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Objective: This study aims to develop a multimodal deep learning-based
stress detectionmethod (MMFD-SD) using intermittently collected physiological
signals from wearable devices, including accelerometer data, electrodermal
activity (EDA), heart rate (HR), and skin temperature. Given the unique
demands and high-intensity work environment of the nursing profession, stress
measurement in nurses serves as a representative case, reflecting stress levels in
other high-pressure occupations.

Methods: We propose a multimodal deep learning framework that integrates
time-domain and frequency-domain features for stress detection. To enhance
model robustness and generalization, data augmentation techniques such
as sliding window and jittering are applied. Feature extraction includes
statistical features derived from raw time-domain signals and frequency-
domain features obtained via Fast Fourier Transform (FFT). A customized
deep learning architecture employs convolutional neural networks (CNNs) to
process time-domain and frequency-domain features separately, followed by
fully connected layers for final classification. To address class imbalance, the
Synthetic Minority Over-sampling Technique (SMOTE) is utilized. The model is
trained and evaluated on a multimodal physiological signal dataset with stress
level labels.

Results: Experimental results demonstrate that the MMFD-SD method achieves
outstanding performance in stress detection, with an accuracy of 91.00% and
an F1-score of 0.91. Compared to traditional machine learning classifiers such
as logistic regression, random forest, and XGBoost, the proposed method
significantly improves both accuracy and robustness. Ablation studies reveal that
the integration of time-domain and frequency-domain features plays a crucial
role in enhancing model performance. Additionally, sensitivity analysis confirms
the model’s stability and adaptability across different hyperparameter settings.

Conclusion: The proposed MMFD-SD model provides an accurate and robust
stress detection approach by integrating time-domain and frequency-domain
features. Designed for occupational environments with intermittent data
collection, it effectively addresses real-world stress monitoring challenges.
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Future research can explore the fusion of additional modalities, real-time stress
detection, and improvements in model generalization to enhance its practical
applicability.

KEYWORDS

multi-modal deep learning, time and frequency domain features, fast fourier transform,
stress detection, wearable devices

1 Introduction

In the fast-paced modern world, stress has emerged as a
pervasive and significant health concern, affecting individuals across
all walks of life. The World Health Organization has declared
stress a global epidemic, with its impacts ranging from decreased
productivity and quality of life to severe physical and mental
health issues. As awareness of these detrimental effects grows, so
does the need for accurate, real-time stress detection methods
that can facilitate timely interventions and support effective stress
management strategies.

Traditional approaches to stress assessment have largely relied
on self-reports and occasional clinical evaluations. However, these
methods are limited by their subjective nature, infrequency, and
inability to capture real-time stress fluctuations. The advent of
wearable technology has opened new avenues for continuous,
objective stress monitoring through the measurement of various
physiological signals (Ceren Ates et al., 2024; Mozos et al.,
2016). These devices can capture a wealth of data, including
heart rate variability, electrodermal activity, skin temperature, and
accelerometer data, providing a more comprehensive picture of an
individual’s physiological state.

Despite this technological advancement, the challenge of
accurately interpreting these multi-modal physiological signals to
detect stress remains significant. Early attempts at physiological
stress detection often focused on single-modal approaches, utilizing
individual biomarkers such as heart rate or skin conductance.
While these methods showed promise, they failed to capture
the complex, multi-faceted nature of the human stress response
(Gedam and Paul, 2021; Delmastro et al., 2020). More recent
studies have explored multi-modal approaches, combining data
from various physiological signals to improve detection accuracy.
However, many of these methods still rely heavily on time-domain
features, potentially overlooking valuable information contained in
the frequency domain of these signals (Zhao et al., 2024).

The integration of machine learning techniques, particularly
deep learning, has shown great potential in improving stress
detection accuracy (Rogerson et al., 2023). CNNs and Recurrent
Neural Networks (RNNs) have been successfully applied to time-
series physiological data, demonstrating their ability to capture
complex patterns and relationships. However, the majority of
these approaches still primarily focus on time-domain features,
leaving the rich information in the frequency domain largely
unexplored.

An important consideration in stress detection research,
particularly in occupational settings such as healthcare, is the
intermittent nature of data collection. Wearable sensors typically
collect data during work hours but not during rest periods. This
intermittent data collection reflects the reality of work-life balance

and presents both challenges and opportunities for stress detection
algorithms (Kyriakou et al., 2019). On one hand, it necessitates
robustmethods that can handle gaps in data collection. On the other
hand, it focuses the analysis on periods when occupational stress
is most likely to occur, potentially increasing the relevance of the
collected data (Smets et al., 2018).

In this context, the nursing profession serves as a particularly
illustrative example of occupational stress measurement. Due to
the unique demands, high work intensity, and often challenging
environments nurses face, their stress measurement is not only
significant but also representative of stress levels in other high-
pressure occupations. Thus, this study specifically targets stress
detection in nurses as a focal point for research.

To address these challenges, this study proposes a novel
multi-modal deep learning approach for stress detection
using physiological signals. The method integrates both
time and frequency domain features extracted from various
physiological signals, including accelerometer data (X, Y, Z), EDA,
HR, and TEMP (Ceren Ates et al., 2024). By combining these
diverse data sources and feature types, the aim is to capture a more
comprehensive representation of the stress response.

The approach leverages advanced signal processing techniques,
including FFT, to extract rich spectral features from the
physiological signals. These frequency-domain features are then
combinedwith traditional time-domain features to provide a holistic
view of the physiological data. To process this multi-modal data
effectively, a custom deep learning architecture is designed that
employs parallel CNNs to separately handle the time-domain
and frequency-domain features before merging them for final
classification.

Specifically, the method involves several key steps. First,
the raw physiological signals are preprocessed to remove noise.
Then, a comprehensive set of time-domain features is extracted,
including statistical measures such as mean, standard deviation, and
percentiles, as well as physiological-specific features like heart rate
variability measures. In parallel, FFT is applied to the signals to
obtain their frequency-domain representations, fromwhich spectral
features such as power in different frequency bands are extracted.

