration
of Helsinki and the Declaration of Taipei in the process of data
collection and usage.

3.1.2 Composition and preprocessing of data
For the image data, we used high-resolution scanning equipment

to digitize the original tongue images, ensuring high quality and
resolution. Subsequently, the textual descriptions corresponding to
each image were manually entered into the system to complete

the pairing of images and text, thereby constructing the final
sample dataset. To ensure data quality, we analyzed the resolution
and color information of all images, confirming they met high-
definition standards. Additionally, the textual data were thoroughly
checked and reviewed to eliminate any missing or anomalous
entries. Based on traditional theories regarding the correspondence
between tongue features and internal organs, we categorized all
samples into four groups: “Liver and Gallbladder,” “Spleen and
Stomach,” “Heart and Lungs,” and “Kidneys.” Using the annotations
provided in the original literature, we ensured the accuracy of
this categorization process. The final dataset contains 95 Heart
and Lungs samples, 89 Liver and Gallbladder samples, 44 Kidney
samples, and 149 Spleen and Stomach samples, providing a reliable
foundation for subsequent research. The label distribution of our
dataset is shown in Figure 1b.

To prepare effective data samples for model training, we
first extract the relevant regions from the raw data obtained
through image scanning and text input. Consequently, as
illustrated in Figure 2, proper preprocessing of the raw data
is required.

In the collected tongue images, the meaningful tongue region
occupies only a small portion, while areas outside the tongue
will interfere with diagnosis. To address this, we used the
LabelMe annotation tool to mark the effective tongue region. After
annotation, the rest of the image was filled with a black background.
We then cropped each image so that the tongue regionwould occupy
the majority of the frame, leaving only minimal black background.
Furthermore, to enhance data stability and reduce computational
overhead, we normalized all images by scaling pixel values to the
[0, 1] range. This step ensures consistency across samples and
contributes to more efficient model training.

Each tongue sample is accompanied by a corresponding textual
description, typically in the format “tongue texture, tongue coating,
and additional features.” However, due to the complexity of real-
world clinical diagnoses, not all descriptions strictly follow this
structure. To conform to the actual diagnostic process, we retained
the original wording and judgment methods used by professional
doctors, preserving the authentic clinical records. This approach
maintains data integrity while providing a sound clinical basis for
model development.

Through these preprocessing steps, we effectively remove
redundant information and noise, reducing the impact of irrelevant
features and thereby improving the accuracy and efficiency ofmodel
training. After thorough preprocessing, the dataset is not only more
consistent and standardized but also provides high-quality training
samples, laying a strong foundation for subsequent model training.

To expand the dataset, and improve the generalization ability
of the model, During training, we apply a series of random data
augmentation techniques. We perform random horizontal flipping
with a probability of 50%, rotation within ± 15°, and we randomly
shuffle the above-processed dataset and divide it into 80% training
set and 20% test set.

3.2 Evaluation metrics

In this paper, we use the Accuracy (ACC) (Equation 1),
Precision (Equation 2), Recall (Equation 3), F1 (Equation 4)
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FIGURE 1
Data acquisition procedure and pathological organ label processing distribution pie chart, (a) shows the acquisition process of tongue image and
corresponding text description, (b) shows the distribution of each label in the dataset.

and ACC@O (Equation 5) as evaluation metrics. Among these
equations, TP is the number of correctly assigned positive samples,
FP is the number of incorrectly assigned positive samples, TN is the
number of correctly assigned negative asmples,FN is the number of
incorrectly assigned negative samples.

ACC = TP+TN
TP+TN+ FP+ FN

(1)

Precision = TP
TP+ FP

(2)

Recall = TP
TP+ FN

(3)

F1 = 2×Precision×Recall
Precision+Recall

(4)

ACC is the most intuitive evaluation metric, defined as the
proportion of correctly predicted samples out of the total number
of samples. Precision is defined as the proportion of true positive
predictions among all positive predictions. It measures the model’s
ability to avoid labeling negative samples as positive, thus reflecting
the accuracy of the positive predictions. Recall is defined as the
proportion of true positive predictions out of all actual positive
samples. It evaluates the model’s ability to identify all relevant
instances. F1 is the harmonic mean of precision and recall, with a
higher indicating better model performance.

