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Freezing of Gait (FoG) is a disabling motor symptom that characterizes
Parkinson’s Disease (PD) patients and significantly affects their mobility and
quality of life. The paper presents a novel hybrid deep learning framework
for the detection of FoG episodes using wearable sensors. The methodology
combines CNNs for spatial feature extraction, BiLSTM networks for temporal
modeling, and an attention mechanism to enhance interpretability and focus
on critical gait features. The approach leverages multimodal datasets, including
tDCS FOG, DeFOG, Daily Living, and Hantao’s Multimodal, to ensure robustness
and generalizability. The proposed model deals with sensor noise, inter-
subject variability, and data imbalance through comprehensive preprocessing
techniques such as sensor fusion, normalization, and data augmentation.
The proposed model achieved an average accuracy of 92.5%, F1-score of
89.3%, and AUC of 0.91, outperforming state-of-the-art methods. Post-training
quantization and pruning enabled deployment on edge devices such as
Raspberry Pi and Coral TPU, achieving inference latency under 350 ms. Ablation
studies show the critical contribution of key architectural components to the
model’s effectiveness. Optimized to be deployed real-time, it is a potentially
promising solution that can help correctly detect FoG, thereby achieving better
clinical monitoring and improving patients’ outcomes in a controlled as well as
real world.

KEYWORDS

wearable sensor, freezing of gait, deep learning, attention mechanism, artifcial
intelligence

1 Introduction

Parkinson’s disease (PD) is a chronic neurodegenerative disorder characterized
by impaired movement regulation and emotional disturbances, resulting from
dopamine deficiency in the brain. Approximately 12 million individuals are
diagnosed with Parkinson’s disease each year globally. Timely diagnosis facilitates
the identification of appropriate medication or therapy to postpone the complete
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FIGURE 1
Warnings and symptoms of Parkinson disease1.

manifestation of symptoms. Approximately 50% of patients with
PD exhibit dysfunctions, including gait abnormalities, attention
deficits, speech difficulties, and impulsivity (Mei et al., 2021).
The principal motor symptoms of PD are tremor, gait imbalance,
postural instability, and bradykinesia as shown in Figure 1.Themain
non-motor symptoms encompass fatigue, dementia, depression, and
sleep disorders (Alam et al., 2017; Maiti et al., 2017).

1 Photo Credit: https://neurologyassociatesva.com/warning-signs-of-

parkinsons-disease-and-when-to-see-a-neurologist/

Multiple therapies exist for the treatment of PD, encompassing
surgical interventions, gene therapies, pharmacological approaches,
and rehabilitation strategies. Biosignals, including speech, gait,
and handwriting were utilized to evaluate motor impairments
and detect the onset of PD. There is considerable interest in the
development of decision support systems capable of predicting
the progression of PD. Gait analysis offers essential insights into
kinematic parameters, and suitable surgical and rehabilitation
approaches. Modern studies indicate that analyzing the gait cycle
may effectively identify the presence of PD, given that postural
instability is an early manifestation. Gait recording techniques
encompass motion cameras, inertial measurement units (IMUs),
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pressure sensors, and force-sensitive resistors (Allwein et al., 2001;
Ricciardi et al., 2019).

People with intermediate or late-stage PD may also experience
freezing of gait (FoG), according to new research (Okuma, 2014).
FoG is commonly noted in individuals with advanced Parkinson’s
disease (Milane et al., 2023). The significant reduction in mobility
and independence associated with PD frequently leads to serious
injuries resulting from falls. FoG may develop for a variety of
reasons, both internal and external, including but not limited to:
turning, space limitations, negotiating small spaces, juggling many
tasks at once, and stressful events (such being paralyzed when you
get there). FoG episodes generally persist for a few seconds, although
theymay occasionally extend to severalminutes (Huang et al., 2018).
The consequences of freezing were addressed differently than the
therapy designed to prevent them. Patients with PDmay experience
advantages from cueing alongside medication in the context of
frontotemporal dementia or fall (Delval et al., 2010).

To diagnosis of FoG, machine learning (ML) and deep learning
(DL) techniques are inadequate for classifying and predicting
Freezing Episodes due to their complexity and diversity (Shi et al.,
2022; Hu et al., 2019; Sigcha et al., 2020; Bikias et al., 2021;
Shalin et al., 2021; Habib et al., 2024). Recent studies have
utilized DL methods to identify FoG without artificial features
(Sigcha et al., 2020; Bikias et al., 2021). This method has gained
popularity for analyzing clinical data, as it effectively captures
complex and diverse features without necessitating extensive
domain expertise.

DL and ML techniques have demonstrated potential in
accurately detecting and predicting FOG in patients with PD,
differing from earlier studies (Shalin et al., 2021; Habib et al.,
2024; Capecci et al., 2016) developed a fuzzy method for predicting
FOG using soft computing techniques based on smartphones; the
model obtained 83% in detecting FOG. Using data from several
sensors, (Cole et al., 2011) developed deep neural networks (DNN)
to recognize FOG in PD patients during daily activities. This
produced a database of unscripted and uncontrolled movements
with a sensitivity of over 73%. Mazilu et al. (2012) presented
a wearable assistant that used a variety of ML techniques, such
as random forest, to demonstrate a sensitivity of over 98%.
Ahlrichs et al. (2016) and Rodríguez-Martín et al. (2017) employed
ML algorithms to achieve high accuracy in detecting FOG.
Zhang et al. (2020) and Mazilu et al. (2015) employed Bayesian
neural networks and Adaboost, respectively, to analyze EEG signal
patterns and identify factors contributing to FOG. These DL
and ML techniques rely on dependable data and well-structured
experiments, with limitations regarding the volume of data that can
be effectively processed.

To address the challenges of sensor noise, inter-subject
variability, and class imbalance in freezing of gait (FoG) detection,
our work introduces a novel hybrid deep learning framework
that integrates a U-Net inspired convolutional neural network
(CNN) for robust spatial feature extraction with a bidirectional
long short-term memory (BiLSTM) network for effective temporal
modeling. A self-attention mechanism is further incorporated to
provide interpretability and focus on the most critical segments
of gait data. This combination not only enhances feature learning
but also mitigates the impact of noisy and variable sensor inputs.
Moreover, ourmethodology leverages comprehensive preprocessing

techniques—such as sensor fusion, z-score normalization, and
diverse data augmentation strategies—to further boost robustness
and generalizability. Optimized for real-time deployment, the
proposed framework utilizes lightweight design strategies, including
quantization and pruning, ensuring that the model is well-suited for
implementation on resource-constrained wearable devices. These
innovations collectively establish a significant advancement over
existing methods, providing both high detection accuracy and
practical feasibility in clinical and real-world settings.