These extracted features are then fed into the custom CNNs
architecture. The architecture consists of two parallel CNNs
branches: one for time-domain features and another for frequency-
domain features. Each branch containsmultiple convolutional layers
followed by pooling layers to learn hierarchical representations
of the features. The outputs of these parallel branches are then
concatenated and passed through fully connected layers for final
stress classification.

The main contributions of this work are summarized as follows:
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1.1 Multi-modal integration architecture

Our approach uniquely combines both time and frequency
domain features frommultiple physiological signals (accelerometer,
EDA, HR, and TEMP) through a novel parallel CNN architecture.
This dual-domain processing strategy allows for capturing
complementary stress manifestations that might be missed in
traditional single-domain approaches.

1.2 Innovative feature processing

While individual components like FFT and CNN are established
techniques, our implementation innovatively combines them
in parallel pathways to process different feature types. This
architectural design enables simultaneous analysis of both
instantaneous physiological responses (time-domain) and rhythmic
patterns (frequency-domain) in stress manifestations.

1.3 Adaptation for intermittent data

Our methodology specifically addresses the challenges of
intermittent data collection in occupational settings - a crucial
real-world constraint often overlooked in conventional approaches.
The model’s design accommodates the discontinuous nature
of workplace physiological monitoring through specialized data
segmentation and augmentation techniques.

1.4 Custom deep learning architecture

The proposed architecture is specifically designed for stress
detection, featuring parallel CNNs that process time and frequency
domain features independently before merger. This design differs
from conventional approaches by allowing each domain to be
processed optimally before integration.

1.5 Comprehensive signal integration

Our method uniquely integrates multiple physiological signals
while maintaining their individual characteristics through separate
processing pathways, rather than simple concatenation used in
conventional approaches.

This comprehensive set of contributions positions this work as a
significant advancement in the field of physiological stress detection,
offering a more accurate and adaptable approach to this critical
health monitoring task. The multi-modal deep learning method
addresses key challenges in the field and opens new avenues for
research in stress detection and overall wellbeing enhancement,
particularly in occupational settings where continuous monitoring
is not feasible or practical.

2 Related work

Wearable devices coupled with machine learning techniques
have emerged as powerful tools for stress detection, offering

continuous, non-invasive monitoring capabilities in real-world
environments. A comprehensive review highlighted the significance
of physiological indicators, including heart rate variability (HRV),
skin temperature, and EDA in stress detection (Gedam and Paul,
2021). This work emphasized the crucial role of both time-domain
and frequency-domain analyses for precise stress monitoring.
However, existing studies often focus on either time-domain
or frequency-domain features separately, limiting their ability to
fully capture stress-related physiological variations. Subsequently,
a systematic review presented generalizable machine learning
models for stress monitoring, addressing critical challenges such
as dataset transferability and model robustness across diverse
populations (Vos et al., 2023). While these models improve
generalizability, they often overlook the challenges posed by
intermittent data collection in real-world occupational settings.

Recent advances in predictive modeling have demonstrated
the effectiveness of integrating multiple data sources. Comparative
studies examining various stress prediction models that combine
smartwatch physiological signals with self-reported measures
revealed enhanced predictive performance through this dual-source
approach (Dai et al., 2021). Nevertheless, reliance on self-reported
data introduces subjectivity, which may affect model reliability
and applicability in real-time monitoring. In parallel, research
introduced an explainable deep learning framework for stress
detection usingwearable sensor data, providing crucial transparency
in model interpretation for healthcare applications (Moser et al.,
2024). Although explainability improves trust in deep learning
models, further enhancements are needed to balance interpretability
with predictive accuracy. Furthermore, investigations into
autoencoder-based approaches demonstrated the effectiveness of
temporal feature extraction from wearables for forecasting both
stress andmood, highlighting the potential of unsupervised learning
methods in personalized health monitoring (Li and Sano, 2020).
Despite their success, autoencoder-based methods often require
extensive tuning and may struggle with diverse physiological
patterns in occupational stress scenarios.

Recent sensor-based methods have advanced stress detection by
integrating new data modalities. For example, magnetostrictive
polymer composites (MPCs) using UV-curable epoxy resin
demonstrated reliable stress detection through changes in magnetic
flux, offering potential to refine stress monitoring systems by
augmenting time and frequency domain features (Paul et al.,
2024). While this approach showcases novel sensor technology, its
practicality for widespread wearable integration remains uncertain.

Furthermore, deep learning advancements in sensor-based
recognition have enabled automatic feature extraction across
complex physiological signals, addressing challenges such as
unsupervised and incremental learning.These frameworks improve
adaptability and interpretability, enhancing stress detection in varied
real-world contexts (Wang et al., 2019). However, many existing
models lack mechanisms to effectively integrate multi-modal data,
limiting their ability to capture stress responses comprehensively.

The role of specific physiological parameters in stress detection
has been extensively investigated. Novel methods for mental stress
assessment using HRV derived from electrocardiogram (ECG)
signals demonstrated high precision in stress quantification (Saini
and Gupta, 2024). Despite their accuracy, ECG-based approaches
often require specialized sensors, reducing feasibility for daily
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wear. Additionally, pilot studies contributed to the field through
the introduction of the Stress-Predict dataset, establishing a
robust foundation for developing and validating stress prediction
algorithms across diverse conditions (Iqbal et al., 2022). While
valuable for benchmarking, these datasets may not fully represent
stress variability in high-intensity professional settings. Research
into the feasibility of combining wearable and self-reported
measures in controlled lab environments has illuminated both the
potential and limitations of deploying these techniques in real-
world applications (Aristizabal et al., 2021). Yet, stress assessment in
controlled environments may not directly translate to occupational
settings where intermittent data collection is a major challenge.

