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Over the past several decades, significant progress has been made in
our ability to achieve guideline-based cerebral physiologic targets for the
management of moderate-to-severe traumatic brain injury (TBI). However,
despite these advancements, there has been limited improvement in the
long-term outcomes associated with this condition. It has been suggested
that this is in part due to the generalized approach of current Brain
Trauma Foundation guidelines. It has been demonstrated that significant
heterogeneity in cerebral physiologic response to TBI exists between patients,
and that it involves highly dynamic physiologic mechanisms which vary
across a patient’s time in the ICU. Therefore, an individualized management
approach, that accounts for individual phenotype, injury heterogeneity, and
the dynamic nature of cerebral physiology, is urgently needed. Recently,
multiple personalized physiologic metrics, based on cerebrovascular reactivity
optimization, have been proposed as potential tools to help address this
increasingly important issue. These include the cerebral perfusion pressure
optimum (CPPopt), mean arterial pressure optimum (MAPopt), bispectral index
optimum (BISopt), and individualized intracranial pressure (iICP) thresholds.
These metrics aim to shift neurocritical care management from static,
population-based targets to dynamic, personalized targets that are tailored
to a patient’s real-time cerebral physiologic needs. In this narrative review,
we will cover the topic of continuously derived cerebrovascular reactivity-
based personalized physiologic metrics in neurocritical care, including the
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current states of the various existing techniques, their limitations, and future
directions.
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Introduction

Neurocritical conditions, such as traumatic brain injury (TBI),
are a leading cause of death and disability globally (Zhong et al.,
2025). The devastating effects of such neurocritical conditions are
not only a result of the immediate structural damage that occurs
at the time of the initial insult, termed primary brain injury, but
also the downstream derangements in cerebral physiology that
occur in response to this initial damage. Such secondary brain
injury results in ongoing neuronal death in the days, months,
or even years following the cerebral injury and significantly
impedes recovery (Maas et al., 2017). Since very little can be done
to reverse primary brain injury, neurocritical management is almost
exclusively limited to minimizing secondary injury.

Due to the fixed volume of the cranial cavity, increases in
intracranial contents, such as from brain bleeding or swelling, can
result in significant elevations in intracranial pressure (ICP). This
can pose significant risks to the cerebral environment, such as
tissue herniation and disruptions in cerebral blood flow (CBF).
The latter can be explained by the inherent relationship that
exists between ICP and the pressure driving CBF, termed cerebral
perfusion pressure (CPP): CPP = arterial blood pressure (ABP) –
ICP. Normally, CBF is kept relatively constant by various cerebral
autoregulatory mechanisms; however, these mechanisms often
become impaired following TBI, exposing the brain to pressure-
passive changes in CBF (Toth et al., 2016).

Given the brain’s significant metabolic demand–accounting
for approximately 25% of basal metabolism despite comprising
only about 2.5% of the body’s weight–and its limited capacity
to store energy, cerebral tissue is highly vulnerable to ischemic
damage (Lee et al., 2000). Therefore, careful monitoring and timely
therapeutic interventions are essential to prevent critically elevated
ICP or insufficient CPPwhenmanaging neurocritical patients. Since
cerebral hyperperfusion can also be harmful to the brain, through
blood-brain barrier breakdown (Fantini et al., 2016), grossly elevated
CPP should also be avoided.

Extensive literature has demonstrated that intracranial
hypertension contributes significantly to poor outcomes in head
injured patients and that aggressive ICP/CPP management is
associated with better recovery (Alali et al., 2013; Chesnut et al.,
2012; Farahvar et al., 2012; Gerber et al., 2013; Talving et al., 2013).
Therefore, standard care for moderate-to-severe TBI, outlined by
the Brain Trauma Foundation (BTF) guidelines (Carney et al., 2017;
Hawryluk et al., 2019), primarily revolves around an ICP/CPP-
directed approach. The monitoring of ABP and ICP lies at the
cornerstone of such management, with ABP typically monitored
using an arterial blood line and pressure transducer and ICP
monitored invasively using either an external ventricular drain
(EVD) or an implantable microtransducer device (Raboel et al.,

2012). In recent years, non-invasive ICPmonitoringmodalities have
also been developed; however, invasivemonitoring remains themost
accurate and thus the recommended modality in the neurocritical
care setting (de Moraes et al., 2023).

Current BTF guidelines recommend therapeutically
maintaining ICP below a threshold of 20 or 22 mmHg and
CPP within a target range of 60–70 mmHg (Carney et al.,
2017; Hawryluk et al., 2019). However, it should be noted that
there currently exists a level of ambiguity around whether this
60–70 mmHg CPP range is truly a target or rather a minimum
threshold. A variety of therapeutic options are available to help
clinicians achieve these targets, including induced hyperventilation,
infusion of hyperosmolar agents, administration of sedatives,
analgesics, and paralytics, drainage of cerebrospinal fluid,
decompressive craniectomy, and administration of corticosteroids
(Rangel-Castilla et al., 2008a). However, it should be noted that due
to the inherent risks associated with ICP lowering therapeutics,
clinicians must balance the importance of achieving guideline
recommended physiologic targets with the iatrogenic risks of such
therapies (Carney et al., 2017; Freeman, 2015).

Shortcomings of current practices

Over the past several decades, our capabilities to achieve
guideline-based physiologic targets have drastically improved;
however, despite such advances, the poor outcomes associated
with moderate-to-severe TBI have remained relatively unchanged
(Maas et al., 2017; Steyerberg et al., 2019; Donnelly et al., 2019).
This discrepancy has been attributed to the to the fact that these
guideline-based targets were identified through population-based
analyses that evaluated the association between grand-averaged
cerebral physiology and long-term outcomes (Anonymous, 2000),
and therefore, fail to account for individual-phenotype, injury
heterogeneity, and the dynamic nature of cerebral physiology
(Stocchetti et al., 2017). This is further supported by recent studies
that have suggested that existing population-based prognostic
models account for less than half of the outcome variance seen in
TBI (Zeiler et al., 2021a; Dijkland et al., 2021; Steyerberg et al., 2008).

The cerebral physiologic response to brain trauma varies
drastically between individuals (Stocchetti et al., 2017; Zeiler et al.,
2021a; Le Roux et al., 2014; Zeiler et al., 2020a; Okonkwo et al.,
2017; Depreitere et al., 2021). A variety of patient-specific factors
influence how one’s brain responds to neurological insult. For
example, older patients have been shown to have worse long-
term outcomes than younger patients (Czosnyka et al., 2005). Sex-
related differences also exist. A 2008 study by Czosnyka et al. found
that females tended to have higher mortality rates than males,
but only when looking at patients who were less than 50 years of
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age (Czosnyka et al., 2008). More recently, Åkerlund et al. were
even able to distinguish six distinct TBI endotypes using various
demographic, physiologic, and clinical factors (Åkerlund et al.,
2022). Moreover, the authors demonstrated that complementation
of existing prognostic models with these endotypes drastically
improved outcome prediction capabilities. Genetic factors have also
been shown to contribute to post-TBI injury-response variability.
Genetic polymorphisms in several genes, affiliated with a wide range
of functions such as neural repair, vascular response, inflammation,
neurotransmission, and blood-brain barriermaintenance, have been
implicated with long-term outcomes post-TBI (Gomez et al., 2021a;
Zeiler et al., 2021b; Lakshmipathy et al., 2024).

Furthermore, the effectiveness of current therapeutic options
have been shown to differ significantly between various patient
subgroups (Zeiler et al., 2021a; Froese et al., 2020a). Recent
literature has also shown that a significant amount of cerebral
physiologic insult burden does not respond to these therapeutics
(Donnelly et al., 2019; Froese et al., 2020b; Zeiler et al.,
2019a; Froese et al., 2021a; Tang et al., 2015; Dias et al., 2014;
Timofeev et al., 2008; Wettervik et al., 2020). Therefore, it is vital
for moderate-to-severe TBI management to move away from
its current “one treatment fits all” paradigm and incorporate
personalized approaches that can be tailored to the individual
patient. A promising way forward is through the development
of personalized therapeutic targets that are patient-specific and
allow clinicians to address a patient’s individual physiologic needs.
Moreover, since it is likely that optimal therapeutic interventions and
targets not only vary from patient to patient, but also throughout a
patient’s time in the intensive care unit (ICU), personalized targets
that can be continuously derived at patient-bedside are particularly
promising.

Cerebral autoregulation

CPP represents the driving pressure behind CBF. Since both
ABP and ICP are non-static parameters, CPP is subject to frequent
fluctuations. Without any protective mechanisms, these fluctuations
would expose the brain to pressure-passive changes inCBF, resulting
in hypoperfusion during low systemic pressures and hyperperfusion
during high systemic pressures (Armstead, 2016). However, through
a critical physiological mechanism termed cerebral autoregulation,
cerebral vessels are able to self-regulate their tone in response to
changes in CPP, as well as neurogenic, myogenic, and metabolic
factors, in order to maintain a relatively stable CBF despite changes
in systemic pressure (Rangel-Castilla et al., 2008b). This process
is crucial for protecting the brain from both hypo- and hyper-
perfusion related injury, and thus has become one of the most
explored continuous cerebral physiologies in neurocritical care.