To further assess the model’s performance on different tongue
image partitions, we introduce a custom evaluation metric called
“ACC@O.” This metric is specifically designed to quantify the
classification accuracy for a particular pathological organ and is
defined as follows:

ACC@O =
∑No

i=1
𝕀(yi = ŷi)

No
(5)

Here, O represents one of the following categories: “LG” (referring
to the visceral organs Liver and Gallbladder), “SS” (Spleen and
Stomach), “HL” (Heart and Lung), or “K” (Kidney). In this equation,
NO denotes the total number of samples for organ O in the test
set, yi is the true label of sample i, and ŷi is the predicted label for
that sample.The indicator function 𝕀(yi = ŷi) equals 1 when the true
label matches the predicted label and 0 otherwise. Thus, ACC@O
represents the model’s classification accuracy for organ O, with a
value closer to 1 indicating a stronger classification ability for that
specific organ.

3.3 Cross-modal pathological organ
diagnostic model

3.3.1 Construction of model
As discussed above, this study integrates ViT and BERT

methodologies to develop a Cross-Modal Pathological Organ
Diagnostic Model (CMPOD) in response to the current research
landscape and the relevant technological advancements in tongue
diagnosis. Figure 3 presents the framework of the proposed model.
To facilitate the effective fusion of tongue images and textual
descriptions, we have structured our approach into three primary
modules: the Feature Extraction Module, the Cross-Modal Fusion
Module, and the Classification Module. The following sections
will detail the design principles, implementation strategies, and
the respective roles of each module within the overall model
architecture.

3.3.2 Feature extraction module
In the feature extraction module, we need to encode the

original images and texts to facilitate feature extraction. For the
tongue image description, we utilize the BERT model for feature
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FIGURE 2
Pre-processing of original tongue image and the corresponding pathological organ label.

FIGURE 3
Model structure.
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extractionas it excels at capturing bidirectional dependencies within
sequences. Given the original text input Tinput = {x1,x2,…,xt}, the
BERT model generates text embeddings Ht ∈ ℝt×d, where d is the
output dimension of the BERT hidden layer, and t is the length of
the input text sequence. The feature extraction process for the text
input is represented by Equation 6.

Mtext = BERT(Tinput) (6)

For image input, we employ the ViT for feature extraction.
Specifically, the input RGB image Iinput ∈ ℝH×W×C is first divided
into N image blocks (patches), each of size p× p. Each image
block Ipatch,i ∈ ℝp×p×C is then mapped to an embedded vector
zi ∈ ℝd through a linear projection, where d is the embedding
dimension. These image-embedding vectors undergo a multi-head
self-attention process similar to that in Transformers to extract
feature vectors. The feature extraction process for the image input
is represented by Equation 7.

Mimage = VisionTransformer(Iinput) (7)

3.3.3 Cross-modal fusion module
After extracting features from the input text and image, theCross

Modal Fusion (CMF) module performs the fusion of image and
text features. At its core lies the cross-attention mechanism, which
is an adaptation of the self-attention mechanism. In self-attention,
the input features are projected into Query (Q), Key (K), and Value
(V) matrices, and the dot product between Q and K is computed
to obtain attention weights. In the cross-modal fusion module, we
replace Q with the image features Mimage extracted from the image
input, while K and V are represented by the text features Mtext. The
specific steps are as follows:

I. Linear Transformation: After feature extraction, the
image feature Mimage and the text feature Mtext are
linearly transformed using learnable weight matricesWQ
into Query Qimage, Key Ktext, and Value Vtext
respectively. The transformation process can be shown
in Equation 8.