In professional environments, research explored embedded
devices for continuous stress monitoring, providing valuable
insights into wearable adaptation for demanding workplace
settings (Kafková et al., 2024). However, many existing workplace
monitoring solutions require high data availability, which is not
always feasible in dynamic job roles such as nursing. These findings
suggest practical applications for occupational health programs.
Complementing this work, investigations into EEG-based brain-
computer interfaces for stress detection presented an innovative
approach that combines neural indicators with physiological data
for comprehensive stress assessment (Premchand et al., 2024).
Despite their novelty, EEG-based systems are often intrusive and
less practical for long-term stress tracking in daily occupational
settings. Real-time prediction models designed for integrating
wearable devices into daily life further highlight the practical aspects
of these systems (Lazarou and Exarchos, 2024). Nevertheless, most
real-time models struggle with handling missing or intermittently
collected data, a crucial issue in professional environments.

Recent research has increasingly focused on personalization in
stress monitoring solutions. Extensive investigations into wearable-
based stress detection in semi-controlled settings identified both
opportunities and limitations of current technology (Saini and
Gupta, 2024). However, achieving a balance between generalization
and personalization remains a challenge in real-world applications.
Furthermore, studies proposed generalizable machine learning
approaches addressing feature extraction and model generalization
across various contexts, enhancing the versatility of stress
monitoring systems (Vos et al., 2023). Yet, many approaches
still struggle with effectively integrating frequency-domain
features, which are essential for capturing stress-related signal
variations. Additional research focused on leveraging biosignals
for personalized stress detection, demonstrating the efficacy of
individual physiological patterns for enhancing predictive accuracy
(Bolpagni et al., 2024). However, ensuring model adaptability
across different individuals and work environments remains an
open problem. Recent developments in real-time physiological
data analysis have further advanced personalized stress detection
models, facilitating both immediate interventions and longitudinal
stress tracking (Ceren Ates et al., 2024). Despite these advances, a
unified framework that effectively integrates multi-modal signals
for stress detection under real-world intermittent data conditions is
still lacking.

Despite these advancements, there remains a need for
approaches that effectively integrate both time and frequency
domain features frommultiple physiological signals within a unified
deep learning framework, particularly in the context of intermittent

data collection in occupational settings. The current study aims to
address this gap by developing a novel multi-modal approach that
leverages the strengths of both time and frequency domains for
more accurate and robust stress detection. The proposed MMFD-
SD model is designed to be flexible and generalizable, capable of
handling the challenges of intermittent data collection and varying
stress manifestations across different contexts. Utilizing a dataset
collected from nurses demonstrates the model’s effectiveness in a
high-stress environment; however, the underlying principles and
architecture are designed to be applicable across a wide range of
occupational and everyday settings.

3 Methodology

3.1 Overview of the proposed approach

The proposed approach for stress detection leverages a multi-
modal deep learning framework that integrates both time and
frequency domain features extracted from various physiological
signals. The system processes four types of physiological data:
accelerometer data (X, Y, Z), EDA, HR, and TEMP. The
overall process can be broken down into several key stages:
data preprocessing, feature extraction, and deep learning-based
classification.

An essential component of this methodology is its
acknowledgment of the sporadic nature of wearable sensor data
acquisition in occupational environments. This trait is prevalent
across multiple industries in the examination of work-related stress,
as data is generally gathered during working hours, excluding off-
hours or rest periods. Constant 24/7 surveillance is frequently
unfeasible or superfluous.The approach is designed to accommodate
this intermittent data collection pattern, making it adaptable and
applicable to a wide range of occupational stress studies.

In the preprocessing stage, raw physiological signals are
cleaned and normalized to remove noise, ensuring data quality for
subsequent analysis. Following this, the approach employs a dual-
stream feature extraction process. In one stream, a comprehensive
set of time-domain features is extracted, including statistical
measures and physiological-specific indicators. Concurrently, FFT
is applied to the signals, deriving frequency-domain representations
from which spectral features are extracted.

The core of this method lies in a custom-designed deep learning
architecture that effectively handles this multi-modal data. The
architecture consists of two parallel CNN branches: one dedicated
to processing time-domain features, and another for frequency-
domain features. Each branch is tailored to capture the unique
characteristics of its respective domain.

The time-domain CNN branch is designed to learn temporal
patterns and relationships within the physiological signals. Similarly,
the frequency-domain CNN branch is optimized to identify spectral
patterns that may be indicative of stress states. The outputs from
these parallel CNN branches are then concatenated, creating a
unified representation that encapsulates both temporal and spectral
aspects of the physiological data.

This combined representation is then fed into fully connected
layers, which perform the final stress classification. By leveraging
both time and frequency domain information, the model aims
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to capture a more comprehensive view of the stress response,
potentially leading to more accurate and robust stress detection.

This approach addresses several key challenges in physiological
stress detection. By incorporating both time and frequency domain
features, it captures a more complete representation of the stress
response. The use of parallel CNN branches allows for specialized
processing of different feature types, while the subsequent fusion
enables the model to leverage complementary information from
both domains. Furthermore, by considering the practical constraints
of data collection in work environments and designing an algorithm
that can effectively process such data, this approach offers a
robust and widely applicable solution for stress detection. This
adaptability enhances the potential for the method to be used in
diverse occupational settings, contributing to broader applications
in workplace wellness and stress management.

3.2 Data preprocessing

3.2.1 Data segmentation
Tohandle the discontinuous nature of workplace data collection,

a time-based segmentation algorithm is implemented. This
algorithm identifies distinct work sessions within the continuous
stream of data by analyzing the time intervals between consecutive
data points. Let ti represent the timestamp of the ith data point.
A new segment is defined when the time difference between two
consecutive points exceeds a predetermined threshold δ:

∆t = ti+1 − ti > δ

where ∆t is the time difference, and δ is set to 900 s (15 min) to
account for short breaks or interruptions in data collection.

3.2.2 Data augmentation
To address potential class imbalance and increase the robustness

of the model, two data augmentation techniques are employed:

a) Sliding Window: Overlapping segments are generated using a
sliding window approach (Gaur et al., 2021; Hou et al., 2022).
For a window of size w and step size s, new segments Si
are created:

Si = {xj,xj + 1, ...,xj+w−1} for j = 1,1+ s,1+ 2s, ...,n−w + 1

where xj represents the jth data point in the original segment.

b) Jittering: Gaussian noise is added to the original data to create
slightly perturbed versions (Borghi et al., 2021):

x′i = xi + ε

where ε ∼ N(0,σ2), xi is the original data point, x
′
i is the jittered data

point, and ε is drawn from a Gaussian distribution with mean 0 and
variance σ2.