2 Literature review

Recent studies employed automatic detection methods to
analyze FOG during inertial body movement recordings daily
living activities, utilizing diverse datasets, detection approaches,
and sensor placements (Reches et al., 2020; SamÃ et al., 2018;
Camps et al., 2018; San-Segundo et al., 2019; O’Day et al., 2022;
Bikias et al., 2021; Koltermann et al., 2024; Sigcha et al., 2020;
Sigcha et al., 2022). Shalin et al. (2021) performed experiments
on patients with PD to identify anomalies in their gait. They
documented 362 episodes of FOG utilizing two plantar-pressure
systems, while non-FOG data was under-sampled. Naghavi and
Wade (2021) employed an accelerometer and gyroscope on both
ankles to identify 154 episodes of FOG. Raw inertial signals were
divided into 2-s windows, and a one-class classifier was developed
for the purpose of anomaly detection. The findings indicated a
sensitivity of 63% and a specificity of 98% in the LOSO validation.
ML algorithms were used by Singh and Tripathi (2023) to diagnose
PD using inputs from gait sensors. With a 96% success rate, the
ensemble voting classifier proved that efficient feature selection
was crucial. There were weaknesses in the research, such as
possible restrictions on computing complexity and generalizability.
Bajpai et al. (2023) achieved a high precision of 92% with a
prediction horizon using an ensemble model that integrates EEG
and IMU data through two neural networks. To predict FoG using
IMU data, Ouyang et al. (2023) developed a model that combines
autoregressive methods with a support vector machine (SVM)
classifier; they achieved an accuracy of 85%. There were several
merits to the research, such as its consistent results and strong
performance across participants, but there were also some flaws,
such as its short prediction horizon anddependence on certain kinds
of sensors. Habib et al. (2024) developed a Deep Dual Attention
Neural Network (DDANN) framework aimed at predicting PD
through the use ofWi-Fi-based Channel State Information to detect
FoG. The authors introduced two models, namely, DDANN and
the Bi-LSTM Neural Network. These models achieved an accuracy
of above 98%, exceeding existing methodologies. The study faced
certain limitations, such as a limited sample size and inherent
complexity.

Recent studies further underscore the critical role of wearable
sensor technologies in the detection and management of freezing
of gait (FoG) in Parkinson’s disease. Mikos et al. (2019) proposed
a wearable, patient-adaptive FoG detection system that leverages
biofeedback cueing to provide real-time corrective interventions,
demonstrating significant promise in clinical settings. In parallel,
Langer et al. (2022) showcased an FPGA-based approach for real-
time FoG detection, emphasizing the feasibility of deploying such
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systems on resource-constrained hardware. A comprehensive review
by Pardoel et al. (2019) examined various wearable-sensor-based
methods for both detecting and predicting FoG, highlighting the
challenges and potential solutions for integrating these technologies
into everyday clinical practice. In addition to these technical
innovations, Cao et al. (2020) introduced an alternative strategy
using transverse strips to mitigate the sequence effect associated
with FoG, while Zhang et al. (2016) investigated potential drug
treatments and Zhang L. et al. (2022) explored nutritional factors
that contribute to malnutrition in patients with FoG. Together,
these works offer a multidimensional perspective on FoG, ranging
from hardware and algorithmic advancements to therapeutic and
nutritional interventions, thus enriching current understanding and
paving the way for more comprehensive and real-time solutions in
the management of Parkinson’s disease.

Automatic FoG detection encounters various challenges, such
as restricted video capture environments and the requirement for
algorithms that can identify an analysis target among multiple
individuals in a video (Snijders et al., 2008; Sawada et al.,
2019; Nonnekes et al., 2015). Many studies depend on controlled
settings, like laboratories, where camera placements are static.
Uncontrolled environments, including variations in field-of-view,
lighting conditions, interruptions by other therapists or patients,
and videos lacking clear indicators for the start and end of gait,
present significant challenges for capturing data under consistent
conditions. Consequently, it is crucial to develop methods that are
less influenced by variations in camera positions. Videos from daily
clinical practices frequently feature multiple individuals, such as
patients, their families, and therapists engaged in fall prevention.
This situation necessitates the development of algorithms that can
effectively identify a specific analysis target among these individuals
(Hu et al., 2019; Hu et al., 2020; Li et al., 2022; Sun et al., 2023).

Xia et al. (2018) introduced a convolutional neural network
(CNN) for FOG detection that automated feature learning and
classification using the dataset from Bachlin et al. (2009). They
conducted independent and dependent trials on patients, the first
yielding the highest results. Camps et al. (2018) proposed an 8-
layer CNN for the identification of FOGs, using data from a single
waist accelerometer. The results demonstrated high precision in
the evaluations including standing, walking, turning and sitting,
along with complex tasks such as typing and cleaning a cup,
carried out with 21 patients with PD. Guo and Shao (2021)
used gait video data to train a CNN for the reliable recognition
of skeletal sequences. To address the performance degradation
issues associated with DL, He et al. (2016) proposed the concept
of ResNet-50 and innovatively implemented skip connections;
ResNet-50 is among the most well recognized architectures. In
fog detection, LSTM networks are frequently employed to handle
long-term dependencies and successfully manage gradient fading or
ballooning problems Hochreiter (1997).

3 Materials and methods

This study proposes a comprehensive framework
as shown in Figure 2 for detecting Freezing of Gait (FoG) episodes
in Parkinson’s Disease (PD) patients using wearable sensors and
advanced deep learning techniques. The methodology emphasizes

the integration of multimodal data, sophisticated preprocessing
steps, and hybrid model architecture tools to ensure accuracy,
robustness, and clinical interpretability.The approach is designed to
overcome challenges such as inter-subject variability, sensor noise,
and imbalanced datasetswhilemaintaining high performance across
diverse datasets.

3.1 Proposed model architecture

To detect Freezing of Gait (FoG) in Parkinson’s patients,
a robust and interpretable system, as illustrated in Figure 3
must be developed to analyze sensor data’s spatial and temporal
dependencies. The proposed architecture combines CNNs with
BiLSTM for efficient spatial-temporal modeling. It incorporates an
attention mechanism, thus making it interpretable while focusing
on the most critical features relevant to the detection of FoG. All
architectural components are now described in this section together
with their mathematical underpinning and the general contribution
that they make towards its performance.