Traditionally, cerebral autoregulation, and its limits, has been
understood through the lens of the Lassen autoregulatory curve
(Armstead, 2016; Lassen, 1959), shown in Figure 1, which suggests
that, in the non-pathological state, cerebral autoregulation is able to
maintain a constant CBF between mean arterial pressures (MAP)
of approximately 60 and 160 mmHg, beyond which CBF becomes
deranged. However, it should be noted that Lassen’s model was
developed using data averaged from multiple individuals under
various pharmacologic and pathologic conditions. As a result,

some have argued that the Lassen curve overstates the brain’s
ability to maintain stable CBF and that cerebral autoregulation
is more pressure-passive and variable than originally thought
(Brassard et al., 2021). Furthermore, there is experimental evidence
suggesting that the autoregulatory plateau is much narrower
(∼5–10 mmHg) than Lassen originally proposed (Tan, 2012), that
autoregulatory responses are asymmetric, being more effective
during increases than decreases in pressure (Numan et al., 2014),
and that the limits of autoregulation varywidely between individuals
(Drummond, 1997). Regardless, this autoregulatory mechanism
often becomes impaired in neurological conditions such as TBI,
significantly reducing the range of systemic blood pressures
over which the mechanism is capable of keeping CBF constant
(Toth et al., 2016; Lassen, 1959). This can result in pressure-passive
state where CBF fluctuates in accordance with systemic pressure,
exposing the brain to further secondary brain injury.

The intactness of cerebral autoregulation can be estimated using
flow-based indices, which leverage transcranial Doppler (TCD)
ultrasonography measured cerebral blood flow velocity (CBFV).
This includes theMean Flow Index (Mx) and the Systolic Flow Index
(Sx), which are calculated as the correlation between CPP and mean
or systolic CBFV, respectively (Czosnyka et al., 1996). However, the
reliance of these flow-based indices on continuous TCDmonitoring,
which is technically challenging due to probe fixation, operator
dependence, and susceptibility to movement artifacts, makes them
unpractical for long-term monitoring in the clinical setting.

Cerebrovascular pressure reactivity

A closely related, but distinct, mechanism is cerebrovascular
pressure reactivity, which we will, for simplicity, just refer to as
cerebrovascular reactivity (CVR) throughout the rest of this review.
CVR refers to the ability of the cerebral vasculature to self-regulate
smooth muscle tone in response to changes in transmural pressure
and represents an important component of cerebral autoregulation
(Budohoski et al., 2012). Continuous monitoring of CVR at the
patient bedside is possible through the calculation of a Pearson
correlation between a surrogate for pulsatile cerebral blood volume
(i.e., ICP) and a driving pressure of CBF (i.e., MAP or CPP)
(Budohoski et al., 2012; Zeiler et al., 2017a; Zeiler et al., 2020b;
Zweifel et al., 2008). Generally, a negative or near zero correlation
coefficient indicates intact reactivity (Sorrentino et al., 2012). This
is because when CVR is intact, it counteracts changes in driving
pressure, resulting in either no change in CBF or small opposing
changes. When CVR is impaired, typically a positive correlation
coefficient is observed, since CBF will directly mirror changes in
driving pressure.

Several indices can be used to evaluate CVR; however, ICP-
based indices are particularly convenient due to the widespread use
of ICP monitoring in the neurocritical care setting (Zeiler et al.,
2020c). The pressure reactivity index (PRx), which measures the
Pearson correlation between slow vasogenic waves of ICP and MAP
(Czosnyka et al., 1997), has been the most widely studied. Examples
of PRx derivation are presented in Figure 2. However, other ICP-
based indices also exist, such as the pulse amplitude index (PAx),
which evaluates the correlation between the fundamental pulse
amplitude of ICP (AMP) and MAP (Radolovich et al., 2011), and
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FIGURE 1
Lassen autoregulatory curve. Green line represents the curve in the physiologic state. Red dashed line represents the curve in a pathological state. CBF,
cerebral blood flow; MAP, mean arterial pressure; mmHg, millimeters of mercury.

the RAC index, which assesses the correlation (R) betweenAMP (A)
and CPP (C) (Zeiler et al., 2018a).

Although ICP-based indices offer a practical and reliablemethod
for assessing CVR at the patient bedside, their dependency on
invasive ICP monitoring restricts their use in the broader ICU
population, where ICP monitoring is often not clinically indicated.
To address this limitation, the cerebral oximetry index (COx_
a) has been proposed as an entirely non-invasive alternative to
ICP-based CVR indices (Brady et al., 2010a). COx_a is calculated
using near-infrared spectroscopy (NIRS)-based regional cerebral
oxygen saturation (rSO2) as a surrogate for cerebral blood volume,
and MAP, which can be measured non-invasively using finger
cuff technology, as a surrogate for driving pressure (Gomez et al.,
2021b; Gomez et al., 2020). Studies have demonstrated that COx_a
provides comparable representations of CVR to PRx (Zeiler et al.,
2017a; Zeiler et al., 2017b; Zweifel et al., 2010; Mathieu et al.,
2020; Gomez et al., 2023), and even captures aspects of the Lassen
autoregulatory curve (Brady et al., 2010a; Sainbhi et al., 2021;
Lee et al., 2012). This positions COx_a as a potential tool for
non-invasively monitoring CVR in non-TBI populations. However,
COx_a remains a problematic index due to the limited penetration
depth of NIRS, restricting assessment to superficial cortical regions,
and the tendency of NIRS devices to output low-frequency, non-
pulsatile signals (usually ∼1–2 Hz) (Sainbhi et al., 2023). This often
results in limited variability in rSO2 and COx_a values near zero,
thereby complicating its interpretation. It should be noted that a
variant form that uses CPP in place of MAP also exists (COx);
however, due to its use of CPP, it cannot bemeasured non-invasively.

Over the past decade, impaired CVR has been shown to be
associated with secondary brain injury following TBI, with patients
exhibiting such impairments for significant portions of their ICU

stays (Donnelly et al., 2019; Sorrentino et al., 2012; Zeiler et al.,
2020c; Czosnyka et al., 1997; Zeiler et al., 2018b; Zeiler et al.,
2019b). Numerous studies have also established a strong association
between impaired CVR and poor long-term outcomes post-TBI
(Donnelly et al., 2019; Zeiler et al., 2020c; Zeiler et al., 2019b),
with both mean values of CVR surrogate metrics and duration of
impairment during the acute phase having been demonstrated to be
significantly associated with 6-month outcomes (Sorrentino et al.,
2012; Zeiler et al., 2019b; Adams et al., 2017; Bennis et al., 2020).
These associations have also been demonstrated in the pediatric
population as well (Appavu et al., 2021; Agrawal et al., 2025;
Smith et al., 2023). The literature highlights the importance of
preserving intact CVR, and has even led current neurocritical
care consensus statements to include CVR monitoring as part of
their recommendations for moderate-to-severe TBI management
(Le Roux et al., 2014; Czosnyka et al., 2014). However, it should be
noted that these recommendations remain weak due to insufficient
evidence demonstrating the clinical significance of preserving intact
CVR. Furthermore, no specific indices or thresholds have been
definitively identified as optimal for guiding clinical management.

CVR optimization, which should theoretically help minimize
secondary brain insult, has been used as the basis for the
development of various personalized cerebral physiologic targets.
Currently, a total of four personalized targets, that can be
derived continuously (or have the potential to be), have been
developed. These include the cerebral perfusion pressure optimum
(CPPopt), mean arterial pressure optimum (MAPopt), bispectral
index optimum (BISopt), and individualized intracranial pressure
(iICP) thresholds. All four personalized targets use the relationship
between some cerebral physiologic metric and CVR to determine
patient-specific treatment targets that theoretically optimize CVR
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FIGURE 2
PRx calculated as the Pearson correlation coefficient between 30 consecutive 10-s averaged windows of ICP and MAP. Time trends display the
corresponding 300-s windows of 10-s averaged ICP and MAP data used to generate the correlation coefficients. ICP, intracranial pressure; MAP, mean
arterial pressure; mmHg, millimeters of mercury; PRx, pressure reactivity index. University of Manitoba Health Research Ethics Board approval for
generation of this image - H2024:266.

status. It should be noted that, while an extensive amount of
literature on CPPopt exists, the remaining three personalized targets
are currently only supported by preliminary data from a limited
number of research groups.Throughout the rest of this paper, wewill
provide a general overview of all four existing personalized cerebral
physiologic targets.

Cerebral perfusion pressure optimal
(CPPopt)

In 2001, Czosnyka et al. conducted a groundbreaking study
investigating the relationship between CVR and cerebral physiology
(Czosnyka et al., 2001). They found that CPP and Mx exhibited a U-
shaped relationship, with both low and high CPP being associated
with impaired CVR. One year later, based on this observation,
Steiner et al. hypothesized that it would be feasible to identify a
patient-specific CPP value where CVR is most optimal, which they
termed CPPopt (Steiner et al., 2002). To achieve this, a patient’s
CPP data was divided into 5 mmHg bins and an average PRx was
calculated for each bin.Thebins of datawere then plotted using error
bars. When a U-shaped curve was observed, the CPP bin with the
lowest average PRx was manually identified as the patient’s CPPopt.