3.2.3 Feature extraction
Two types of features are extracted from each data segment:

a) Time-domain Features: For each physiological signal (X, Y,
Z accelerometer axes, EDA, HR, TEMP), statistical measures
are computed:

Mean:

μ = (1/n)∑xi

Standard Deviation:

σ = √(1/n)∑(xi − μ)2

b) Frequency-domain Features: FFT is applied to each signal:

X(k) = ∑x(n) ∗ e(−j2πkn/N)

where k = 0, N-1, x(n) is the time-domain signal and X(k) is its
frequency-domain representation.

3.2.4 Feature scaling
To ensure all features are on a comparable scale,

standardization is applied:

z = (x− μ)/σ

where x is the original feature value, μ is the mean of the feature, and
σ is its standard deviation.

3.2.5 Class imbalance handling
To address potential class imbalance, the SMOTE is employed

(Wang et al., 2021; Wongvorachan et al., 2023). SMOTE generates
synthetic examples in the feature space:

xnew = xi + λ∗ (xzi − xi)

where xi is the feature vector under consideration, xzi is one of its
k-nearest neighbors, and λ ∈ 0,1) is a random number.

This comprehensive preprocessing approach ensures that the
subsequent stress detection model is trained on a rich, balanced,
and representative dataset. By segmenting the data, augmenting it
with realistic variations, extracting both time and frequency domain
features, and addressing class imbalance, a robust foundation for
accurate stress detection in occupational settings is established.

3.3 MMFD-SD architecture

The proposed multi-modal deep learning architecture for
stress detection leverages both time-domain and frequency-domain
features extracted from physiological signals. The architecture
consists of three main components: a time-domain CNN branch,
a frequency-domain CNN branch, and a feature fusion and
classification module. Figure 1 illustrates the overall structure of the
proposed model.

The architecture is designed to process input tensors Xt ∈
ℝ^(B×T× Ft) for time-domain features and Xf ∈ ℝ^(B× F× Ff) for
frequency-domain features, where B is the batch size, T is the
number of time steps, F is the number of frequency points, and
Ft and F_f are the number of time-domain and frequency-domain
features, respectively.
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FIGURE 1
Overall architecture of the MMFD-SD.

3.3.1 CNN for time-domain features
The time-domain CNN branch is designed to capture temporal

patterns and local dependencies in the physiological signals. It
consists of a series of 1D convolutional layers, each followed by batch
normalization, ReLU activation, and max pooling operations.

The l-th convolutional layer can be described by the
following equation:

H_l = Pool(ReLU(BN(Conv1D(H_{l− 1};W_l,b_l))))

where H_l is the output of the l-th layer, Conv1D() is the 1D
convolution operation, BN() is batch normalization, ReLU() is
the rectified linear unit activation function, and Pool () is the
max pooling operation. W_l and b_l are the weights and biases of
the l-th convolutional layer, respectively.

The final layer of this branch employs global average pooling to
produce a fixed-size feature vector:

z_t = GAP(H_L)

where GAP() denotes the global average pooling operation, and L is
the index of the final convolutional layer.

3.3.2 CNN for frequency-domain features
The frequency-domain CNN branch is structured similarly to

the time-domain branch but is optimized for processing spectral
information. It operates on the frequency-domain representations of
the physiological signals, capturing spectral patterns and frequency-
based characteristics.

Themathematical formulation for this branch is analogous to the
time-domain branch, with the input being the frequency-domain
features X_f instead of X_t.

3.3.3 Feature fusion and classification layers
The feature fusion and classification module combines

the outputs from both CNN branches and performs the
final classification. This module can be described by the
following equations:

z = concat(z_t,z_f)

h_1 = ReLU(W_1z+ b_1)

h_2 = ReLU(W_2h_1+ b_2)

y = softmax(W_3h_2+ b_3)

where:
concat (z_t, z_f) denotes the concatenation of the time-domain

feature vector z_t and the frequency-domain feature vector z_f
along the feature dimension. If zt ∈ ℝ^d1 and zf ∈ ℝ^d2, then z ∈
ℝ^(d1+ d2).

W1 ∈ ℝ^(m× (d1+ d2)), W2 ∈ ℝ^(n×m), W3 ∈ ℝ^(K× n) are
the weight matrices of the fully connected layers.

b1 ∈ ℝ^m,b2 ∈ ℝ^n,b3 ∈ ℝ^Karethecorrespondingbiasvectors
K is the number of classes.
The key innovation in this architecture lies in its ability to

simultaneously process and integrate information from both time
and frequency domains. This multi-modal approach allows the
model to capture a more comprehensive representation of the
physiological signals, leading to improved stress detection accuracy.

The parallel CNN branches are designed to extract
complementary features: the time-domain branch captures temporal
dynamics and trends, while the frequency-domain branch identifies
spectral characteristics that may be indicative of stress responses.
The subsequent feature fusion enables the model to leverage these
complementary representations, allowing for a more nuanced
understanding of the complex physiological manifestations of stress.
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Furthermore, the use of batch normalization and dropout
in both CNN branches helps to stabilize training and prevent
overfitting, which is crucial when dealing with the high variability
often present in physiological data collected in real-world
occupational settings.

The global average pooling layers serve a dual purpose: they
reduce the spatial dimensions of the feature maps to a fixed size,
regardless of the input dimensions, and they act as a form of
structural regularization, encouraging the convolutional filters to
produce more informative feature maps.

In summary, this multi-modal deep learning architecture
represents a sophisticated approach to stress detection, leveraging
advanced deep learning techniques to process and integrate complex
physiological data. By combining time-domain and frequency-
domain analyses within a unified framework, the model is well-
equipped to capture the multifaceted nature of stress responses in
occupational environments.

3.3.4 Model training
The training process of theMMFD-SD architecture is crucial for

achieving optimal performance in stress detection.A comprehensive
approach to model training is employed, carefully considering the
loss function, optimization algorithm, hyperparameter tuning, and
regularization techniques.