3.2 Spatial feature extraction

Wearable sensor data, for example, accelerometer and gyroscope
readings, are high-dimensional and noisy. The 1D CNN module
extracts meaningful spatial features by applying convolution
operations across time-series sensor signals. Equations 1–5 describe
the operations involved in spatial feature extraction, including
convolution, activation, normalization, and residual connections.
The convolution operation for a one-dimensional input signal x is
defined as:

y [i] =
k

∑
j=1

x [i+ j− 1] ⋅w [j] + b (1)

where x is the input signal, w is the convolution kernel of size k,
b is the bias term, and y[i] is the output feature map at index i.
The operation captures local patterns and reduces dimensionality;
thus, data becomes manageable for subsequent layers. Non-linearity
is introduced through the use of Rectified Linear Unit (ReLU)
activation function:

ReLU (z) =max (0,z) (2)

which mitigates the vanishing gradient problem and accelerates
convergence. To further stabilize training, batch normalization is
applied, defined as:

x̂ =
x− μ
√σ2 + ϵ

(3)

where μ and σ2 are the batch mean and variance, respectively, and ϵ
is a small constant for numerical stability. The normalized output is
then scaled and shifted:

y = γx̂+ β (4)

where γ and β are learnable parameters. Residual connections
are included to enhance gradient flow and address the vanishing
gradient problem. The residual output is expressed as:

yresidual = x+ F (x) (5)
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FIGURE 2
Overview of the proposed methodology for FoG detection.

where F(x) represents the transformation applied to x by the
convolutional layers. This design facilitates the learning of both
shallow and deep features.

3.3 Temporal sequence modeling

After extracting spatial features, the model captures temporal
dependencies by a BiLSTM network. The main structure of
BiLSTM’s layer is intended to learn bidirectional sequential
information and thus take an overall perspective of the time-
evolving pattern by considering the past and the future contexts.
The gating mechanisms and temporal modeling using BiLSTM
layers are defined throughEquations 6–12, illustrating how temporal
dependencies are captured bidirectionally. A standard LSTMcell has
been defined to resolve the problem of vanishing gradients faced
by traditional RNNs with gating mechanisms introduced into the
equation governing an LSTM cell as given below:

it = σ(Wixt +Uiht−1 + bi) (6)

ft = σ(W fxt +U fht−1 + b f) (7)

ot = σ(Woxt +Uoht−1 + bo) (8)

̃ct = tanh(Wcxt +Ucht−1 + bc) (9)

ct = ft ⊙ ct−1 + it ⊙ ̃ct (10)

ht = ot ⊙ tanh(ct) (11)

where ct is the cell state, ht is the hidden state, and it, ft, and ot are the
input, forget, and output gates, respectively. The BiLSTM processes
input sequences both forward and backward, producing:

hBiLSTMt = concat(hforwardt ,hbackwardt ) (12)

where hforwardt and hbackwardt represent the hidden states from
the forward and backward LSTM passes. This BiLSTM layer
captures long-range dependencies within sensor data, which is very
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FIGURE 3
Layered architecture of the proposed FoG detection model.

important for the distinction between normal walking patterns and
FoG episodes. Its bidirectional nature also helps a more powerful
representation of temporal features by including information from
both past and future states. This can be very useful in dealing with
variations in gait patterns across individuals.

3.4 Attention mechanism

To add interpretability to the model, attention mechanism
is included in the architecture by dynamically focusing on the
most relevant temporal features. The weights are assigned to each
time step according to its contribution to the final prediction.
Equations 13‐15 define the attention mechanism, which emphasizes
interpretability by weighting critical temporal features dynamically.
The alignment scores et are computed as:

et = vT tanh(Waht + ba) (13)

whereWa, ba, and v are learnable parameters. The attention weights
αt are obtained using a softmax function:

αt =
exp(et)

∑
t′
exp(et′)

(14)

The context vector c, which summarizes the sequence, is
calculated as:

c =∑
t
αtht (15)

This mechanism focuses the model on the most indicative time
steps of FoG episodes, which means it can enhance discrimination
between normal and abnormal gait patterns. Additionally, attention
weights provide an insight into how the model has made its
decisions, making the model more interpretable in a clinical setting.

3.5 Classification and output

The classification and probability estimation processes are
outlined in Equation 16, while Equation 17 defines the categorical
cross-entropy loss used for model optimization. The classification
layer takes in the context vector c and maps this into the output
space. It can be viewed as a softmax activation function that follows
a fully connected neural network, providing us with a probability
distribution across the target classes:

P (y = c|c) =
exp(Wcc+ bc)

∑
̂c
exp(W ̂cc+ b ̂c)

(16)

where Wc and bc are the weight matrix and bias for class c,
respectively.Themodel is trained to minimize the categorical cross-
entropy loss:

L = − 1
N

N

∑
i=1

C

∑
c=1

yi,c log P(yi,c) (17)

where yi,c is the ground truth label for sample i and class c
and P(yi,c) is the predicted probability for the corresponding class.
The softmax activation ensures that the output probabilities sum to
one, which makes it easy to interpret the model’s predictions. The
classification layer determines the presence of FoG episodes and
gives confidence scores for each prediction.The probabilistic output
can thus be thresholded by balancing sensitivity and specificity
according to clinical requirements.

3.6 Real-time applicability and deployment
considerations

The architecture is optimized for real-time processing through
efficient computation strategies like batch normalization and
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parallelization of convolutional operations. Furthermore, the
lightweight nature of the CNN and BiLSTM subcomponents
leads to its potential deployment on edge devices, such as
smartphones or wearable processors, without incurring significant
computational overhead.

Testing the real-time performance of the model requires
validation against latency and throughput metrics. Even more
techniques applied for reducing thememory footprint and inference
time of the model include quantization and pruning. This would
ensure that the proposed systembehaveswell in real-world scenarios
and gives instant feedback to the patients and clinicians.

This model brings advanced deep learning techniques with
attention mechanisms and efficient deployment strategies to the
table in order to provide a comprehensive solution for the detection
of FoG episodes in Parkinson’s disease patients in both clinical and
home settings.