{{{{
{{{{
{

Qimage =MimageWQ

Ktext =MtextWK

Vtext =MtextWV

(8)

II. Multi-Head Attention: To capture multiple feature
representations and accelerate parallel training, the
module employs multi-head attention with each head
having a dimension of dh =

d
h
, where h is the number

of attention heads. This allows the model to obtain
cross-modal attention CMhi for each head i, as defined
in Equation 9.

CMhi (Mtext,Mimage) = Softmax(
QimageK

⊤
text

√dh
)Vtext (9)

III. Concatenation and Projection: As shown in Equation 10, the
ouputs of all heads are concatenated and projected back into
the original representation space to obtain the cross-modal
attention CMA:

CMA(Mtext,Mimage) = Concat[CMh1,CMh2,…,CMhh]WO (10)

where WO ∈ ℝ(h⋅dh)×d is a learnable projection matrix. This setup
enables the image representation as a query to extract relevant text
information fromKey and Value, facilitating efficient alignment and
fusion of multimodal features.

IV. Residual Connection and Normalization: Following the
self-attention mechanism, to prevent the loss of original
single-modal information during feature extraction,
residual connections are employed. Specifically, the features
from the previous layer are added to the extracted
features, and the feature distribution is stabilized using a
normalization layer LayerNorm(⋅), the process feature M′cmf
is shown in Equation 11:

M′cmf = LayerNorm(Mimage +CMA(Mtext,Mimage)) (11)

V. Feedforward Network and Final Representation: Finally, the
output Mcmf of the cross-modal representation is obtained
by passing M′cmf through a feedforward network and another
residual connection followed by LayerNorm, the final output
of Cross-modal fusion module Mcmf is shown in Equation 12.

Mcmf = LayerNorm(M
′
cmf + FFN(M

′
cmf)) (12)

3.3.4 Classification Module
The Classification Module generates the final prediction of the

Pathological Organ based on the fused cross-modal representation
Mcmf. As shown in Equation 13. First, max pooling extracts themost
salient features, producing Mpooled. This pooled representation is
then passed through a fully connected layer, which maps it to the
class space via linear transformation. Finally, a Softmax activation
function converts the logits into a probability distribution over
K classes.

ŷk = Softmax(FC(MaxPooling(Mcmf)) , ∀k ∈ {1,2,…,K} (13)

During training, the model optimizes the classification
performance using the Cross-Entropy loss (CE loss) for multi-class
classification tasks. The CE loss is defined as Equation 14:

L = − 1
N

N

∑
i=1

K

∑
k=1

yik log(ŷik) (14)

where theN is the number of samples, yik is the ground truth label for
the k-th class of the i-th sample, and ŷik is the predicted probability.

The Classification Module effectively translates the rich, fused
cross-modal features into actionable predictions. By leveraging
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TABLE 1 Results of ablation study, bold numbers indicate the best
performance for each metric.

Model ACC Precision Recall F1

Full 62.90±2.10 54.87±3.38 55.03±2.23 54.17±2.33

-image only 43.42±1.98 31.88±2.37 35.89±2.18 33.60±2.53

-text only 56.58±1.53 42.21 ±2.98 48.27±1.88 42.54±2.72

max pooling, a fully connected layer, and the Softmax activation
function, the module ensures that the model can accurately identify
the presence of various Pathological Organs based on the combined
image and text information.

4 Experiments and results analysis

This section presents experiments conducted to evaluate the
CMPOD, aim to verify the effectiveness of the proposed model.
The main components of this section include: Training Parameters;
Comparative Experiments; Ablation Study.

4.1 Training parameter

In this paper, all experimentswere conducted on a singleNVIDIA
GeForceRTX3090GPU(24 GBVRAM)usingPython3.8.10,PyTorch
2.2.1, and CUDA 12.1. We trained for 300 epochs with the AdamW
optimizer(weightdecayof1e-2),startingata3e-4learningratereduced
to 1e-6 via cosine annealing, and used a batch size of 64. During the
training phase, we employ transfer learning strategies to reduce the
dependency on extensive training data. Specifically, both the ViT and
ResNet models, along with their variants, are initialized with pre-
trained weights. The ViT models and their variants utilize weights
pre-trained on the ImageNet-21k dataset (Dosovitskiy, 2020), while
the ResNet models and their variants leverage weights pre-trained on
the ImageNet-1k dataset (He et al., 2016).