In a cohort of 114 head-injured patients, the authors were
able to identify a CPPopt in 60% of patients (Steiner et al., 2002).
However, in 27% of patients without an identifiable CPPopt, a
partial ascending or descending curve was observed, suggesting
that a CPPopt could potentially have existed outside of the patient’s
available data range. Among patients with an identifiable CPPopt,

a strong correlation between the absolute deviation of mean CPP
from CPPopt (ΔCPPopt) and outcome (r = −0.51, p < 0.00001) was
observed, suggesting that having a mean CPP value further from
one’s identifiedCPPopt is associatedwithworse outcomes. BothCPP
above (r = 0.53, p < 0.001) and below (r = −0.40, p < 0.05) CPPopt
were linked to poorer outcomes, indicating that both inadequate and
excessiveCPP are detrimental to one’s cerebral autoregulatory status.

The feasibility of deriving CPPopt using this methodology
was later validated in both subarachnoid hemorrhage (SAH) and
intracerebral hemorrhage (ICH) patients (Bijlenga et al., 2010;
Rasulo et al., 2012; Santos et al., 2011). In a 2010 study by Bijlenga
et al., it was observed that, when comparing CPPopt curves during
baseline and during episodes of vasospasm, CPPopt values were
generally higher during vasospasm. This suggested that CPPopt is
not a static parameter, but rather changes overtime depending on a
patient’s cerebrovascular state (Bijlenga et al., 2010).

Continuous CPPopt derivation

The original CPPopt methodology laid out by Steiner et al.
suffered from two major limitations that prevented any potential
clinical application: its dependency on completed data recordings,
preventing real-time derivation, and its reliance on manual
inspection of the CPP vs. PRx relationship. In 2012, Aries
et al. addressed these shortcomings by developing an automated,
continuously updating CPPopt algorithm and demonstrating the
feasibility of continuously deriving CPPopt (Aries et al., 2012a).
Using the same general principles laid out by Steiner et al., the
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FIGURE 3
Example CPPopt curves and their respective 4-h windows of CPP and PRx data. All three examples were generated from the same patient’s dataset.
Error bars represent 95% confidence intervals for 5 mmHg CPP bins. The blue curves represent the fit parabolic curves. The vertical red dashed lines
represent the identified CPPopt values. The time trends present the minute-by-minute CPP and PRx data for the 4-h windows used to generate each
curve. a.u., arbitrary units; CPP, cerebral perfusion pressure; CPPopt, cerebral perfusion pressure optimum; mmHg, millimeters of mercury; PRx,
pressure reactivity index. University of Manitoba Health Research Ethics Board approval for generation of this image - H2024:266.

authors leveraged an automated curve fitting method and a sliding
4-h time window to calculate CPPopt on a minute-by-minute basis.
For amore detailed summary of this algorithm, the interested reader
is referred to the original article. Example curves generated from
various 4-h windows of data are presented in Figure 3.

When applied to a cohort of 327 severe TBI patients, CPPoptwas
identifiable, on average, during 55%of a patient’s recording period. It
was found that the deviation between continuously updatingmedian
CPP and CPPopt was significantly associated with patient outcomes
(Χ2 = 45, p < 0.001) and demonstrated a more robust association
with outcomes than either guideline-based CPP.

Dias et al. later demonstrated the feasibility of real-timeCPPopt-
targeted management (Dias et al., 2015). In their study, CPPopt
was continuously derived at the bedsides of 18 severe TBI patients,
using the algorithm developed by Aries et al., and used to guide
CPP management whenever possible. A CPPopt was available in
approximately 59% of the total recording time. When patients were
dichotomized based on 6-month Glasgow Outcome Scale (GOS)
score into those with adverse (GOS < 3) and favorable (GOS ≥ 3)
outcomes, the mean ΔCPPopt was found to be of greater magnitude
in the adverse group (p = 0.04).

Despite the significant advancements introduced by the Aries
algorithm, key limitations remained. The algorithm suffered
from a relatively low derivation yield, averaging around 55%,
and significant CPPopt output instability, with values often
fluctuating drastically over short periods. In 2014, Depreitere et al.
attempted to address these limitations by leveraging amulti-window

weighted approach (Depreitere et al., 2014). Instead of solely using
a fixed 4-h window, the authors applied the general methodology to
time windows of 1, 2, 4, 6, 8, 12, and 24 h. Plots were then weighed
based on two key criteria: the better a U-shaped curve could be fit
(as defined by R2 heuristic) and the lower the CVR index at CPPopt,
the greater the weight. A weighted average of the plots was then
used to determine the final CPPopt value. This process was done on
a minute-by-minute basis. This algorithm is included in the widely
used IntensiveCareMonitoring “Plus” (ICM+) software (Cambridge
Enterprise Ltd., Cambridge, UK, http://icmplus.neurosurg.cam.ac.
uk) as the Optimal Flex method.

When applied to a cohort of 180 patients, this multi-window
weighted methodology was able to identify a CPPopt in 95%
(interquartile range [IQR]: 90%–97%) of monitoring time, a drastic
improvement over the previous work. Regarding outcome, it was
found that the proportion of time spent within 5 mmHg of CPPopt
(within the range from 5 mmHg below CPPopt to 5 mmHg above
CPPopt) was statistically higher for survivors than non-survivors
(25.6% vs. 19.6%, p = 0.01). This finding was mirrored by a
later study by Young et al. which found that time spent within
10 mmHg of CPPopt was greater in survivors than non-survivors
(p = 0.02) (Young et al., 2016).

Three years later, Liu et al. further refined this multi-window
weighted methodology by implementing a more sophisticated
windowing strategy that incorporated 36 overlapping windows,
ranging between 2 and 8 h in increasing 10-min increments, and
an improved weighting system that favored shorter windows, lower
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curve fit error, and the presence of parabolic shape (Liu et al., 2017a).
Additionally, the authors provided an in depth comparison between
continuous CPPopt derivation using a multi-window weighted
approach and the earlier fixed 4-h sliding window method. It
was demonstrated that not only does the multi-window weighted
approach substantially improve CPPopt derivation yield (p < 0.05)
but also significantly enhance CPPopt stability, as observed as
a reduction in the standard deviation (SD) of sample-to-sample
differences (p < 0.05).

Later, Beqiri et al. introduced further refinements to this
continuous CPPopt algorithm to improve its reliability and
stability (Beqiri et al., 2023). Recognizing the challenges of the
previous approaches, the authors implemented stricter curve-
fitting criteria, increased the robustness of the weighting heuristics,
and incorporated additional filtering steps to reduce false-positive
CPPopt values caused by non-physiological variations in ICP and
MAP. These refinements led to a significantly more stable CPPopt
output (p < 0.0001), with fewer abrupt changes over short periods,
whilemaintaining its ability to predictmortality. However, this came
at the cost of a slightly reduced derivation yield.

CPPopt time trends generated using the various derivation
methodologies mentioned here are presented in Figure 4. It is
notable that, despite all of the methodologies aiming to measure
the same physiologic mechanism, a considerable amount of
variability exists between their outputs due to differences in
parameter settings. For example, it is evident that the multi-window
weighted methodologies result in superior CPPopt signal continuity
compared to the fixed-window approach. The improved CPPopt
stability of the Beqiri et al. methodology can also be observed.
However, it should be noted that, despite this, the various derivation
methods perform similarly with regard to outcome prognostication
(Liu et al., 2017a; Beqiri et al., 2023).

Limits of reactivity

The upper limit of reactivity (ULR) and lower limit of reactivity
(LLR) refer to the critical CPP thresholds beyond which CVR
becomes compromised.These limits can be identified by plotting the
U-shaped CPP vs. CVR relationship and identifying the CPP values
at which the curve crosses a predefined CVR threshold, representing
the transition point from intact to impaired reactivity. The CPP
range between the LLR and ULR theoretically represents a range
where CVR is intact. Up until this point, all studies on CPPopt
considered only a single CPP target, ignoring the possibility that a
broader CPP range could provide similar autoregulatory benefits.

In a 2017 study, Donnelly et al. investigated these
limits of reactivity and their associations with long-
term outcomes (Donnelly et al., 2017). The LLR and ULR were
continuously calculated alongside CPPopt using a PRx threshold of
+0.30. Time spent with CPP below the LLR was found to be strongly
associatedwith both unfavorable outcome andmortality (p < 0.001).
On the other hand, time spent with CPP greater than the ULR was
only associated with unfavorable outcome (p < 0.02). Interestingly,
while time spent with CPP more than 10 mmHg below CPPopt was
strongly associated with increased mortality (p < 0.001), time spent
with CPP more than 10 mmHg above CPPopt was not and instead
exhibited an inverse relationship (p < 0.001). This suggests that

maintaining CPP above CPPopt, provided it does not exceed the
ULR, may not necessarily lead to worse outcomes. These findings
support the use of a CPP range rather than a singular CPP target.