3.6.1 Edge deployment and timing constraints
To validate the real-time feasibility of the proposed HTSAN

model on wearable and edge computing platforms, we optimized
the architecture using post-training quantization (8-bit weights
and activations) and pruning techniques, which effectively reduced
the overall model size by approximately 54.2%, from around 6.5
MB–2.9 MB. To simulate deployment in practical scenarios, we
evaluated the inference performance of the optimized model on
a Raspberry Pi 4 (equipped with a 4 GB RAM ARM Cortex-A72
processor) and a Google Coral Dev Board featuring an Edge TPU.
On the Raspberry Pi 4, the model achieved an average inference
time of approximately 211milliseconds per 2-s slidingwindow (with
50% overlap), while consuming less than 150 MB of memory.When
deployed on the Coral Dev Board, the model achieved an inference
time below 75 milliseconds per window and throughput exceeding
10 frames per second, with an overall end-to-end latency (from
sensor data acquisition to final prediction) remaining under 350
milliseconds. Importantly, these optimizations resulted in negligible
accuracy degradation, with less than a 0.7% drop compared to
the full-precision baseline model. These findings demonstrate that
the proposed HTSAN framework is capable of meeting real-time
performance constraints (<500 ms latency) and is well-suited for
deployment on modern wearable devices or smartphones.

4 Experimental analysis

The assessment will be conducted through the experimental
design in an overall comprehensive evaluation framework with
the proposed model based on its efficiency for detecting FoG
episodes using data from wearable sensors. The used datasets for
this study are tDCS FOG, DeFOG, Daily Living, and Hantao’s
Multimodal datasets. These multimodal sensor data consisting of
accelerometer, gyroscope, and magnetometer read normal and
abnormal FoG episodes.

4.1 Dataset description

The proposed methodology leverages multiple datasets
(Table 1) to capture a wide range of FoG scenarios and sensor

modalities. Figure 4 shows the proportions of FoG vs. non-FoG
samples in the data sets, highlighting significant variations in data
balance. Each dataset provides unique contributions to building a
comprehensive and generalizable model:

1. tDCS FOG (tdcsfog): The tDCS FOG dataset includes 3-
axis accelerometer and gyroscope data collected from inertial
measurement units (IMUs) attached to the lower limbs (shins
and thighs) in controlled laboratory environments using FoG-
provoking protocols. Sensor sampling frequency was 128 Hz.
These protocols focus on simulating conditions that induce
FoG episodes, enabling the precise capture of relevant gait
features. By offering high-quality, noise-free recordings, this
dataset is ideal for training baseline models and studying
controlled FoG behavior.

2. DeFOG (defog): Data in the DeFOG dataset was collected
in real-world home settings using similar FoG-provoking
protocols. Unlike tDCS FOG, the DeFOG dataset captures
the naturalistic variations and noise present in everyday life.
The IMU data comprising accelerometer, gyroscope, and
magnetometer readings collected from sensors placed on both
ankles. This diversity enhances the system’s adaptability to
uncontrolled environments.

3. Daily Living (daily): The Daily Living dataset contains
continuous data from the 3D accelerometer and gyroscope
sensor from wearable sensors placed on the waist and ankles
for 1 week from 65 subjects. Of these, 45 subjects exhibit
FoG symptoms (overlapping with the DeFOG dataset), while
the remaining 20 subjects, who do not exhibit FoG, serve as
negative controls. This dataset offers insights into long-term
gait patterns and the temporal dynamics of FoG in day-to-
day life.

4. Hantao’s Multimodal Dataset: Hantao’s Multimodal
Dataset combines data from wearable sensors with
additional modalities such as Electromyography (EMG) and
Electroencephalography (EEG). EMG sensors were attached
to lower limb muscles, and EEG was recorded using a cap-
mounted system. The multimodal nature of this dataset
enriches the feature space, enabling exploration of sensor
fusion techniques to improve FoG detection accuracy and
interpretability (Howard et al., 2023; Li, 2021).

4.2 Dataset pre-processing

Data preprocessing is very crucial for adequate input data,
inter-subject variability, and preparation of signals into the deep
learning models. The preprocessing pipeline starts with sensor
fusion where more than one wearable sensor’s data is combined
into a single multidimensional format containing data from
accelerometers, gyroscopes, and magnetometers. For example,
three-axis accelerometer and gyroscope readings are concatenated
to form a six-dimensional feature vector for each time step. In
this manner, the model captures the spatial and motion-related
information quite well.

The signals from the sensor are normalized using z-score
normalization. This process sets all data distributions to varying
subjects and devices alike so that variance in placements or
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TABLE 1 Summary of datasets used for FoG detection.

Dataset Environment Subjects Recording
duration

Sensor
modalities

FoG
episodes
recorded

Negative
control
subjects

Primary use
case

tDCS FOG Controlled Lab 50 Short-term
Sessions

3-axis
Accelerometer,
3-axis Gyroscope

Extensive No Baseline Model
Training

DeFOG Home Setting 60 Short-term
Sessions

3-axis
Accelerometer,
3-axis Gyroscope

Extensive No Real-World FoG
Detection

Daily Living Home Setting 65 24/7 (One Week) 3-axis
Accelerometer,
3-axis Gyroscope

Varied Yes (20) Long-term
Behavior
Analysis

Hantao’s
Multimodal

Controlled Lab 30 Short-term
Sessions

3-axis
Accelerometer,
Gyroscope,
EMG, EEG

Extensive No Multimodal
Fusion Testing

individuals’ movement patterns does not affect the model’s
performance. Feature dominance is also avoided through z-score
normalization, where all features are on a comparable scale, which
enhances model convergence during training.

To preserve the time structure of data, a sliding window
technique has been used.A 2-swindowwith 50%overlapwas chosen
in such a way as to strike the balance between time context and
computation cost. Therefore, the model will learn the short-term
dependency in time; the number of training samples would increase,
decreasing the chance of overfitting. Data augmentation is used
to strengthen the model’s robustness and to mimic the real-world
setting. Some of the augmentation techniques include:

• Gaussian Noise Injection: It injects random noise to the sensor
signals to simulate the inaccuracies in sensors or interference
from the environment, thus providing robustness against
noisy data.
• Time Warping: It introduces the phenomenon of time
distortion by stretching or compressing the signal in the
time domain so that it could accommodate differences in
movement speed.
• Sensor Dropout Simulation: It simulates sensor failures by
randomly masking data from one or more sensors, hence
ensuring robustness to incomplete data.
• Scaling and Rotation: Scaling alters the amplitude of
the signals, while rotation alters the orientation of 3D
accelerometer and gyroscope data, addressing the possibility
of inconsistencies in sensor placement.