3.3.5 Hyperparameter tuning
Bayesian optimization is employed for hyperparameter tuning,

which models the hyperparameter-to-metric function and attempts
to find its optimum (Alibrahim and Ludwig, 2021; Victoria and
Maragatham, 2020). The acquisition function used in the Bayesian
optimization is the Expected Improvement (EI):

EI(x) = E[max(f(x) − f(x+),0)]

where f(x+) is the current best observed value, and f(x) is the
surrogate model’s predicted value at x.

By combining these advanced training techniques and carefully
tuning the model, robust and generalizable performance in stress
detection across various occupational settings can be achieved.
The multi-modal nature of the architecture, coupled with these
sophisticated training approaches, allows for effective capture of
the complex patterns in physiological data associated with stress
responses.

4 Experiments

4.1 Dataset description

The experiments were conducted using the Nurse Stress
Prediction Wearable Sensors dataset, derived from the WESAD
dataset, which contains physiological measurements collected from
15 nurses during their hospital work shifts in a real-world clinical
environment (Hosseini et al., 2022;Hosseini et al., 2021).Thedataset
encompasses data recorded using the Empatica E4 wristband,
a widely used wearable device for physiological monitoring.
Stress levels in the dataset are categorized as Low, Medium, or
High, allowing for a granular analysis of stress variations in an
occupational setting.

TABLE 1 Overview of physiological signals and their frequencies.

Signal Abbreviation Frequency

Electrodermal activity EDA 4.0 Hz

Heart Rate HR 1.0 Hz

Skin temperature ST 1.0 Hz

Accelerometer ACC 32 Hz

The dataset consists of multi-modal physiological signals,
including electrodermal activity (EDA), heart rate (HR), skin
temperature (TEMP), and accelerometer data (X, Y, Z-axes).
The sampling frequencies for these signals vary, with EDA
recorded at 4 Hz, HR at 1 Hz, TEMP at 4 Hz, and accelerometer
data at 32 Hz. Table 1 below provides a detailed breakdown of the
collected signals and their corresponding sampling rates.

The dataset used in this study, while robust for occupational
stress research, has limitations. First, it consists of data from a
relatively small sample of nurses, which may not fully capture
the variability in stress responses across different individuals and
work conditions. Second, wearable sensor data is subject to noise,
missing values, and artifacts due tomovement or device positioning,
which can impact signal quality. Addressing these constraints in
future work by incorporating larger, more diverse datasets and
advanced signal preprocessing techniques would enhance model
robustness.

4.2 Data collection methodology

The physiological data were collected using the Empatica E4
wristband worn on the non-dominant wrist of each participant
throughout their work shifts.The stress labels (Low, Medium, High)
were assigned based on self-reported stress levels and physiological
indicators, validated through prior methodologies established in
occupational stress research.

This dataset provides a robust foundation for developing
and evaluating the MMFD-SD model in real-world healthcare
settings, as it captures the dynamic and high-stress nature of
the nursing profession. By integrating detailed demographic
information and real-world stress measurements, this dataset
ensures model generalizability and enhances the applicability
of stress detection frameworks in occupational health
monitoring.

4.3 Data preprocessing

The data preprocessing stage involved several key steps to
enhance data quality and prepare it formodel training.The collected
physiological signals were first segmented into 60-s windows with
50% overlap to create consistent data samples. Each physiological
signal underwentmin-max scaling for normalization. Following the
preprocessing steps described earlier, the data underwent time-
based segmentation using a 15-min threshold to identify distinct
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work sessions, data augmentation through sliding windows and
Gaussian jittering, and feature extraction in both time and frequency
domains (Alqudah and Alqudah, 2019; Xie et al., 2020). Finally,
the SMOTE technique was applied to address class imbalance,
resulting in a balanced and representative dataset suitable for stress
detection modeling.

4.4 Model design

The proposed MMFD-SD algorithm presents a comprehensive
deep learning approach for stress detection using multi-modal
physiological signals. The algorithm processes both time-domain
and frequency-domain features through parallel CNN branches,
each consisting of multiple convolutional layers with batch
normalization, ReLU activation, and max pooling operations
(Fu et al., 2022). The extracted features are then concatenated
and fed into a fusion classifier comprising fully connected layers
for final stress level classification. The training process utilizes
mini-batch gradient descent with early stopping, incorporating
cross-entropy loss and L2 regularization to prevent overfitting.
The algorithm’s modular structure allows for efficient processing
of different signal modalities while maintaining end-to-end training
capabilities. The detailed implementation of the algorithm is
presented in Algorithm 1 below.

4.5 Evaluation metrics

The model’s performance was evaluated using the
following metrics:

Accuracy = (TP+TN)/ (TP+TN+ FP+ FN)

Precision = TP /(TP+ FP)

Recall = TP /(TP+ FN)

F1− score = 2∗ (Precision · Recall)/ (Precision+Recall)

where TP = True Positives, TN = True Negatives, FP = False
Positives, FN = False Negatives.

5 Results

This section provides a comprehensive analysis of the MMFD-
SD’s performance, including baseline experiments, ablation studies,
and sensitivity analyses. Baseline experiments establish the model’s
accuracy and robustness by comparing it with various stress
detection algorithms, including traditional machine learning
classifiers. Ablation studies offer insight into the contribution of
individual components, such as the time-domain and frequency-
domain branches, by incrementally removing modules. Sensitivity
analysis focuses on evaluating the effect of hyperparameters on
model performance, aiming to determine optimal settings while
validating the model’s stability and adaptability across different
configurations.