4.2 Ablation experiments

To verify the effectiveness of ourmultimodal fusion approach, we
conducted ablation experiments by comparing the full multimodal
model with single-modal variants. In these experiments, we evaluated
models where only one modality—the tongue image or the text
description—wasusedforpathologicalorgandiagnosis.Forthesingle-
modal settings,weextracted theCLStokenfromthefinal layerofeither
theVITorBERTbackbone, andfed itdirectly into theclassifier.Table 1
summarizes the performance of the full multimodal model alongside
the image-only and text-only variants.

The results demonstrate that the classification performance of
both single-modal models is considerably inferior to that of the
full multimodal model. More specifically: (1) When only tongue
images are used, the model’s performance drops markedly (ACC
of 43.42%), indicating that image features alone are insufficient to

TABLE 2 Comparative experimental results of four key metrics, bold
numbers indicate the best performance for each metric.

Model ACC Precision Recall F1-score

CMPOD-ViT-
base

62.90±2.10 54.87±3.38 55.03±2.23 54.17±2.33

CMPOD-ViT-
small

62.11±1.53 52.65±4.13 53.34±2.09 50.64±3.40

CMPOD-
ResNet50

61.32±1.94 52.20±4.24 53.26±2.13 52.01±3.51

CMPOD-
ResNet34

60.79±2.55 48.16±3.20 51.30±2.35 48.86±2.11

CMPOD-
ResNet18

60.26±2.11 52.53±5.08 52.64±2.17 51.06±3.20

CMPOD-
VGG-19

60.26±0.98 50.18±3.00 51.62±0.80 48.77±1.57

CMPOD-
VGG-16

59.74±1.34 52.11±3.93 52.63±1.63 50.11±2.84

fully capture the complex characteristics of the pathological areas. (2)
When only tongue text descriptions are used, the performance also
declines significantly (with an accuracy of only 56.58%), indicating
that relying solely on textual information—given the brevity and
similarity of the descriptions—makes it difficult to distinguish subtle
pathological differences.

The ablation study results reveal that the substantial gap
between the single-modal and multimodal outcomes highlights the
strength of our CMPOD model’s design, demonstrating that our
model can effectively extract and integrate features essential for
accurate pathological organ diagnosis. Furthermore, these results
underscore the importance of effectively fusing tongue images and
text descriptions in multimodal tasks, providing empirical evidence
that combining multiple data sources not only enriches the feature
space but also enhances the overall generalization ability of themodel.

4.3 Comparative experiments and their
results

To our knowledge, there have been no prior studies on
multimodal pathological organ diagnosis utilizing both text and
image data. To explore the impact of different image feature
extraction methods, we replaced the image feature extraction
component of our model with several traditional and advanced
architectures. Specifically, we utilized various variants of the ViT
model, including ViT-Small and ViT-Base, as well as multiple
ResNet variants, such as ResNet-18, ResNet-34 and ResNet-50.
Additionally, we incorporatedVGGmodel variants, includingVGG-
16 and VGG-19. These models were applied to our established
dataset for pathological organ diagnosis, providing a comprehensive
evaluation of their performance. All experimental results are
averaged over five runs.
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FIGURE 4
Accuracy, recall,precision and F1 of methods with 5 runs for pathological organ recognition.

TABLE 3 ACC@O of proposed method and several compare method,
bold numbers indicate the best performance for each metric.