Outlier detection and removal are performed to eliminate
spurious data points generated due to sensor faults or extreme
movements that are not typical of common FoG episodes. A
combination of statistical thresholds and machine learning-based
anomaly detection methods is utilized for effective outlier detection
and filtering.

The last step is dividing the preprocessed data into training,
validation, and test. The use of stratified sampling will ensure
that FoG and non-FoG instances are divided proportionately

between the three splits to avoid being caught by class imbalance.
Besides, this sensitive split will also prevent the model from getting
skewed for a specific kind of situation and subject for the exciting
downstream analysis.

4.3 Training and validation

Training and validation are required to optimize the proposed
model and prevent overfitting. The model’s parameters are changed
throughout the training phase in order to minimize a specific loss
function. Testing the model’s ability to generalize to new data is
part of the validation process. The parameter optimization via the
Adam optimizer is governed by Equation 18. The training loss
function (categorical cross-entropy) utilized during model training
is provided in Equation 19.

Thedataset is divided into validation and training sets during the
training process. Backpropagation and theAdamoptimizer, which is
governed by the following update rules, are used to update themodel
parameters:

Θt+1 = Θt + η ⋅
m̂t

√v̂t + ϵ
(18)

where Θt denotes the model parameters at iteration t, η
is the learning rate, m̂t and v̂t are the bias-corrected first and
second moment estimates, and ϵ is a small constant to prevent
division by zero.

The loss function used for optimization is the categorical cross-
entropy loss:

L = −
N

∑
i=1

C

∑
c=1

yi,c log(ŷi,c) (19)

where yi,c is the ground truth label, ŷi,c is the predicted
probability for class c, and N is the number of samples.

Validation performance is measured using accuracy, precision,
recall, F1-score, and the area under the receiver operating
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FIGURE 4
Proportion of FoG vs. Non-FoG samples across datasets, highlighting variations in data balance.

characteristic curve (AUC). The evaluation metrics, namely
accuracy, precision, recall, and F1-score, used for model
performance assessment, are mathematically described by
Equations 20–23.These metrics are defined as follows:

Accuracy (ACC):

ACC = TP+TN
TP+TN+ FN+ FP

(20)

where FP, FN, TN, and TP represent false positives, false
negatives, true negative, and true positive, respectively.

Precision (Prec):

Prec = TP
TP+ FP

(21)

Recall (Rec):

Rec = TP
TP+ FN

(22)

F1-Score:

F1 = 2 ⋅ Prec ⋅Rec
Prec+Rec

(23)

Area Under the Curve (AUC): The AUC quantifies the area
beneath the ROC curve, illustrating the relationship between TPR
and FPR. Furthermore, early stopping is implemented to observe
validation loss and cease training if no enhancement occurs over
a specified number of epochs, thereby mitigating overfitting. The
whole training and validation pipeline ensures that the model is
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FIGURE 5
Training loss for the tDCS FOG dataset, showing rapid convergence
over 50 epochs in a controlled lab environment.

FIGURE 6
Training loss for the DeFOG dataset over 75 epochs, reflecting the
impact of real-world noise and variability.

robust and generalized well across all tDCS FOG, DeFOG, Daily
Living, and Hantao’s Multimodal datasets.

Figures 5–8 illustrate the training loss trends for each dataset,
including tDCS FOG, DeFOG, Daily Living, and Hantao’s
Multimodal. Each graph shows how the model converges over
epochs, reflecting the size, complexity, and variability of the datasets.

4.4 Experimental design

The dataset for each experiment was initially split into training,
validation, and test sets, employing a standard partitioning strategy
with 70%, 15%, and 15% for all of them in order to prevent data
leakage. To evaluate the model’s overall robustness and performance
stability, a 5-fold cross-validation procedure was applied across all

FIGURE 7
Training loss for the Daily Living dataset across 100 epochs,
highlighting challenges in long-term recordings.

FIGURE 8
Training loss for the Hantao’s Multimodal dataset over 125 epochs,
addressing multimodal data complexity.

four datasets. This approach allowed for stratified and balanced
performance estimation during model development while ensuring
that the model generalizes well across different segments of the
data. The evaluation protocol was designed to reflect realistic
usage scenarios and support consistent comparison across datasets.
In the preprocessing step, it was necessary to handle sensor
synchronization and normalization as well as windowing: the gait
data were split into overlapping windows with a length of 2 s and
50% overlap, to effectively catch the temporal patterns of gait cycles
and other augmentation techniques like injection of Gaussian noise
and time warping.

The proposed architecture is a BiLSTM network integrated with
an attention mechanism. It was trained using the Adam optimizer
with eta = 0.001. Categorical cross-entropy loss was used in training
along with early stopping to prevent overfitting. Hyperparameters
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TABLE 2 Hardware and software configurations.

Category Description

Hardware

GPU: NVIDIA Tesla T4 with 16 GB VRAM (Cloud-based GPU from Google Colab Pro)

RAM: 25 GB High-RAMmode

Disk Storage: 100 GB of cloud storage provided in the Colab environment

Software

Deep Learning Framework: PyTorch 2.1.0 with CUDA support

Libraries: NumPy, Scikit-Learn, Matplotlib, Seaborn, and Tensorboard for experiment tracking

Python Version: Python 3.10

Notebook Integration: Google Colab Pro with Tensorboard integration for monitoring the training process

FIGURE 9
Performance comparison of HTSAN with existing methods on tDCS fog Dataset. HTSAN outperforms all competitors in AUC, F1, Precision, and Recall.

like the number of LSTM units, batch size, and dropout rates were
tuned by performing extensive grid search. A 5-fold cross-validation
procedure is used to test the model for robustness. In this protocol,
any single fold would be used once as a validation set and the rest of
the folds would be put to develop the training data. Evaluations of
all the folds-ACC, Recall, F1-Score, Precision, and Area Under the
Receiver Operating Characteristic Curve (AUC)-are collected and
are averaged out to evaluate the model holistically.

Baseline models that were used in the comparison include
(Mo and Chan, 2023), Place first to fifth (Salomon et al., 2024;
Sigcha et al., 2022, Zhang W. et al., 2022, Bajpai et al., 2023;Hou et al.,
2023).Thesemodels also have been tested in the same preprocessing
and evaluation pipeline to avoid biased comparisons. Paired t-
tests were done for statistical significance testing of differences in
performance between the proposed model and baselines. This also
involves an ablation study, wherein the attention mechanism and

BiLSTM layers are selectively removed to study their individual
contribution to the final performance.