Input: Time-domain features X_t, Frequency-domain

features X_f, Labels y,

  Hyperparameters η (learning rate), λ (L2

regularization coefficient),

  Number of epochs E, Batch size B

Output: Trained model parameters Θ

1: Initialize model parameters Θ =

{Θt,Θf,Θ fc} randomly

2: for each epoch e = 1, 2, E do

3:  Shuffle training data

4:  for each batch b of size B do

5:   // Forward pass

6:   z_t ← TimeDomainCNN(X_t; Θ_t)

7:   z_f ← FrequencyDomainCNN(X_f; Θf)

8:   z ← Concat(zt,zf)

9:   ypred ← FusionClassifier(z; Θfc)

10:   // Compute loss

11:   L ← CrossEntropyLoss(ypred,y)

+λ∗L2Regularization(Θ)

12:   // Backward pass

13:   ∇Θ← Backpropagate(L,Θ)

14:   // Update parameters

15:   Θ← Θ−η∗∇ΘΘ

16:  end for

17:  // Validation

18:  if EarlyStoppingCriterionMet () then

19:   break

20:  end if

21: end for

22: return Θ

Function TimeDomainCNN(Xt;Θt)

1: for each convolutional layer l do

2:  X_t ← Conv1D (X_t)

3:  X_t ← BatchNorm (X_t)

4:  X_t ← ReLU(X_t)

5:  X_t ← MaxPool (X_t)

6: end for

7: z_t ← GlobalAveragePooling (X_t)

8: return z_t

Function FrequencyDomainCNN(X_f; Θf)

1: for each convolutional layer l do

2:  X_f ← Conv1D (X_f)

3:  X_f ← BatchNorm (X_f)

4:  X_f ← ReLU(X_f)

5:  X_f ← MaxPool (X_f)

6: end for

7: z_f ← GlobalAveragePooling (X_f)

8: return z_f

Function FusionClassifier(z; Θf c)

1: h_1 ← ReLU(FullyConnected(z))

2: h_2 ← ReLU(FullyConnected (h_1))

3: y_pred ← Softmax (FullyConnected (h_2))

4: return y_pred

Algorithm 1. MMFD-SD.
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TABLE 2 Performance metrics of different models for stress detection.

Model Accuracy Precision Recall F1-score

LogisticRegression 0.7419 0.5564 0.7419 0.6321

NaiveBayes 0.7374 0.6565 0.7374 0.6415

RandomForest 0.6336 0.3976 0.3898 0.3918

Decision Tree 0.57 0.3733 0.3791 0.3718

KNeighbors 0.5901 0.3395 0.3402 0.3396

AdaBoost 0.6851 0.3616 0.3488 0.3427

XGBoost 0.6483 0.4087 0.3964 0.4003

MMFD-SD 0.91 0.91 0.91 0.91

LogisticRegression 0.7419 0.5564 0.7419 0.6321

FIGURE 2
Performance comparison of baseline models and MMFD-SD.

5.1 Baselines and MMFD-SD

Several baseline models, including Logistic Regression, Naive
Bayes, Random Forest, Decision Tree, K-Nearest Neighbors
(KNeighbors), AdaBoost, and XGBoost was conducted. These
models were selected due to their prevalent use and effectiveness
in various classification tasks.

The performance of each model was assessed using
multiple metrics: accuracy, precision, recall, and F1-score.

The results are compared to the performance of the MMFD-
SD model, which serves as a benchmark for evaluating the
effectiveness of the baseline approaches. The detailed results are
summarized in the Table 2 below.

Logistic Regression achieved an accuracy of 74.19%,
demonstrating its capability for linear decision boundaries.
Naive Bayes performed similarly, with an accuracy of
73.74%, reflecting its efficiency in handling categorical
data and independence assumptions.
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TABLE 3 Classification performance metrics for No-Freq model across
stress levels.

Class Precision Recall F1-score

0 0.79 0.87 0.83

1 0.85 0.91 0.88

2 0.84 0.7 0.77

Macro Avg 0.83 0.83 0.82

Accuracy 0.83

TABLE 4 Classification performance metrics for No-time model across
stress levels.

Class Precision Recall F1-score

0 0.86 0.88 0.87

1 0.88 0.96 0.92

2 0.89 0.80 0.84

Macro Avg 0.88 0.88 0.88

Accuracy 0.88

TABLE 5 Classification performance metrics for MMFD-SD model across
stress levels.

Class Precision Recall F1-score

0 0.89 0.92 0.91

1 0.94 0.95 0.95

2 0.91 0.87 0.89

Macro Avg 0.91 0.91 0.91

Accuracy 0.91

Random Forest yielded a lower accuracy of 63.36%, indicating
that the model may not have effectively captured the underlying
patterns in this dataset. In contrast, the Decision Tree model
displayed an accuracy of 57.00%, suggesting that its tendency to
overfit may have impacted its generalizability.

The K-Nearest Neighbors classifier achieved an accuracy of
59.01%, while AdaBoost showed improved performance with
an accuracy of 68.51%. XGBoost, known for its scalability and
performance, obtained an accuracy of 64.83%.

In stark contrast, the proposed model, MMFD-SD, significantly
outperformed all baseline models, achieving an accuracy of 91.00%.
This substantial improvement underscores the effectiveness of the
MMFD-SD approach in achieving higher predictive performance.

The performance metrics are illustrated in the accompanying
bar chart, which visually represents the comparative analysis of each

model’s accuracy, precision, recall, and F1-score.The chart distinctly
separates the metrics, allowing for a clear interpretation of each
model’s strengths andweaknesses.TheMMFD-SD model stands out
prominently across all metrics, achieving the highest scores and
highlighting its superiority compared to the baseline models. The
overall trends depicted in the chart indicate the varying effectiveness
of the baseline models, with MMFD-SD significantly surpassing
them in all evaluated aspects. The results are summarized in the
following Figure 2.

5.2 Ablation studies

In the ablation studies, the impact of individual feature domains
on the performance of the MMFD-SD is analyzed by evaluating
two variant models: the No-Freq Model, which excludes frequency-
domain features, and the No-Time Model, which excludes time-
domain features. These variations are compared against the original
model, which integrates both feature domains. The results of this
comparison provide insights into the contribution of each feature
type, demonstrating how each domain affects overall classification
accuracy, precision, recall, and F1-score in stress detection. This
analysis aims to determine the relative importance of each feature
set and validate the advantages of multimodal feature integration in
the MMFD-SD model.