Model ACC@LG ACC@SS ACC@HL ACC@K

CMPOD-
ViT-base

64.71 81.43 60.00 30.00

CMPOD-
ViT-small

74.12 82.86 52.38 24.00

CMPOD-
ResNet50

61.18 83.57 54.29 14.00

CMPOD-
ResNet34

63.53 82.14 51.43 6.00

CMPOD-
ResNet18

70.59 80.71 51.43 8.00

CMPOD-
VGG-19

71.77 82.14 48.57 4.00

CMPOD-
VGG-16

77.65 77.14 45.71 10.00

In Table 2; Figure 4, the comparative results of seven models
on four key metrics are presented. Overall, the CMPOD-ViT-base
model exhibits the best performance, achieving 62.90% (ACC),
54.87% (Precision), 55.03% (Recall), and 54.17% (F1-score), while
the other models perform slightly worse on all metrics. Meanwhile,
CMPOD-small follows closely with an accuracy of 62.11%, its
Precision, Recall, and F1-score are all lower than those of ViT-base,
suggesting that reducing themodel sizemay compromise stability or
generalization ability. Within the ResNet series, CMPOD-ResNet50
performs the best (61.32% ACC, 52.20% Precision, 53.26% Recall,
and 52.01% F1-score), yet it still lags compared to the ViT series.
Furthermore, CMPOD-VGG-16 and CMPOD-VGG-19 performed
the worst, with VGG16’s accuracy falling below 60%.

In Table 3, which shows the accuracies of seven models on
different pathological organs using our custom ACC@O metrics,
the CMPOD-ViT-base model exhibits the best performance with
classification accuracies of 60.00% on the heart/lung (ACC@HL)
and 30.00% on the kidney (ACC@K). Comparatively, the
CMPOD-ViT-small model achieves the highest accuracy on the
liver/gallbladder (ACC@LG) at 74.12%, while CMPOD-ResNet50
performs well on the spleen/stomach (ACC@SS) with 83.57%.
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FIGURE 5
Accuracy and the changes in ACC@O over epochs.

Overall, the ViT-base model performs particularly well, with its
ACC@HL and ACC@K metrics significantly outperforming those
of the other models. Although its ACC@LG and ACC@SS values are
not the highest, they remain quite promising. However, all models
show relatively low classification accuracy on the kidney (ACC@K).

Also, we have plotted the overall accuracy and the changes
in ACC@O over epochs of CMPOD-VIT-base, as shown in
Figure 5. In the Figure 5, the blue lines represent the overall
accuracy, while other color lines represent the ACC@O of the
model. The model’s overall accuracy peaked at around 200 epochs,
although the accuracy for each part exhibited significant dynamic
fluctuations. For instance, the accuracy for the spleen and stomach
parts was highest during the initial stages and subsequently dropped
to 74% as the model gradually balanced the feature learning across
different parts. In contrast, the accuracy for the kidney began
to increase only in the later stages of training, but it ultimately
remained low.

Finally, from the ViT series, ResNet series, and VGG series,
we selected the top-performing models—ViT-base, ResNet50,
and VGG19—and conducted confusion matrix experiments
for each pathological organ. The experimental results are
presented in Figure 6. It can be observed that the CMPOD model
outperforms the other models in most categories.

Based on the results of comparative experiments, we can draw
the following conclusions: (1) The CMPOD model demonstrates
robust and balanced performance in most pathological organ
classification tasks. In particular, it achieves high accuracies for
the heart/lung (ACC@HL) and kidney (ACC@K), confirming the
effectiveness and reliability of our approach. (2) Although ResNet
and VGGmodels perform reasonably well in some organ categories,
they generally fall short inmultimodal pathological organ diagnosis,
often performing significantly worse than the CMPOD model. (3)
All models, including CMPOD, exhibit relatively low accuracy on
the kidney (ACC@K). This may be due to either an insufficient

number of kidney samples or the inherent difficulty of extracting
kidney-related features from tongue images.

Overall, the results confirm the effectiveness and superiority of
our CMPOD model in multimodal pathological organ diagnosis,
while also highlighting current limitations that point to clear
directions for future optimization and dataset expansion.