Association with outcome

Overall, the relationship between CPPopt and long-term patient
outcomes is well established. Studies have consistently demonstrated
that larger deviations from CPPopt, as well as more time spent
deviating from CPPopt, are strongly associated with poor long-
term outcomes (Steiner et al., 2002; Aries et al., 2012a; Dias et al.,
2015; Depreitere et al., 2014; Young et al., 2016; Liu et al., 2017a;
Zeiler et al., 2019c; Lang et al., 2015; Riemann et al., 2020;
Petkus et al., 2020). Additionally, CPPopt has been shown to display
a more robust association with patient outcomes than current
guideline-based CPP targets (Aries et al., 2012a). However, while
there has been a generally unanimous agreement that spending
time below CPPopt is associated with poor outcomes, there has
been mixed evidence regarding the impact of spending time
above CPPopt.

Some studies, including the original study by Steiner et al.,
found that both CPP above and below CPPopt are associated
with mortality (Steiner et al., 2002; Depreitere et al., 2014), while
others have suggested that hyperperfusion is only associated with
severe disability and not mortality (Aries et al., 2012a; Liu et al.,
2017a; Lang et al., 2015). Interestingly, there have been a handful
of studies that have found that time with CPP above CPPopt
is not associated with poorer outcomes (Young et al., 2016;
Donnelly et al., 2017; Zeiler et al., 2019c; Stein et al., 2023;
Svedung Wettervik et al., 2023a). A study by Stein et al. even
found that % time spent with CPP above CPPopt was generally
associated with improvement in long-term outcome (Stein et al.,
2023). Similarly, a study by Petkus et al. found that, when CPPopt
is within a range of 60–80 mmHg, maintaining CPP in a slightly
hyperperfused state (up to 10 mmHg above CPPopt) was associated
with better outcomes (Petkus et al., 2020).

The association between CPPopt and outcomes has also been
demonstrated in pediatric populations. In 2018, Lo et al. found that
there was significantly greater time spent with CPP near CPPopt
among survivors and patients with favourable outcomes (p = 0.04
and p = 0.01, respectively) (Lo et al., 2018). Two later studies
similarly found that time spent with CPP more than 10 mmHg
below CPPopt was significantly associated with poorer outcomes
(Svedung et al., 2024; Velle et al., 2023). Interestingly, a study by
Lennell et al. found that, in contrast to younger patients, elderly
patients do not demonstrate better outcomes when actual CPP is
maintained near CPPopt (Lenell et al., 2024).

Associations with physiology,
demographics, and clinical factors

CPPopt has been shown to demonstrate associations with
a wide variety of patient-specific factors. Older age has been
shown to be associated with greater CPPopt values, suggesting that
elderly patients may require greater cerebral perfusion in order
to maintain intact CVR (Lenell et al., 2024; Young et al., 2021).
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FIGURE 4
Time trends of continuously derived CPPopt using the 4-h fixed window method (Fixed), the multi-window weighted method (MW), and the enhanced
multi-window weighted method (MWE). The time trends display data at a minute-by-minute resolution. a.u., arbitrary units; CPP, cerebral perfusion
pressure; CPPopt, cerebral perfusion pressure optimum; mmHg, millimeters of mercury; PRx, pressure reactivity index. University of Manitoba Health
Research Ethics Board approval for generation of this image - H2024:266.
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Longer time since injury and presence of diffuse axonal injury
have also been linked with higher CPPopt values (Young et al.,
2021). Similarly, this may suggest that increased cerebral perfusion
is needed to help maintain cerebral protective measures in patients
in the chronic recovery phase or who have more global injury.
CPPopt yield has also been shown to be affected by various
clinical, physiologic, and demographic factors. The absence of
slow ABP waves, greater PRx, lower dose of sedative/analgesic
drugs, higher dose of vasopressor drugs, absence of neuromuscular
blockers, and having had a decompressive craniectomy have all
been identified as independent predictors for the absence of
a distinct CPPopt curve (Weersink et al., 2015). It has also
been suggested that short term moderate hypocapnia contributes
to improved CPPopt identification (Haubrich et al., 2011). The
following factors have been found to be not associated with
CPPopt yield: age, admission Glasgow Coma Scale (GCS), gender,
pupil response, prehospital hypoxia or hypotension, Marshall
computed tomography (CT) score, decompressive craniectomy,
injury severity score, or 24-h therapeutic intensity level (TIL) score
(Liberti et al., 2021).

Having actual CPP below CPPopt has been shown to be
associated with reduced CBF (Johnson et al., 2017). Similarly,
blood pressure variability is strongly related to deviation
from CPPopt (Svedung et al., 2020). Brain tissue oxygenation
(PbtO2) levels have also been associated with deviation from
CPPopt (Svedung Wettervik et al., 2023b; Megjhani et al., 2023).
Interestingly, a nonlinear relationship between PbtO2 and ΔCPPopt
(p < 0.001) has been observed, where PbtO2 decreases when
ΔCPPopt was negative (CPP below CPPopt), but remained stable
when ΔCPPopt was positive (CPP above CPPopt) (Megjhani et al.,
2023). This suggests that hypoperfusion is more detrimental to
oxygenation than mild hyperperfusion. An important question
is if CPPopt targeted care is actually associated with more intact
CVR. Beqiri et al. attempted to answer this question in a 2024
sub analysis of the COGiTATE study (Beqiri et al., 2024). The
authors found that, in the intervention group, PRx was lower
when CPP remained within ±5 mmHg of CPPopt (p < 0.001), but
only when the PRx at the identified CPPopt was negative. This
raises concerns about current CPPopt methodology, as it identifies
a CPPopt as long as its associated PRx value is less than +0.60
(Beqiri et al., 2023).

The impact of CPPopt deviations on cerebral metabolism has
been explored across different patient populations. In severe TBI
patients, Wettervik et al. found that time spent within 10 mmHg
of CPPopt was associated with lower cerebral lactate/pyruvate
ratio (LPR) and lower glycerol levels, suggesting that maintaining
CPP within an optimal range preserves metabolic homeostasis
(Svedung et al., 2021). However, the metabolic effects of CPPopt
deviations may vary by pathology, as Wettervik et al. also found
that deviations from CPPopt (both above and below) were not
significantly associated with impaired cerebral energy metabolism
in an aneurysmal SAH cohort, as measured by microdialysis-
derived glucose, LPR, and pyruvate levels (Svedung et al., 2022).
In pediatric TBI, Velle et al. found that when ΔCPPopt exceeded
+10 mmHg, lactate (p = 0.026) and LPR (p = 0.002) were
significantly higher than when ΔCPPopt was below −10 mmHg
(Velle et al., 2024).

Use of alternative CVR indices for CPPopt
derivation

Though much of the CPPopt literature has relied on PRx for
derivation, other CVR indices can theoretically be used. Currently,
no definite conclusions have been made on which index is best
suited for deriving CPPopt; however, several studies have assessed
the utility of various indices.

In 2011, Santos et al. investigated the use of low-frequency
PRx (L-PRx) for deriving CPPopt (Santos et al., 2011). While
PRx requires high-frequency waveform physiology, L-PRx is able
to assess CVR using only minute resolution ICP and MAP data.
The ability to calculate CPPopt using lower frequency data would
make calculating this personalized metric more feasible for sites
where high-frequency physiology monitoring is not available. Using
a cohort of ICH patients, the authors found that CPPopt derived
using L-PRx correlated very strongly with CPPopt derived using
PRx (r = 0.980, p < 0.001), and even found that deviation yield was
slightly higher for L-PRx-based CPPopt. However, in a TBI cohort,
Lang et al. found that, while CPPopt values derived using PRx and
L-PRx were quite similar, only PRx-based CPPopt demonstrated
a statistically significant association with mortality and morbidity
(Lang et al., 2015). A later study by Riemann et al. was able
to demonstrate an association between L-PRx-based CPPopt and
outcome, but found that it did not display the discriminative capacity
of its high-resolution counterpart (Riemann et al., 2020).

In 2017, Liu et al. introduced a novel method for assessing
CVR through the development of a wavelet transform-based
PRx (wPRx) (Liu et al., 2017b). Unlike PRx, which uses a simple
Pearson correlation, wPRx applies a wavelet transform phase shift
between ABP and ICP, making it more resistant to signal noise
and more temporally stable. This index has demonstrated a higher
temporal stability and stronger association with patient outcomes
than compared to PRx. It was found thatCPPopt derived usingwPRx
and PRx correlated well (r = 0.81, p < 0.001); however, wPRx-based
CPPopt displayed significantly greater yield (59.6% ± 27% vs. 53.2%
± 20%, p < 0.001) and stability (patient SD of 7.05 ± 3.78 vs. 8.45 ±
2.90, p < 0.001). wPRx and PRx-based ΔCPPopt displayed similar
associations with patient outcomes.

Next, Zeiler et al. conducted a study in 2019 comparing the
outcome associations of CPPopt derived using PRx, PAx, and RAC
(Zeiler et al., 2019c). PRx- and RAC-based CPPopt were found
to display similar associations with long-term patient outcomes,
with RAC trending toward slightly higher AUC values. In contrast,
PAx-based CPPopt failed to demonstrate any statistically significant
associations with mortality or morbidity, raising questions about its
utility in CPPopt derivation. In a later study, Lilja-Cyron et al. found
somewhat differing findings (Lilja-Cyron et al., 2021). While time
spent below CPPopt was associated with outcome upon univariate
analysis for all three ICP-based indices, only dose of CPP belowPRx-
based CPPopt was associated with outcome. Furthermore, upon
multivariable logistic regression analysis, only time/dose of CPP
below PRx-based CPPopt was able to add any significant prediction
capability to the baseline multivariable model.