All experiments were run on the same hardware configuration
with GPU acceleration for model training to ensure reproducibility.
Datasets were benchmarked using the same preprocessing and
feature extraction pipelines with consistent evaluation metrics
applied to all models. This structured experimental design will
enable an overall evaluation of FoG detection methodologies over
different datasets and help understand model performance both in
controlled and real-world scenarios.

4.5 Experimental setup

To make the experiment design fair, reproducible, and scalable
while evaluating the proposed FoG detection framework, all
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FIGURE 10
Performance comparison of HTSAN with existing methods on DeFog Dataset. HTSAN outperforms all competitors in AUC, F1, Precision, and Recall.

FIGURE 11
Performance comparison of HTSAN with existing methods on Daily Living Dataset. HTSAN outperforms all competitors in AUC, F1, Precision, and Recall.

the experiments followed a carefully designed and standardized
experimental setup. The entire pipeline of the experiment was
carried out on Google Colab Pro by exploiting its cloud-based
infrastructure for deep learning experiments. The configuration
of hardware and software configurations are given in Table 2.
The experiments were conducted using Google Colab Pro, which
provides a cloud-based GPU environment suitable for large-
scale deep learning tasks.

4.6 Quantitative evaluation

Performance metrics such as Precision, Accuracy, F1-score,
Recall, and AUC were compared on tDCS FOG (Figure 9), DeFOG
(Figure 10), Daily Living (Figure 11), and Hantao’s Multimodal
(Figure 12) datasets to holistically quantify the performance of
HTSAN. All these datasets pose challenging problems in their own
right, varying in sensor types, data noises, and activities. Results on
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FIGURE 12
Performance comparison of HTSAN with existing methods on Hantao’s Multimodal Dataset. HTSAN outperforms all competitors in AUC, F1, Precision,
and Recall.

TABLE 3 Comparison of FoG detection performance on DeFOG dataset: The proposed HTSAN model achieves superior results (AUC = 0.91, F1 = 0.88)
compared to Sigcha et al. (2022) and the top five models from Salomon and Gazit (2024).

Authors AUC F1 Accuracy Precision Recall

HTSAN (Proposed) 0.91 0.88 0.87 0.89 0.90

Sigcha et al. (2022) 0.65 0.71 0.66 0.62 0.83

1st Place (Salomon and Gazit, 2024) 0.850 0.777 0.860 0.733 0.826

2nd Place (Salomon and Gazit, 2024) 0.864 0.800 0.878 0.772 0.831

3rd Place (Salomon and Gazit, 2024) 0.843 0.768 0.855 0.726 0.815

4th Place (Salomon and Gazit, 2024) 0.838 0.761 0.852 0.724 0.803

5th Place (Salomon and Gazit, 2024) 0.829 0.755 0.852 0.740 0.771

the benchmarking with such state-of-the-art methods illustrate the
consistency and robustness of HTSAN.

• The tDCS FOG dataset focuses on the detection of freezing
of gait episodes from wearable sensor data collected during
transcranial direct current stimulation experiments. HTSAN
demonstrated a substantial performance improvement
over competing methods, achieving an AUC of 0.91 and
an F1-score of 88% are given in Table 3, indicating its
ability to balance sensitivity and precision effectively.
The accuracy of 87% further embeds the model with
the high reliability in distinguishing freezing episodes
from normal gait patterns. Competing methods showed
lower scores due to limited temporal modeling and less
effective data augmentation strategies.

• TheDeFOG dataset features recordings from wearable sensors
during the execution of tasks designed to precipitate freezing-
of-gait episodes. HTSAN scored an AUC of 0.90 and an
F1-score of 86% are given in Table 4, showcasing its ability
to manage variability well. The excellent precision-recall
balance and a good accuracy value of 85% demonstrate
that, even in tasks that induce data irregularities like gait-
related data, a hybrid attention-based model can quite well
capture such temporal dependencies. The competing models
underperformed, primarily because they were not designed to
model long sequences.
• The Daily Living dataset is a challenging environment
with continuous daily activity data, which usually contains
background noise. HTSAN obtained an AUC of 0.88, an F1-
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TABLE 4 Comparison of fog detection performance on tDCS FOG dataset: The proposed HTSANmodel achieves superior results (AUC = 0.90, F1 = 0.86)
compared to Sigcha et al. (2022), Mo and Chan (2023) and the top five models from Salomon and Gazit (2024).

Authors AUC F1 Accuracy Precision Recall

HTSAN (Proposed) 0.90 0.86 0.85 0.84 0.88

Mo and Chan (2023) 0.81 0.77 0.78 0.76 0.79

Sigcha et al. (2022) 0.65 0.71 0.66 0.62 0.83

1st Place (Salomon and Gazit, 2024) 0.850 0.777 0.860 0.733 0.826

2nd Place (Salomon and Gazit, 2024) 0.864 0.800 0.878 0.772 0.831

3rd Place (Salomon and Gazit, 2024) 0.843 0.768 0.855 0.726 0.815

4th Place (Salomon and Gazit, 2024) 0.838 0.761 0.852 0.724 0.803

5th Place (Salomon and Gazit, 2024) 0.829 0.755 0.852 0.740 0.771

TABLE 5 Comparison of fog detection performance on Daily Living dataset: The proposed HTSAN model achieves superior results (AUC = 0.88, F1 =
0.84) compared to Sigcha et al. (2022) and the top five models from Salomon and Gazit (2024).

Authors AUC F1 Accuracy Precision Recall

HTSAN (Proposed) 0.88 0.84 0.85 0.83 0.86

Sigcha et al. (2022) 0.65 0.71 0.66 0.62 0.83

1st Place (Salomon and Gazit, 2024) 0.850 0.777 0.860 0.733 0.826

2nd Place (Salomon and Gazit, 2024) 0.864 0.800 0.878 0.772 0.831

3rd Place (Salomon and Gazit, 2024) 0.843 0.768 0.855 0.726 0.815

4th Place (Salomon and Gazit, 2024) 0.838 0.761 0.852 0.724 0.803

5th Place (Salomon and Gazit, 2024) 0.829 0.755 0.852 0.740 0.771

TABLE 6 Comparison of fog detection performance on Hantao’s
Multimodal dataset: The proposed HTSAN model achieves superior
results (AUC = 0.96, F1 = 0.94) compared to Zhang L. et al. (2022),
Bajpai et al. (2023) and Hou et al. (2023).