5.2.1 Classification report for No-Freq model
The classification report for the No-Freq Model indicates its

performance in detecting stress levels without utilizing frequency-
domain features.The precision, recall, and F1-score metrics for each
stress level demonstrate that this model achieves a precision of 0.79
for Class 0, 0.85 for Class 1, and 0.84 for Class 2, with a notable
recall of 0.87 for Class 0 but a lower recall of 0.70 for Class 2. The
overall accuracy of the model stands at 0.83, reflecting its capability
to classify stress levels adequately, albeit with some limitations,
especially for Class 2. The macro averages are 0.83 for precision
and recall, and 0.82 for F1-score, suggesting a relatively balanced
performance, with potential areas for improvement in classification
accuracy for Class 2 as shown in Table 3.

5.2.2 Classification report for No-Time model
The classification report for the No-Time Model provides an

evaluation of themodel’s performancewhen excluding time-domain
features. This model exhibits improved precision and recall metrics
compared to the No-Freq Model, with precision scores of 0.86 for
Class 0, 0.88 for Class 1, and 0.89 for Class 2. The recall rates also
show significant improvement, reaching 0.88 for Class 0 and 0.96
for Class 1, with a slightly lower recall of 0.80 for Class 2.The overall
accuracy of 0.88 indicates that the model effectively classifies stress
levels, particularly excelling in distinguishing between Classes 0 and
1. The macro averages of 0.88 across precision, recall, and F1-score
confirm the robustness of this model, highlighting its effectiveness
in stress detection despite the absence of time-domain features
as shown in Table 4.

5.2.3 Classification report for MMFD-SD model
The classification report for the MMFD-SD Model illustrates its

superior performance in stress detection by integrating both time
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FIGURE 3
Comparison of confusion matrices for different models. (a) No-Freq Model - Confusion Matrix; (b) No-Time Model - Confusion Matrix; (c) MMFD-SD
Model - Confusion Matrix.

and frequency-domain features. The precision scores are notably
high, with 0.89 for Class 0, 0.94 for Class 1, and 0.91 for Class
2, indicating effective classification across all stress levels. The
recall metrics also reflect strong performance, achieving 0.92 for
Class 0, 0.95 for Class 1, and 0.87 for Class 2, resulting in a
balanced F1-score of 0.91 for each class. The overall accuracy of
the model is 0.91, underscoring its capability to accurately classify
stress levels. The macro averages of 0.91 across precision, recall,
and F1-score highlight the effectiveness of the MMFD-SD model,
confirming its robustness and adaptability in stress detection tasks
as shown in Table 5.

5.2.4 Comparison of Confusion Matrices for
Different Models

The confusion matrices displayed in the accompanying Figure 3
illustrate the classification performance of three models: the
MMFD-SD Model, the No-Freq Model, and the No-Time Model.
Each matrix presents the percentage of predictions across three
stress levels (Class 0, Class 1, and Class 2).

The MMFD-SD Model demonstrates superior performance,
with high true positive rates for all classes, indicating effective
differentiation between stress levels. In contrast, the No-FreqModel
shows a decline in classification accuracy, particularly for Class 2,
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FIGURE 4
Validation metrics comparison.

where misclassifications are more prevalent. Similarly, the No-Time
Model reveals further limitations, with a notable increase in false
positive rates across all classes.

Overall, the visual comparison underscores the importance of
integrating both time and frequency-domain features in achieving
optimal stress detection performance. The percentages reflect how
well each model can classify the stress levels, emphasizing the
advantages of the multimodal approach employed by the MMFD-
SD Model.

Figure 4 presents the validation loss and accuracy across 50
training epochs for three models: the No-Ferq Model, the No-time
Model, and the MMFD-SD Model.

When only time-domain features were utilized, the model
exhibitedmoderate performance.The validation accuracy plateaued
at 83%, with the loss showing gradual improvement but remaining
higher than other models.

The No-time Model solely employed frequency-domain
features, showed better performance compared to the No-Ferq
Model. The validation accuracy reached around 88%, and the loss
consistently declined, reflecting improved generalization.

The MMFD-SD Model integrating both time- and frequency-
domain features, this model achieved the best results. It consistently
outperformed the other two models in validation accuracy,
surpassing 90%, while maintaining the lowest validation loss across
all epochs.

The results highlight the critical role of feature integration in
enhancing model performance. The MMFD-SD Model, leveraging
both feature domains, demonstrates superior accuracy and stability,
affirming the effectiveness of a multi-modal approach for stress
detection.

5.3 Sensitivity analysis of hyperparameters

The sensitivity analysis of hyperparameters was conducted to
evaluate the impact of varying learning rates, dropout rates, and
batch sizes on the model’s performance. The experiments involved
combinations of three learning rates (0.001, 0.0001, and 1e-05), three
dropout rates (0.3, 0.5, and 0.7), and three batch sizes (32, 64, and
128). To ensure a comprehensive assessment, each configurationwas
trained for a fixed number of epochs (50 epochs) using the Adam
optimizer, which is known for its adaptive learning rate capabilities.
The selection of these hyperparameters was based on prior research
in deep learning-based physiological signal processing, ensuring
relevance to stress detection tasks. For the optimization process, a
grid search approach was employed to systematically evaluate all
possible combinations of the selected hyperparameters. Each model
configuration was trained on 80% of the dataset and validated on the
remaining 20% using a stratified split to maintain the distribution of
stress levels.
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TABLE 6 Impact of different learning rates, dropout rates, and batch
sizes on model test accuracy.

Batch size Learning
rate

Dropout
rate

Test
accuracy

32

0.001 0.3 0.9006

0.0001 0.3 0.888

1e-05 0.3 0.8219

0.001 0.5 0.8833

0.0001 0.5 0.8613

1e-05 0.5 0.8041

0.001 0.7 0.8439

0.0001 0.7 0.8382

1e-05 0.7 0.7768

64

0.001 0.3 0.9062

0.0001 0.3 0.8825

1e-05 0.3 0.8038

0.001 0.5 0.8878

0.0001 0.5 0.8672

1e-05 0.5 0.7875

0.001 0.7 0.8501

0.0001 0.7 0.8131

1e-05 0.7 0.7552

128

0.001 0.3 0.9037

0.0001 0.3 0.8771

1e-05 0.3 0.7896

0.001 0.5 0.8934

0.0001 0.5 0.8548

1e-05 0.5 0.7529

0.001 0.7 0.856

0.0001 0.7 0.821

1e-05 0.7 0.7341

The results, summarized in the following tables, indicate that
the combination of a learning rate of 0.001, a dropout rate of 0.3,
and a batch size of 64 yielded the highest test accuracy of 0.9062
as shown in table 6.