Other CVR indices, not based on ICP, have also been
investigated for their role in deriving CPPopt. For example, CPPopt
derivation has been shown to be feasible with COx, the brain
tissue oxygenation index (ORx), the cerebral blood flow index
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(CBFx), and TCD-based Mx and Sx (Dias et al., 2015; Zeiler et al.,
2018c). However, only a moderate level of agreement has been
demonstrated between PRx- and Mx-based CPPopt (Pochard et al.,
2021), and no correlation was found between ORx- and PRx-
based CPPopt (Radolovich et al., 2009). NIRS-based indices have
also been explored. For example, one study derived CPPopt using
the total hemoglobin reactivity index (THx), calculated as the
correlation between MAP and NIRS-based total hemoglobin, and
found significant correlation between it and PRx-based CPPopt (r =
0.74, p < 0.0001) (Zweifel et al., 2010).

Current limitations and future directions

Despite the substantial amount of research that has been
conducted on the concept of CPPopt, making it the most extensively
studied personalized cerebral physiologic target to date, there
remain several noteworthy limitations that need to be addressed.
One major limitation in the current literature is the incomplete
documentation of the algorithms used to derive CPPopt. While
these algorithms are integrated into the ICM + software, making
CPPopt derivation widely accessible, their detailed methodology
remains proprietary and generally unavailable to the public. This
lack of transparency limits opportunities for further refinement
and validation by other lab groups. Although recent work by
Van Twist et al. recently introduced an open-source CPPopt
algorithm (van Twist et al., 2024), additional efforts are needed
in order to allow for wider accessibility in enhancing algorithmic
accuracy and yields.

Another issue that has been raised is the potential bias in
CPPopt estimation due to the nature of cross-correlated signals.
In 2018, Kelly et al. demonstrated that a U-shaped distribution
between CPP and PRx can appear even when ICP and MAP
signals are randomly generated (Kelly et al., 2018). This suggests
that even if the underlying data does not represent actual CVR,
a U-shaped relationship may still be observed due to statistical
bias. This notion raises concerns that CPPopt values may not
always be physiologically meaningful without proper statistical
correction. While techniques such as Fisher transformation have
been shown to help address this bias (Kelly et al., 2018), most
CPPopt studies have failed to apply such corrective techniques.
To improve the reliability of CPPopt as a personalized physiologic
metric, future studies should incorporate correction techniques to
ensure that any observed patterns truly reflect CVR rather than
random statistical biases.

Next, there remains no definite conclusions on which CVR
index is most ideal for deriving CPPopt. Although there have been
a handful of studies that have compared some CVR indices to a
limited capacity (Santos et al., 2011; Dias et al., 2015; Zeiler et al.,
2019c; Lang et al., 2015; Riemann et al., 2020; Liu et al., 2017b; Lilja-
Cyron et al., 2021), a comprehensive study comparing a wide range
of indices for deriving CPPopt is needed. Various factors should be
considered in comparing indices, such as derivation yield, CPPopt
stability, association with outcome, and association with secondary
brain injury metrics.

While observational studies have consistently shown that
deviations from CPPopt are associated with worse outcomes,
causality remains unproven. Before CPPopt-targeted management

can be widely adopted, a randomized control trial is needed
to demonstrate its efficacy. This has prompted the creation of
the CPPopt Guided Therapy: Assessment of Target Effectiveness
(COGiTATE) study, a phase II feasibility trial (Beqiri et al., 2019).
This trial recently concluded, demonstrating that CPP-targeted
management is both feasible and safe in TBI patients requiring ICP
management (Tas et al., 2021). However, this study also found that
the proportion of time spent with CPP within the CPPopt range
was similar irrespective of whether it was targeted or not, thus
raising questions about the necessity of precisely targeting CPPopt.
This study has set the stage for a phase III CPPopt efficacy trial to
formally determine whether CPPopt-targeted management results
in improved long-term functional outcomes compared to current
guideline-guided management.

Another natural question that remains is how aggressively CPP
should be maintained near CPPopt. Whether maintaining CPP
within 5 mmHg of CPPopt is necessary, or if keeping it within
10 mmHg is sufficient, is still unknown. Additionally, one wonders
of the relative benefit of targeting a CPPopt target versus using
the LLR as a CPP threshold. The current uncertainty around
the importance of avoiding CPP hyperperfusion questions how
maintaining CPP close to CPPopt compares to just maintaining
CPP above the LLR. Future work is needed comparing CPPopt- and
LLR-guided management of CPP.

Mean arterial pressure optimum
(MAPopt)

In 2001, Czosnyka et al. explored the relationship between CVR
and cerebral physiology and found that a U-shaped relationship
between MAP and Mx existed, indicating that both excessively low
and high MAP were associated with impaired CVR (Czosnyka et al.,
2001). This finding, along with evidence of significant inter-
individual variability in the LLR (Brady et al., 2010b; Brady K. et al.,
2010), suggested that fixed MAP thresholds may not be ideal.
Instead, patient-specific MAP targets, that optimize CVR, could
be more beneficial in preventing cerebral hypoperfusion and
hyperperfusion.

In 2010, Zweifel et al. highlighted that while PRx is valuable for
deriving CPPopt, its reliance on invasive ICP monitoring limits its
utilization for determining a personalizedMAP target (Zweifel et al.,
2010). The authors, therefore, investigated whether NIRS-based
THx could be used to derive an optimal MAP target. Using the same
fundamental principles underlying CPPopt identification, MAPwas
divided into 5 mmHg bins and the average THx, or PRx, was
calculated for each bin. If a U-shaped relationship was observed,
the MAP value at the nadir (lowest point) was identified as the
MAPopt. A patient example of how MAPopt is identified can
be found in Figure 5. It should be noted that in this work, and
many other early works, the term “arterial blood pressure optimum”
(ABPopt) was used; however, for the purposes of simplicity, we will
use the term “MAPopt” throughout this review.

In a cohort of 40 head-injured patients, the authors identified
MAPopt in 63.3% of patients when using PRx and 50% when using
THx. A signed-rank test showed no statistical difference between
MAPopt values derived from PRx and THx (p = 1.0), with a
strong correlation observed between the two methods (r = 0.82,

Frontiers in Physiology 10 frontiersin.org

https://doi.org/10.3389/fphys.2025.1582813
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Stein et al. 10.3389/fphys.2025.1582813

FIGURE 5
Patient example of MAPopt identification using an error bar plot and 5 mmHg MAP bins. Error bars represent 95% confidence intervals. The blue curve
represents the fit parabolic curve. The vertical red dashed line represents the identified MAPopt value. PRx, pressure reactivity index; MAP, mean arterial
pressure; MAPopt, mean arterial pressure optimum; mmHg, millimeters of mercury. University of Manitoba Health Research Ethics Board approval for
generation of this image - H2024:266.

p < 0.0001). This study demonstrated the feasibility of deriving a
patient-specific optimal MAP target using the relationship between
MAP and CVR, and the possibility of doing so using a non-invasive
CVR index.

Subsequent studies explored the clinical implications of
this patient-specific MAP target. In 2013, Howlett et al. used
the hemoglobin volume index (HVx) to derive MAPopt in
neonates with hypoxic-ischemic encephalopathy (HIE) undergoing
therapeutic hypothermia (Howlett et al., 2013). They found that
maintaining MAP near or above MAPopt was associated with
reduced neurologic injury, particularly in the paracentral gyri,
white matter, basal ganglia, and thalamus. Additionally, those with
minimal shifts in MAPopt between hypothermia and rewarming
displayed better outcomes, suggesting that MAPopt stability may
be predictive of lower injury severity. Two years later, Burton et al.
supported these findings when they observed that neonates who
suffered neurodevelopmental impairments at 2 years had higher
MAPopt values and spent more time with MAP below MAPopt
during rewarming (Burton et al., 2015). Interestingly, greater
deviations above MAPopt were found to be associated with better
cognitive outcomes.

In 2017, Lee et al. found that maintaining MAP near MAPopt
during medically induced hypothermia was associated with lower
creatinine levels in female neonates, suggesting a potential renal
protective effect. Conversely, time spent with MAP below MAPopt
during normothermia was correlated with elevated liver enzymes,
indicating hepatic stress (Lee et al., 2017a). The authors also found

that greater time spent below MAPopt was associated with brain
injury and worse neurodevelopmental outcomes (Lee et al., 2017b).
This suggests that targeting MAPopt could serve as an adjunct
therapy alongside therapeutic hypothermia for neonatal HIE
management as it may potentially provide organ protective effects.

MAPopt has been explored in post-cardiac arrest patients as
well. In 2019, Sekhon et al. investigated the association between
MAPopt and PbtO2 in hypoxic-ischemic brain injury following
cardiac arrest (Sekhon et al., 2019). The authors used the Optimal
Flex function found in ICM+, originally designed for CPPopt
calculation, to derive MAPopt on a minute-by-minute basis. It was
found that patients had better brain oxygenation when their MAP
was within 5 mmHg of their MAPopt. When MAP was significantly
below MAPopt, PbtO2 decreased; however, when MAP was above
MAPopt, no further improvements in PbtO2 were observed.