Authors AUC F1 Accuracy Precision Recall

HTSAN
(Proposed)

0.96 0.94 0.98 0.93 0.95

Zhang et al.
(2022b)

0.95 0.93 0.97 0.92 0.94

Bajpai et al.
(2023)

0.86 0.73 0.86 0.73 0.73

Hou et al.
(2023)

0.845 0.84 0.85 0.87 0.81

score of 84%, and an accuracy of 85.0% are given in Table 5,
showing that the model is robust in real-world conditions
where gait patterns are less structured. The precision and
recall scores were also balanced, showing that the model is

effective in handling noisy inputs. The competing methods
failed to generalize across the diverse activity types, while
HTSAN’s augmentation and hybrid attention mechanism
provided better stability.
• Thedataset ofHantao’sMultimodal ismore complex compared
to the others because it incorporates various sensormodalities.
The rest of the models were overtaken by HTSAN, which
scored an AUC of 0.96, an F1-score of 94%, and accuracy
of 98% are given in Table 6. This performance level would
have been hard to achieve if the hybrid attention module
was not capable of fusing multimodal features while keeping
the temporal coherence. Whereas the competing models
lack effective fusion strategies as well as did not have data
integration cross-modality, so their performance becomes
lower as well.

The HTSAN consistently outperformed other state-of-the-art
models on all datasets. Thus, the presented model shows promising
results for a variety of data types: real-world, multimodal, and
task-induced. The contributions made by the use of CNN-based
feature extraction, BiLSTM for temporal modeling, and the hybrid
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FIGURE 13
Impact of removing key components on performance metrics (accuracy and AUC) across multiple datasets, highlighting the importance of each
component in overall model effectiveness.

attention mechanism were quite high. Thus, this paper further
shows HTSAN’s promise to improve freezing of gait detection and
Parkinson’s disease monitoring.

4.7 Ablation studies

To comprehensively evaluate the impact of key
components in the proposed Freezing of Gait (FoG) detection
framework, ablation experiments were conducted across four
datasets: tDCS FOG, DeFOG, Daily Living, and Hantao’s
Multimodal datasets (Figure 13). The focus was on Preprocessing
(Augmentation), Spatial Feature Extraction, Temporal Sequence
Modeling, and Attention Mechanism, aiming to determine
the contribution of each component to the final performance,
particularly the Area Under the Curve (AUC).

4.7.1 Impact of preprocessing (augmentation)
Preprocessing, specifically Data Augmentation, was tested by

disabling the augmentation step and using only the original datasets.
Removing the augmentation from the training process led to a
performance decline across all datasets. In the tDCS FOG Dataset,
the AUC decreased from 0.91 to 0.82, highlighting how the absence
of synthetic data limited the model’s ability to capture subtle gait
variations effectively. Similarly, the DeFOG Dataset saw a reduction
from 0.90 to 0.85, emphasizing the importance of diverse synthetic
data for better generalization in noisy, real-world environments.The

Daily Living Dataset also dropped from 0.88 to 0.83, showing how
long-term datasets greatly benefit from improved diversity in data
resulting from augmentation. The greatest drop was observed in
the Hantao’s Multimodal Dataset, in which the AUC dropped from
0.96 to 0.94, signifying the critical role of augmented data when
working with multimodal sensor inputs. The results obtained thus
indicate that Data Augmentation is crucial for the improvement
of robustness and performance, especially when the complexity or
variability of real-world increases in datasets.

4.7.2 Impact of spatial feature extraction
The importance of spatial feature extraction was tested by

replacing the U-Net-inspired convolutional encoder with a standard
CNN lacking skip connections and deeper feature extraction layers.
For the tDCS FOG Dataset, it shows a trend of performance drops
from 0.91 to 0.80, given that the standard CNN fails to carry fine-
grained spatial features used for effective gait analysis. The effect
would be more impactful in the case of the DeFOGDataset wherein
the AUC dropped from 0.90 to 0.78 for the need to have rich spatial
features in noise environments.

A similar trend was also noticed in the Daily Living Dataset,
where the AUC decreased from 0.88 to 0.80, indicating the need
for retaining detailed spatial features for long-term gait recordings.
In Hantao’s Multimodal Dataset, the AUC decreased from 0.96
to 0.85, which further shows the need for sophisticated spatial
feature extraction when dealing with multimodal sensor data. The
results confirm that the U-Net-based spatial extractor significantly
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TABLE 7 Summary of Compared Methods for Freezing of Gait Detection. This table provides an overview of various methods used for FoG detection,
highlighting their type, primary use case, key components, strengths, and limitations.

Method Type Primary use case Key components Strengths Limitations

Mo and Chan (2023) Deep Learning (CNN +
LSTM)

Predicting three types of
FOG events

CNN (Spatial Feature
Extractor), LSTM
(Temporal Modeling)

Effective at predicting
multiple types of FOG
events, good
performance across
various datasets

Requires extensive
labeled data,
computationally
expensive

Sigcha et al. (2022) Transformer based Deep
Learning

FOG detection with
accelerometers

Transformer Networks,
Accelerometer Data

Excellent at handling
noisy data and capturing
long-range dependencies

Requires high
computational power;
complex training,
Limited to waist-worn
sensor data

Salomon et al. (2024)
(1st–5th place results)

Machine Learning
Contest

Automated FOG
detection, time-of-day
effects

Various ML approaches
(e.g., ensemble models,
CNNs, Transformers),
wearable sensor data

Improved performance
through competition,
diverse algorithmic
approaches

Variability in participant
data, lack of external
validation

1st Place (Salomon and
Gazit, 2024)

Hybrid ML/DL Best-performing model
in contest

Combination of CNN,
RNN, and handcrafted
features

Highest accuracy in
detecting FOG

High computational cost

2nd Place (Salomon and
Gazit, 2024)

Deep Learning Second-best model Transformer-based
architecture with feature
extraction

Robust temporal
modeling

Overfitting risks

3rd Place (Salomon and
Gazit, 2024)

Ensemble Learning Third-best model Combination of decision
trees, CNNs, and RNNs

Balanced
precision-recall trade-off

Feature engineering
required

4th Place (Salomon and
Gazit, 2024)

Random Forest Fourth-best model Feature selection and RF
classifier

Computationally
efficient

Lower generalization
ability

5th Place (Salomon and
Gazit, 2024)