To provide a more comprehensive view of the results, various
visualizations were generated.

5.3.1 Test accuracy by dropout rate
The line chart illustrates how test accuracy varies with dropout

rates for different learning rates. It is evident that a dropout
rate of 0.3 consistently results in higher accuracy across all
learning rates, with the 0.001 learning rate achieving the best
performance as shown in Figure 5. This suggests that a lower
dropout rate may help retain more important features, leading to
better generalization.

5.3.2 Heatmap of Test Accuracy
The heatmap provides a clear visualization of the test accuracy

across different combinations of dropout rates and batch sizes. Each
cell represents the accuracy achieved for a specific combination,
with darker shades indicating higher accuracy as shown in Figure 6.
The optimal performance is observed with a batch size of 64
and a dropout rate of 0.3, reaffirming the results from the earlier
analysis.

5.3.3 Test accuracy by batch size
The bar plot compares the test accuracy across different batch

sizes while differentiating between learning rates. The highest
accuracy is achieved with a batch size of 64, particularly at a
learning rate of 0.001 as shown in Figure 7. This indicates that
both the choice of batch size and learning rate significantly
influence model performance, highlighting the importance of
careful hyperparameter tuning.

6 Discussion

This study presents MMFD-SD, a novel multi-modal deep
learning framework specifically designed for stress detection using
multiple physiological signals. By integrating both time-domain and
frequency-domain features from accelerometer data, EDA, HR, and
TEMP, MMFD-SD captures a holistic representation of the stress
response that surpasses traditional single-domain or single-modal
methods.The inclusion of FFT-based spectral features complements
the time-domain features, providing a more comprehensive view
of the stress response by capturing valuable information that may
be overlooked when relying solely on time-domain analysis. This
integration of multi-domain features has been demonstrated to
significantly enhance classification performance, as reflected in our
experimental results.

Additionally, the custom architecture—utilizing parallel CNNs
to separately process time and frequency domains—enables
effective multi-modal feature extraction and enhances classification
accuracy by capturing complex patterns across domains. Compared
to traditional machine learning classifiers such as Support
Vector Machines (SVM) and Random Forest (RF), our approach
achieves superior stress detection accuracy. Experimental results
show that MMFD-SD outperforms these conventional models,
highlighting the effectiveness of deep learning in physiological signal
processing.

Furthermore, MMFD-SD is designed to address the unique
challenges of occupational stress monitoring, particularly the
intermittent nature of data collection constrained to work
hours. This aspect is critical, as existing stress detection
models often assume continuous monitoring, which may
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FIGURE 5
Test accuracy by dropout rate.

FIGURE 6
Heatmap of test accuracy.

not be practical in workplace settings. This adaptation
acknowledges the real-world limitations of wearable sensor
data in professional settings, focusing analysis on periods
most relevant to occupational stress. Our findings suggest
that intermittent data collection does not significantly degrade
model performance, reinforcing the feasibility of MMFD-SD for
real-world deployment.

To further validate the model’s effectiveness, we conducted
extensive ablation studies and sensitivity analyses. The ablation

study confirmed that the inclusion of both time-domain and
frequency-domain features led to a noticeable improvement in
classification accuracy, reinforcing the importance of multi-domain
feature fusion. Sensitivity analysis indicated that a learning rate of
0.001, a dropout rate of 0.3, and a batch size of 64 provided optimal
performance, balancing convergence speed and generalization
capability.

While this study focuses on stress detection in nurses, the
proposed MMFD-SD model is designed to generalize to other
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FIGURE 7
Test accuracy by batch size.

occupational settings where stress monitoring is critical. High-
stress professions such as emergency responders, pilots, and
industrial workers share similar physiological responses to stress.
The intermittent data collection framework ensures adaptability to
work environments where continuous monitoring is impractical.
Future research could validate the model’s effectiveness in different
workplaces by collecting and analyzing datasets from diverse
occupational groups.

Despite its strong performance, MMFD-SD has some
limitations. The model currently relies on supervised learning,
which requires labeled training data. Future work could explore
semi-supervised or self-supervised approaches to mitigate
data labeling constraints. Additionally, integrating contextual
information, such as work shift duration and task intensity, could
further enhance stress prediction accuracy.

Overall, the results demonstrate that MMFD-SD offers a highly
effective approach for stress detection using intermittently collected
wearable sensor data. By addressing the limitations of previous
methods and leveraging both time and frequency-domain features,
this study contributes valuable insights into affective computing
and occupational stressmonitoring.These findings suggest potential
applications not only in healthcare worker wellness but also in
broader fields such as mental health monitoring and personalized
stress management.

7 Conclusion

The proposed MMFD-SD model demonstrates substantial
advancements in stress detection compared to baseline models.
By effectively integrating time-domain and frequency-domain
features, MMFD-SD provides superior performance, achieving the
highest accuracy and robustness across multiple evaluation metrics.

Ablation studies confirm that each feature domain contributes
significantly to the model’s success, supporting the effectiveness
of the multimodal approach.

Sensitivity analysis further validated the model’s adaptability,
identifying optimal hyperparameter settings that balance
performance with stability. This adaptability, coupled with the
robustness seen in baseline comparisons, highlights MMFD-SD’s
suitability for diverse stress detection tasks.

Future research could explore additional feature domains
or employ alternative integration techniques to further enhance
performance, particularly in highly variable stress datasets, as well
as the integration of real-time stress detection capabilities and
testing across broader datasets to improve its generalizability and
real-world applicability. Overall, the MMFD-SD model stands as
a reliable and advanced solution for real-world stress detection
applications.
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