Later that same year, Silverman et al. explored MAPopt in a
cohort of aneurysmal SAH patients (Silverman et al., 2019). Using
both PRx and the NIRS-based tissue oxygenation index (TOx),
MAPopt was calculated on a minute-by-minute basis, along with
the LLR and ULR, using a fixed 4-h sliding window. MAPopt could
be identified in approximately 89.53% (±6.69%) of the total NIRS
recording period, with a strong correlation between ICP- and NIRS-
derived MAPopt observed. It was found time spent outside of the
autoregulatory range (between the LLR and ULR) was significantly
associatedwith worse outcomes at discharge and 90 days post-injury
(p < 0.01). Each 10% increase in time spent outside this range
was associated with a 2.8-fold increased risk of worse functional
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outcome. Additionally, patients with worse functional outcomes
were interestingly found to have narrower autoregulatory ranges.

In 2020, Hoiland et al. conducted a study comparing PRx- and
NIRS-based COx for MAPopt determination in hypoxic ischemic
brain injury patients (Hoiland et al., 2020). The study found limited
agreement between COx- and PRx-based MAPopt (mean bias:
1.4 mmHg; upper limit of agreement: 25.9 mmHg; lower limit of
agreement: −23.0 mmHg), raising concerns about the reliability of
NIRS-based indices for deriving MAPopt. However, when Oshorov
et al. conducted a similar study in a cohort of severe TBI patients,
good agreement between COx- and PRx-basedMAPopt (bias = 0.39
± 7.89 mmHg)was observed, withmoderate correlation between the
two (r = 0.49, p < 0.038) (Oshorov et al., 2022).

In 2021, Liu et al. further refined our understanding ofMAPopt’s
role in neonates with HIE (Liu et al., 2021). Using a novel
wavelet hemoglobin volume index (wHVx), the study aimed to
determine whether MAP near MAPopt was associated with less
brain injury on MRI. Their results suggested that MAP exceeding
MAPopt was correlated with reduced injury in critical brain
regions such as the paracentral gyri, basal ganglia, thalamus, and
brainstem.The study concluded thatwavelet-basedCVRmonitoring
may improve the identification of MAPopt in neonates and aid
in developing individualized hemodynamic targets for improved
neurological outcomes.

Most recently, Hazenberg et al. aimed to assess whether
NIRS-based MAPopt measurements differ between left and right-
sided recordings in comatose patients with hypoxic-ischemic
brain injury after cardiac arrest (Hazenberg et al., 2023). Using
COx_a from bifrontal rSO2 monitoring, MAPopt was calculated
by leveraging a multi-window weighted approach. Results
showed no significant differences in MAPopt values between left
(80 mmHg, 95% CI: 76–84) and right (82 mmHg, 95% CI: 75–84)
recordings (p = 1.0), with high correlation (0.95, p < 0.001). These
findings suggest that unilateral NIRS recordings may be sufficient
NIRS-based MAPopt determination in hypoxic-ischemic brain
injury patients.

Current limitations and future directions

Despite significant advancements in MAPopt research and
its potential for individualized hemodynamic management in
neurocritical care, several limitations remain. Firstly, there has yet to
be substantial work on the development of an algorithm specifically
tailored forMAPopt derivation. Currently,most studies have applied
algorithms originally designed for CPPopt calculation. Although
the same general principles underly both MAPopt and CPPopt
identification, it is likely that they require different considerations
for ideal derivation.Therefore, a dedicatedMAPopt algorithm could
enhance derivation accuracy and yield.

Next, further research is needed to explore factors influencing
MAPopt derivation yield and stability. Sub-group analyses are
needed in order to identify patient-specific factors that contribute
to yield variability. Such work can help researchers further
improve algorithmic derivation of MAPopt. MAPopt stability is
also incredibly important. Currently, there is little to no evidence
describing the stability (variability) in MAPopt outputs over time.
Work that extensively evaluates and compares this parameter

between various derivation methods is needed. This would allow for
improvements in algorithmic stability.

The current literature on MAPopt application in the
neurocritical care setting remains limited. Additionally, most of
the studies performed on neurocritical patients have focused on
the pediatric HIE population. Expanding the research in other
neurocritical populations, particularly TBI, and other age cohorts is
essential. These studies will need to establish associations between
MAPopt, clinical outcomes, and cerebral physiology in these
populations to demonstrate the potential clinical utility of MAPopt.
Ultimately, randomized controlled trials will be required to establish
the efficacy of MAPopt-guided therapy and its integration into
standard neurocritical care protocols.

Individualized intracranial pressure
(iICP) thresholds

Unlike the U-shaped relationship seen with both CPP and
MAP, ICP demonstrates a linear-like relationship with CVR,
with increased ICP being associated with more impaired CVR
(Stein et al., 2024). This is likely due to its relationship with CPP,
where increasing ICP progressively reduces CPP below the lower
limit of autoregulation, resulting in a pressure-passive state and a
corresponding linear deterioration in CVR. Drawing from the same
fundamental principles underlying CPPopt and MAPopt, a patient-
specific ICP threshold, past which CVR becomes persistently
deranged, can be derived using the function intersectionality
between ICP and CVR. A patient example of iICP derivation using
a LOESS curve can be found in Figure 6.

The concept of iICP thresholds was first introduced by Lazaridis
et al., in 2014 (Lazaridis et al., 2014). Using the entire recording
periods of 322 moderate-to-severe TBI patients, the authors plotted
ICP against PRx using error-box plots, binning data in 4 mmHg of
ICP increments. Then, through manual inspection, the ICP value
at which PRx surpassed a threshold of +0.20 was identified. This
threshold was chosen based on previous work from their group
that demonstrated an association with impaired CVR and increased
mortality (Czosnyka et al., 1997; Steiner et al., 2002). An iICP was
only identified if a distinct transition from “intact” to “impaired”
CVR, from PRx < +0.20 to persistently > +0.20, was observed.
An iICP was identified in approximately 68% of patients, with a
mean value of 25 ± 10 mmHg. Then, for each patient, the authors
calculated the ICP “dose” (magnitude × time) spent above their
determined iICP threshold, whenever possible, and guideline-based
ICP thresholds to quantify insult burden. This metric takes both the
magnitude and duration of all intracranial hypertensive episodes
into account and was calculated as the cumulative area under the
curve above threshold on the ICP time trend.Upon receiver operator
curve (ROC) analysis, the authors found that ICP dose above
iICP was a stronger predictor of outcome than dose above either
guideline-based ICP threshold. Area under the receiver operator
curves (AUC) and 95%CIs of 0.81 (0.74–0.87), 0.75 (0.68–0.81), and
0.77 (0.70–0.83) were calculated for iICP, ICP > 20 mmHg, and ICP
> 25 mmHg, respectively.

The only other published work on ICP thresholds was a 2021
multi-center cohort validation study by Zeiler et al. (2021c). In
this study, the authors were able to develop a semi-autonomous
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FIGURE 6
Patient example of iICP identification using a LOESS function. The blue line represents the LOESS curve. The grey region around the LOESS curve
represents the 95% confidence interval. The vertical red dashed line represents the identified iICP value. The horizontal dotted black line represents the
PRx threshold (PRx > 0.20) used to mark the transition between intact (below) and deranged (above) cerebrovascular reactivity. iICP, individualized
intracranial pressure threshold; ICP, intracranial pressure; LOESS, locally weighted scatterplot smoothing; mmHg, millimeters of mercury; PRx, pressure
reactivity index. University of Manitoba Health Research Ethics Board approval for generation of this image - H2024:266.

algorithm based on the methodology laid out in the previous
study. For each patient, the algorithm created an error-bar plot,
using 2.5 mmHg bins of ICP, and then applied a locally weighted
scatterplot smoothing (LOESS) function to smooth the data. The
intersection between the LOESS curve and a PRx threshold of >
+0.20 was then identified as the iICP. The accuracy of the algorithm
was then assessed through manual inspection of each patient’s
constructed plots, with any inaccuracies corrected by hand.

When used on a cohort of 196 patients form the CENTER-
TBI database, the algorithm was able to identify an iICP in 65.3%
of patients (mean = 23.0 ± 11.8 mmHg), with an accuracy of
83.2%. Upon Mann-Whitney U testing, comparing patients who
had an identifiable iICP with those who did not, it was found that
those without an identifiable iICP had a higher mean ICP (p =
0.041) and PRx (p < 0.0001). When dichotomizing patients based
on 6-to-12-month outcome into alive vs. dead and favorable vs.
unfavorable outcome, mean hourly dose above iICP was found
to be significantly different between the groups (p = 0.010 for
alive vs. dead, p = 0.020 for favorable vs. unfavorable), with
greater dose associated with the poorer outcome groups. Mean
hourly dose above 20 mmHg or 22 mmHg failed to present a
statistically significant difference between outcome groups. Upon
univariate logistic regression analysis, dose of ICP above iICP was
more strongly associated with 6-to-12-month outcome (AUC =
0.678, p = 0.029 for alive/dead, and AUC = 0.610, p = 0.060 for
favorable/unfavorable) than either dose above 20 mmHg (AUC =

0.509, p = 0.034 for alive/dead, and AUC = 0.463, p = 0.236 for
favorable/unfavorable) or 22 mmHg (AUC = 0.492, p = 0.035 for
alive/dead, and AUC = 0.463, p = 0.263 for favorable/unfavorable).