5 Conclusion and discussion

In this study, we address the challenge posed by traditional
TCM tongue diagnosis, which heavily relies on subjective clinical
experience and lacks standardized, objective evaluation methods.
Recognizing that current research on intelligent tongue diagnosis
has largely overlooked the importance of integrating tongue
images with their corresponding textual descriptions, we developed
a multimodal deep learning approach for pathological organ
diagnosis. Our approach focuses on integrating tongue images and
descriptive texts into a unified framework, termed the Cross-Modal
Pathological Organ Diagnosis (CMPOD)model. To achieve this, we
first employ a ViT for image feature extraction and BERT for textual
feature extraction. Next, a cross-attention mechanism is utilized
to effectively fuse these multimodal features, and finally, the fused
representations are passed to a fully connected classifier for end-
to-end diagnosis. To evaluate the performance of our proposed
model, we conducted extensive comparative experiments and
ablation studies. In the comparative experiments, several baseline
models—including various ViT, ResNet, and VGG variants—were
tested on the same dataset. The results demonstrate that our
model achieves higher classification accuracy in key categories and
overall outperforms the baseline models. In the ablation studies, we
compared single-modal approaches (using only tongue images or
only text descriptions) against the full CMPODmodel.The findings
reveal that relying solely on tongue images or text descriptions
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FIGURE 6
Confusion matrix of the best-performing models in each series, using precision as an metric.

results in a substantial performance drop, thereby underscoring the
critical importance of multimodal feature fusion.

This study addresses a gap in previous research by focusing
on the often-overlooked textual information in tongue image
descriptions. We introduce a cross-modal attention mechanism
that fuses textual and visual features, thereby enhancing diagnostic
accuracy. This complementary diagnostic approach not only
enriches the decision-making process but also better aligns
with clinical practices by integrating multi-source evidence. In
practical applications, our method can be incorporated into
TCM clinical diagnostic systems, allowing clinicians to rapidly
analyze tongue images from a large number of patients. This
integration enhances diagnostic efficiency and alleviates clinicians’
workload. Furthermore, our work supports the digital and
intelligent transformation of TCM, offering promising applications
in telemedicine and mobile health monitoring systems. On the
other hand, the adoption of AI-driven TCM diagnosis may
raise ethical issues. The training process often involves sensitive
medical data, making it crucial to implement measures such as
data desensitization and encrypted storage to safeguard patient

privacy. Additionally, the inherent “black box” nature of many
AI models can obscure the decision-making process, potentially
eroding clinical trust. To address these concerns, it is essential to
incorporate interpretable algorithms that enhance transparency and
accountability in the diagnostic process.

Although this study is the first to propose a diagnostic
model that integrates tongue images and descriptive texts
through multimodal fusion—and the experimental results
are promising—our approach still has some limitations that
merit further investigation. (1) While the CMPOD model
demonstrates robust performance across most pathological organs,
its classification accuracy for the kidney remains relatively low.
Notably, a previous study on disease location classification using
tongue images [e.g., Hu et al. (2021)] reported a similar trend,
where kidney sites yielded lower accuracy compared to other sites.
This limitation may be attributed to two factors: the limited number
of kidney samples in the dataset and the inherent difficulty of
capturing subtle kidney-related features from tongue images. In
particular, since the kidney’s reaction area is located at the root of
the tongue, acquiring high-quality images of this region is especially
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challenging, further complicating the extraction of relevant features.
(2) All data used were sourced from existing literature. Although
we have proposed a novel model based on these data, the diversity
of real-world clinical data may affect the model’s generalizability.
(3) Although our model outperforms other approaches overall,
performance discrepancies persist across different organ categories.
This suggests that the model’s generalization ability requires further
optimization and fine-tuning to fully leverage the complementary
information from multiple modalities. Future work will focus
on several key areas: (1) Expanding and refining the dataset,
particularly by increasing the number of kidney samples, is
crucial to improving the recognition of challenging organs. (2)
Further refining the model architecture and exploring advanced
fusion techniques may enhance both performance and stability. (3)
Investigating alternative optimization strategies and regularization
techniques is essential for reducing overfitting and improving
the model’s generalizability across diverse pathological cases. (4)
Gathering data from real-world clinical diagnoses to further refine
and optimize the model, thereby enhancing its generalizability.
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