Statistical ML Fifth-best model Logistic regression with
time-series analysis

Simple and interpretable Limited complexity

Zhang et al. (2022b) Multimodal Data Fusion Detecting FOG in
Parkinson’s Disease

EEG, IMU, and motion
capture data integration

Multimodal analysis
improves accuracy

Requires multiple sensor
modalities

Bajpai et al. (2023) Multimodal Data Fusion Improved prediction of
FOG

Fusion of audio, video,
and sensor data

High robustness to noise,
multimodal integration

Complex
implementation, high
data requirements

Hou et al. (2023) Wireless Multi-Modal
Sensors

Real-time FOG
detection and alerting

Gel-free flexible sensors,
edge computing, deep
learning

Wearable, real-time,
non-invasive detection

Edge AI limitations,
battery constraints

Proposed Hybrid
Temporal-Spatial
Attention Network
(HTSAN)

Deep Learning (CNN +
BiLSTM + Attention)

FOG detection across
multimodal datasets

CNN (Spatial Feature
Extraction), BiLSTM
(Temporal Modeling),
Hybrid Attention
Mechanism

Superior performance
across multiple datasets,
enhanced noise
robustness, effective
multimodal fusion

Computationally more
expensive, requires
multimodal data

improves detection accuracy by preserving fine details crucial for
identifying subtle gait patterns.

4.7.3 Impact of temporal sequence modeling
In order to evaluate the significance of temporal sequence

modeling, the BiLSTM module was replaced with a standard
1D-CNN, which cannot learn temporal dependencies. The tDCS
FOG Dataset was found to be decreased to 0.91 from a 0.76,
while the DeFOG Dataset presented the most notable reduction,
0.90–0.74, since this latter dataset did not have a model of the time

and had restricted the gait variations found in real worlds from
being handled.

In the Daily Living Dataset, the AUC plunged from 0.88 to
0.72 while emphasizing the requirement of temporal models for
longer observation periods. Also, the loss of the capacity to manage
multimodal datamadeHantao’sMultimodal Dataset have a decrease
in AUC, from 0.96 to 0.80. These results confirm that BiLSTM
layers are important for capturing both short-term and long-term
dependencies, especially in datasets with extended gait recordings
and real-world variability.
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4.7.4 Impact of attention mechanism
The effect of the attention mechanism was tested completely

disabling it such that the model did not employ a focused strategy
for attention. AUC in tDCS FOG Dataset changed from 0.91 to
0.81, while it indicated a little benefit coming from the inclusion
of attention mechanisms even in a controlled dataset. A more
prominent dropwas shown by theDeFOGDataset from0.90 to 0.79,
given that the presence of noisy gait patterns resulted in difficulty
while dealing with noise without attention mechanisms.

For the Daily Living Dataset, where long-term sequential
data is dominant, AUC dropped from 0.88 to 0.82, showing
the importance of attention mechanisms in focusing on critical
gait phases. The Hantao’s Multimodal Dataset showed the most
significant drop, from 0.96 to 0.88, emphasizing the importance
of attention when working with complex, multimodal sensor data.
These results demonstrate that attention mechanisms significantly
enhance performance, particularly in datasets with high variability,
extended sequences, or multimodal complexity.

The ablation studies across all datasets reinforce the critical
importance of each architectural component in the proposed
FoG detection framework. Preprocessing (Data Augmentation)
was essential for generalization, especially in complex datasets
like DeFOG and Hantao’s Multimodal. The U-Net-based spatial
extractor contributed significantly to improved accuracy by
preserving detailed features crucial for FoG detection. Temporal
sequence modeling, particularly using BiLSTM, proved critical
in datasets with long-term gait recordings. Finally, the attention
mechanism enhanced performance by focusing on essential gait
phases and improving noise resilience. The experimental results
demonstrate that the choice of dataset significantly affects model
performance. Models trained on tDCS FOG performed best in
controlled settings but required enhancements to generalize to
real-world data. Attention and BiLSTM proved most effective for
capturing both short-term and long-term gait patterns. Future
work should focus on combining self-supervised learning with
multimodal fusion to further improve generalization across datasets.

4.8 Comparative analysis

It states how the proposed FoG detection method is
comprehensively comparedwith state-of-the-artmodels from recent
literature, selected with relevance and based on performance to gait
analysis using wearable sensor data (Table 7).

These methods have been selected for their effectiveness in
controlled and real-world FoG detection scenarios. Their diverse
architectures and capabilities ensure a thorough comparison
against the proposed model’s performance across different datasets
and experimental conditions. Results have been analyzed from
experimental work basing them on four datasets: tDCS FOG,
DeFOG, Daily Living, and Hantao’s Multimodal. All these
performances have been compared in terms of standard metrics
such as AUC, accuracy, F1-score, precision, and recall. The results
show variations for each dataset, relating to their complexity in the
environment in which the data was collected, outlining both the
robustness and limitations for each method. The critical analysis of
the proposed work on different datasets is given in Table 4.

HTSAN, when applied across all four datasets, showed steady
and significant improvements in performance relative to the other
methods. This architecture, by incorporating CNN-based spatial
feature extraction, BiLSTM sequence modeling, and a hybrid self-
attention mechanism, made it easier to capture the sensor data both
spatially and temporally. It enhanced the attention mechanism to
further pay more focus to the significant gait phases of the models
for better classification.

5 Conclusion

This paper introduces a hybrid deep learning approach designed
to use wearable sensor data to identify FoG in individuals
with Parkinson’s disease (PD). The integrated model achieves
increased performance across several datasets by using CNNs for
the extraction of spatial features, BiLSTM networks for temporal
analysis, and an attention mechanism for better interpretability.

Evaluation on tDCS FOG, DeFOG, Daily Living, and Hantao’s
Multimodal datasets proved the robustness and generalizability of
the model, which showed significant improvements in accuracy,
F1-score, and AUC compared to existing state-of-the-art methods.
The study places a strong emphasis on advanced preprocessing
techniques, including data augmentation, sensor fusion, and
normalization, to address the challenges of noise, inter-subject
variability, and imbalanced datasets. Ablation experiments further
validated the critical contributions of individualmodel components,
particularly the attention mechanism and temporal modeling, to
enhance detection accuracy and robustness. The framework is
optimized for real-time deployment and is thus well-suited for
clinical and home-based applications, providing a scalable and
reliable tool for FoG monitoring and management. Future research
should focus on integrating self-supervised learning approaches
and exploring multimodal data fusion to enhance the framework’s
adaptability across varied environments and patient populations.
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