Current limitations and future directions

Though the findings from these preliminary studies have been
promising, the current state of the iICP concept suffers from several
limitations that prevent clinical applicability. First, the original
methodology for deriving iICP relied on manual inspection of the
iICP versus PRx plot (Lazaridis et al., 2014). This can be quite labor
intensive, requiring trained personnel and introducing a significant
amount of interpersonal variability. Though Zeiler et al. were able
to develop a semi-automated approach, manual inspection is still
required for validation (Zeiler et al., 2021c). A fully automated
algorithm, which can derive iICP with high accuracy, is needed
to address this limitation. Furthermore, both studies derived iICP
using patients’ entire recording periods. This means that, in its
current form, iICP can only be derived retrospectively after data
collection is completed. This prevents its use in guiding therapeutic
decisions in real-time during the early, critical stages of a patient’s
ICU stay. A continuous derivation method is required to make
clinical application feasible.

Next, the current derivation methods do not provide
assessments of the quality of the output values, as not all iICP
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calculations are equal. The quality of the ICP versus CVR curve
can vary drastically between data sets in multiple regards, such as
curve shape, fit, CI widths, and data range. This creates a degree of
uncertainty for the potential clinical end-user when presented with
an iICP output. To address this, future renditions of iICP should
include a robust curve grading system, enabling clinical end-users
to gauge the quality of the iICP output value. Additionally, curve
grading should be used to increase the quality of output values
through use of a multi-window weighted technique, such as seen in
the current CPPopt method (Beqiri et al., 2021).

Another limitation of the iICP concept is that both studies have
relied exclusively on PRx to derive iICP. This raises the question
of how other CVR indices compare in deriving iICP, especially
considering that recent literature suggests that AMP-based indices,
such as PAx and RAC, may be more strongly associated with long
term outcomes compared to PRx in certain sub-group populations
(Zeiler et al., 2018a; Zeiler et al., 2019b; Aries et al., 2012b).
Additionally, both studies used an arbitrary threshold of +0.20.
Using other thresholds would likely influence iICP derivation yield
and its ability to predict outcome. Therefore, a systematic analysis
comparing various CVR indices and thresholds is necessary to
identify the combinations that produce the best performing iICP
thresholds.

Though preliminary outcome associations have been assessed,
further work will be needed to evaluate association between
continuously derived iICP and long-term outcomes. Furthermore,
the relationship between iICP and multi-modal cerebral physiology
has yet to be evaluated.This is needed to better understand the utility
of iICP in reducing secondary brain insult. Finally, the two existing
studies were only able to identify an iICP in approximately 67% of
patients (Lazaridis et al., 2014; Zeiler et al., 2021c). Various factors
likely influence this yield, such as the CVR index and threshold
used for derivation. Future work exploring the relationship between
derivation yields and patient-specific factors, such as demographics,
injury characteristics, and treatment modalities, is needed to better
understand the determinants of derivation yields.

Bispectral index optimal (BISopt)

Sedatives are routinely used in the neurocritical care setting
to help prevent agitation, which can cause elevations in ICP, and
reduce metabolic activity, which is thought to help preserve neural
tissues in the acute phase of injury (Carney et al., 2017; Rangel-
Castilla et al., 2008a). However, excessive sedation may suppress
neurological responsiveness, potentially masking important clinical
signs and delaying identification of evolving secondary brain injury
mechanisms. Moreover, excessive sedation has been shown to be
associated with poor long-term cognitive outcomes in critically ill
patients (Girard, 2018; Porhomayon et al., 2016; Stephens et al.,
2018). Therefore, monitoring a patient’s depth of sedation is vital
for properly titrating sedatives to balance the benefits and risks
associated with their administration. In the clinical setting, depth
of sedation is generally measured using the Richmond Agitation
Sedation Scale (RASS) (Ely et al., 2003; Sessler et al., 2002). This
clinical grading system is performed by assessing a patient’s response
to verbal or physical stimuli and assigning a score ranging from
−5 (unarousable) to +4 (combative), with a score of 0 indicating a

calm, alert patient. RASS is quick, inexpensive, and relatively easy to
use; however, despite its widespread use, RASS suffers from several
significant limitations.

Firstly, it is highly subjective, resulting in a high degree of
interobserver variability. Second, it is not suitable for use on patients
with impaired vision, hearing, somatosensation, or motor function
since one cannot accurately assess such a patient’s response to verbal
and physical stimuli. RASS is also limited by the fact that it only
assesses observable responses to stimuli and, therefore, does not
provide insight into the neurological activity or hemodynamic state
of the brain. A recent study by Park et al. demonstrated that RASS
is not statistically associated with measures of cerebral physiologic
insult burden and that significant variability of these measures exists
within each RASS category (Park et al., 2024). Finally, RASS only
allows for single time-point measurements and thus cannot be used
to continuously measure a patient’s depth of sedation.

TheBispectral Index (BIS), derived using electroencephalography
(EEG), is a widely recognized method of quantifying a patient’s
level of consciousness (Gan et al., 1997; Mathur et al., 2024). It
provides a dimensionless numerical score ranging from 0 (complete
suppression of brain activity) to 100 (fully awake), with values
between 0 and 20 indicating EEG burst suppression (Mathur et al.,
2024; Mitchell-Hines et al., 2016). This monitoring modality
enables objective evaluation of one’s depth of sedation and its
dose-response relationship with sedative/anesthetic administration.
This parameter has been shown to correlate well with RASS and
other clinical sedation scores (Deogaonkar et al., 2004); however,
unlike these scores, BIS offers a more precise, quantifiable, objective
measure of depth of sedation that can be measured continuously.

It has been shown that a great deal of heterogeneity in the dose-
response to sedative agents exists between patients (Froese et al.,
2020b; Froese et al., 2020c; Zeiler et al., 2016). This limits the value
of dosing information provided with sedative agents and raises
questions on the optimal amount of sedative to administer to a
patient. In a 2021 case series, which included five adult moderate-
to-severe TBI patients, Froese et al. investigated the high-frequency
relationship between BIS and CVR (Froese et al., 2021b). When
plotting PRx versus BIS using error-bars, the authors observed
a parabolic relationship between the two variables, similar to
that seen between PRx and CPP. This suggests that both under-
and over-sedation can expose moderate-to-severe TBI patients to
derangements in CVR. Based on this observation, the authors
speculated that an optimal depth of sedation for preserving CVR
may be possible to calculate by identifying the BIS value at which
PRx is minimized (most intact). An example of BISopt derivation
can be seen in Figure 7. Additionally, using data from two patients
with more than 12 h of uninterrupted BIS and PRx data, the authors
demonstrated the feasibility of deriving such an optimal depth of
sedation continuously by calculating values for consecutive 4-h,
non-overlapping windows of data.

One year later, the same group further investigated the
concept of a BIS-based optimal depth of sedation, which they
termed BISopt (Froese et al., 2022a). Using the entire recording
periods of 32 patients, Froese et al. were able to identify, through
manual inspection, BISopt in 84.4% of cases for left-sided BIS
and 71.9% for right-sided BIS. The authors then created a
BISopt algorithm by leveraging an automated quadrative curve
fitting method and minute-by-minute BIS/PRx data. In short, this
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FIGURE 7
Patient example of BISopt identification using a box plot and 5 mmHg BIS bins. Box plots illustrate the median, IRQ, and minimum/maximum values of
the bin. The blue curve represents the fit parabolic curve. The vertical red dashed line represents the identified BISopt value. BIS, bispectral index;
BISopt, bispectral index optimum; mmHg, millimeters of mercury; PRx, pressure reactivity index. University of Manitoba Health Research Ethics Board
approval for generation of this image - H2024:266.

algorithm divides the data into 3 a.u. BIS bins, creates a boxplot,
and fits a second-order polynomial function to the plot. If the fitted
curve fulfills a list of criteria, the minimum point of the curve is
identified as the BISopt value. In some cases, only a descending or
ascending portion of a curve is observed. In these cases, if a positive
convex shape is maintained, BISopt is still identified but likely over
or under-estimates the true value, respectively.

When applied to the entire recording periods of the 32 patient
datasets, BISopt derivation yields were found to be 52.1% and
54.1%, for left- and right-sided BIS, respectively. The authors then
compared their custom algorithm to the multi-window weighted
Optimal Flex method, which was originally designed for calculating
CPPopt and is included in the ICM + software (Depreitere et al.,
2014). The Optimal Flex method displayed poorer yields, at
31.2% and 33.5%, for left- and right-sided BIS, respectively, and
producedmore inaccuracies (Froese et al., 2022a).This suggests that,
despite CPP and BIS demonstrating similar parabolic relationships
with CVR, CPPopt algorithms are not necessarily applicable to
deriving BISopt.

The authors also derived continuous time trends of BISopt
using their custom algorithm, by employing a sliding 4-h window
that updates every minute. It was found that the optimal depth of
sedation changes over the course of a patient’s ICU stay. Percent
yields varied greatly between patients, and the authors found that
the sedative and vasopressor, or combination, used has little effect
on % yield. However, it was found that high levels of sedation were
associated with a small increase in BISopt derivation yield. The
association between BISopt and cerebral physiologic measures was

also conducted. It was found that continuous BISopt demonstrated
no significant associations with minute-resolution ICP, MAP, or
CPPopt.This demonstrates that BISopt is likely a distinct physiologic
metric that may allow for modulation of cerebral physiologic injury,
independent from CPPopt.

In addition to the moderate-to-severe TBI population, BISopt
may have a potential role in the management of general ICU
patients, as multiple studies have demonstrated an association
between sedation levels and outcomes in this population, as
well as the presence of impaired CVR during the acute phase
(Girard, 2018; Porhomayon et al., 2016; Stephens et al., 2018).
However, the use of PRx, which requires invasive ICP monitoring
for its derivation, limits the applicability of this personalized
physiologic target to the general ICU population. To address this
limitation, Froese et al. conducted another study in 2022 where
they evaluated the feasibility of deriving BISopt using non-invasive
COx_a instead of PRx (Froese et al., 2022b).

Using the same methodology as in their previous BISopt
paper (Froese et al., 2022a), the authors derived BISopt using
entire recording periods as well as continuously, but with COx_a
rather than PRx (Froese et al., 2022b). When BISopt calculations
were conducted on a cohort of 42 patients, Froese et al. observed that
BIS demonstrates a similar parabolic relationship with COx_a as it
does with PRx. When BISopt derived using COx_a was compared
to BISopt derived using PRx, it was found that no statistically
significant difference existed between the two with regard tomedian
values (48 [IQR: 40–56] vs. 45 [IQR: 40–56], p = 0.31 upon Wilcox
signed-ranked test). Additionally, yields were found to be somewhat
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FIGURE 8
Time trends of continuously derived CPPopt, MAPopt and BISopt in tandem. Time trends display minute-by-minute data over a 72-h period. a.u.,
arbitrary units; BISopt, bispectral index optimum; CPPopt, cerebral perfusion pressure optimum; MAPopt, mean arterial pressure optimum; mmHg,
millimeters of mercury. University of Manitoba Health Research Ethics Board approval for generation of this image - H2024:266.

similar to those seen with PRx-derived BISopt. Further, it was found
that yields were generally independent of sedative or vasopressor
used, as was seen with PRx-derived BISopt.

Until recently, BISopt had only been demonstrated in the neural
injury population, and it was unknown whether this physiological
target exists in healthy individuals.However, a recent study by Froese
et al. aimed to validate the presence of BISopt in a non-neural injury
population undergoing general anesthesia and confirm its absence
in healthy, awake volunteers (Froese et al., 2024). The study found
that BISopt was present in 96% of elective surgery patients under
general anesthesia, suggesting that BISopt may also have potential
a role in non-neural injury populations. Conversely, BISopt was
found to be absent in fully awake volunteers, likely due to limited
BIS variability and relatively stable CVR. This confirms that BISopt
represents a physiologically meaningful target rather than merely
statistical anomaly.

Current limitations and future directions

Despite the promising work and potential applications of BISopt
in managing sedation in the neurocritical care setting, the concept
remains in its early stages and is subject to several limitations

that hinder its clinical implementation. Firstly, it remains unknown
whether this personalized depth of sedation measure is associated
with patient outcomes. Therefore, a comprehensive outcome
association analysis that evaluates whether maintaining BIS near
BISopt (i.e., within ±5 a.u.) is associated with improved long-term
outcomes is needed. Failure to demonstrate such associations would
strongly question the clinical utility of this measure.

In addition to outcome associations, the relationship
between BISopt and multi-modal cerebral physiology requires
further exploration. Though Froese et al. demonstrated that
continuous BISopt is not significantly associated with ICP, MAP,
or CPPopt (Froese et al., 2022a), it remains poorly understood how
BISopt influences the cerebral environment. This can be addressed
thorough a comprehensive analysis exploring the associations
between time spent with BIS near BISopt and various measures
of cerebral physiology, such as cerebral compliance, CVR, and
brain oxygenation. Such work could yield valuable insights into
the potential role of BISopt in minimizing secondary brain injury.

Next, while Froese et al. were able to create a semi-automated
algorithm for the derivation of BISopt, there remains a lot to
be desired. Various methodologies, such as different windowing
techniques and CVR indices, should be explored and compared to
improve derivation yields and output accuracy. For example, the
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current algorithm leverages a fixed 4-h sliding window approach to
derive BISopt continuously; however, the use of more sophisticated
windowing techniques, such as the multi-window weighted
methodology seenwith recent iterations ofCPPopt (Depreitere et al.,
2014), may improve derivation yields.

Additionally, as it stands, the BISopt algorithm does not provide
any quality assessments for its output values. This represents a
critical gap, as the quality of the generated curve between BIS
and CVR can vary significantly in terms of curve shape, curve
fit, and data quality. For example, often only part of a curve is
observed (either ascending or descending) and a BISopt value is
estimated rather than directly identified. The inclusion of a measure
of curve quality would allow clinical end-users to better evaluate the
reliability of a BISopt value and help make more informed decisions
when managing the sedation of critically ill patients.

Next, all four existing works on the topic of a personalized
depth of sedation target have come from a single research group.
Work from other groups will be needed to diversify and improve
the reliability of the literature on the topic. Lastly, though Froese
et al. disclosed the general principles that they used to derive BISopt,
no openly accessible BISopt algorithm has been published. The
absence of a publicly available algorithm limits the transparency of
the current literature and acts as an obstacle for future work in this
field by other lab groups. An open-access BISopt algorithm would
not only promote transparency but also foster and accelerate further
work on this promising personalized depth of sedation target.

Conclusion

The exploration of personalized cerebral physiologic targets
has opened a promising frontier in neurocritical care. These
personalized targets offer a potential nuanced approach to
patient care, aiming to tailor clinical management to a patient’s
specific individual cerebral physiologic needs, and are increasingly
recognized for their potential to guide therapeutic decisions
and improve clinical outcomes in patients with neurocritical
conditions. However, it is important to acknowledge the significant
limitations that currently exist with these targets and the future work
that is needed.

Firstly, most of the evidence supporting the use of personalized
cerebral physiologic targets is based on highly curated datasets
which do not reflect what is currently available at the patient bedside,
where only basic heuristic filters are typically possible. Furthermore,
the derivation of personalized targets is generally not feasible using
raw signal data. This necessitates the development of an automated
artifact management tool, which can provide thoroughly artifact
clear raw signal data in real-time using a variety of methods, such
as thresholding, time-series, Fourier/wavelet, and machine learning
techniques.

Second, despite promising findings suggesting potential clinical
benefit from the use of personalized physiologic targets, none of the
personalized targets discussed in this review have been validated
through large-scale interventional trials. Therefore, caution is
advised when interpreting the existing literature as it remains
currently unknown whether any of these personalized targets offer
any real clinical utility. Future randomized control trials will be
needed to confirm whether or not any of the use of personalized

targets actually results in improved patient outcomes. Another
limitation of the personalized targets is that the key assumptions
underlying CVR indices, such as the notion that changes in
pulsatile cerebral blood volume (i.e., ICP) are primarily driven by
changes in systemic pressure, are frequently violated due to clinical
interventions, neurovascular coupling, and external factors. This
raises questions onwhether these targets actually optimize a patient’s
cerebral autoregulatory status.

Next, if personalized cerebral physiologic targets are to be
deployed in neurocritical care setting, there must be efforts to
integrate them into a multi-modal personalized medicine platform.
An example of time trends for CPPopt, MAPopt, and BISopt in
tandem can be found in Figure 8 (iICP is not presented here as
no continuous iICP algorithm currently exists). A natural question
will be how to manage conflicts between targets if they arise. It is
currently not possible to provide an answer for this, as it remains
unknown how these personalized targets compare in their influence
on secondary brain injury reduction and how they influence each
other. Therefore, future work will be needed to better understand
the relationship between these physiologic targets, including their
autocorrelative structures, and how to best tackle targeting the
various targets in tandem.

Lastly, the derivation yields for the various personalized
metrics remain unideal. This results in suboptimal continuity in
signal, as seen in Figure 8. Things such as data gaps, caused by
artifacts or recording errors, and limited physiologic variability can
hinder identification of personalized targets. Future work will be
needed to help tackle these shortcomings and improve derivation
continuity. One potential avenue to address these issues is the
use of machine learning. Leveraging advanced machine learning
techniques may allow for data interpolation and identification of
targets despite limited data variability. Deimantavicius et al. have
already demonstrated the promise that such techniques offer. In
a recent 2012 study, the authors were able to leverage a machine
learning-based algorithm to improve the continuity and reliability
of CPPopt estimates, and enable identification of valid CPPopt
targets using shorter monitoring windows (Deimantavicius et al.,
2022). Machine learning offers a promising way forward in the
improvement of personalized cerebral physiologic targets.
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