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Introduction: The Pulse-Respiration Quotient (PRQ) is considered a powerful
tool for assessing dynamic interactions between cardiac and respiratory
rhythms. Type 2 diabetesmellitus (T2DM) disrupts autonomic control, potentially
compromising the complexity and adaptability of cardiorespiratory dynamics.
In this cross-sectional, exploratory study, we investigated whether T2DM
alters cardiorespiratory dynamics by analyzing short-term PRQ signals using
conventional linear indices and Recurrence Quantification Analysis (RQA).

Methods: Thirty-eight participants (20 T2DM and 18 controls) completed four
standardized tasks—supine rest, orthostatic challenge, paced breathing, and
the Valsalva maneuver—while electrocardiographic and respiratory signals were
continuously recorded. From these signals, R-to-R peak interval (RRI) and
breath-to-breath (BB) time series were derived, allowing us to compute the PRQ
time series as the ratio of instantaneous heart rate to instantaneous breathing
rate. Linear indices of PRQ and RQA metrics were then calculated for the PRQ
signals, enabling comparisons between groups (T2DM vs. control) and across
tasks. Additionally, entropy-based mutual information (MI) between RRI and BB
was assessed as a quantitative measure of cardiorespiratory coupling.

Results: T2DM participants exhibited higher recurrence rates and prolonged
recurrence time of the first type in the PRQ series, especially during paced
breathing, suggesting a more rigid and less adaptive control mechanism.
Although linear PRQ indices showed changes in some stage-dependent
responses, they were less adept than RQA metrics at discerning subtle
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differences between groups. Furthermore, the complementary cardiorespiratory
coupling assessment by MI revealed distinct compensatory patterns in T2DM
during paced respiration and Valsalva.

Conclusion: These findings indicate potential dysautonomia or partial
autonomic dysregulation in individuals with T2DM, as reflected by altered
cardiorespiratory dynamics and reduced adaptability.

KEYWORDS

pulse-respiration quotient, type 2 diabetes mellitus, cardiorespiratory coupling,
recurrence quantification analysis, nonlinear dynamics

1 Introduction

There is growing recognition in biomedicine that the human
body functions as a complex and adaptive biological system
where multiple organ subsystems dynamically interact through
various pathways instead of depending on a hierarchical mode
of control (Jayasinghe, 2012). Among the variety of physiological
time series that reflect these interactions, heart rate variability
(HRV) and, more recently, breathing rate variability (BRV)
have been employed as non-invasive metrics to evaluate the
autonomic control of cardiac and respiratory functions, respectively
(Shaffer and Ginsberg, 2017; Soni and Muniyandi, 2019). Yet,
standard linear measures of physiological signals can fail to
capture the full intricacy of the underlying physiological processes,
highlighting the advantage of nonlinear analytic methods in
uncovering hidden regulatory mechanisms (Germán-Salló and
Germán-Salló, 2016; Müller et al., 2017).

Type 2 diabetes mellitus (T2DM) can compromise the
autonomic nervous system (ANS), leading to neurophysiological
dysregulation that is evidenced by a decreased HRV, impaired
baroreflex sensitivity, and altered cardiorespiratory coupling
(Benichou et al., 2018; Kück et al., 2020; Da Silva et al., 2023).
Growing evidence further indicates that T2DM is associated with a
loss of systemic complexity (decomplexification), a phenomenon
highlighted in Goldberger’s hypothesis, which posits that the
intricate physiological complexity degrades with aging and during
the course of chronic diseases (Goldberger et al., 2002). Along
similar lines, Costa et al. reported a progressive reduction in the
complexity of glycemic time series—emerging even before overt
hyperglycemia—suggesting that these changes reflect the gradual
breakdown of integrated control mechanisms that are central to the
metabolic homeostasis (Costa et al., 2014).

Despite the well-documented impact of T2DM on autonomic
cardiorespiratory activity, few studies have examined the Pulse-
Respiration Quotient (PRQ)—the ratio of instantaneous heart rate
to instantaneous breathing rate—inT2DMover shorter time frames.
For instance, Bettermann et al. (2001) assessed 24-h data and
found a reduction in cardiorespiratory coordination in diabetic
patients (Bettermann et al., 2001). However, to the best of our
knowledge, none study has investigated short-term PRQ in T2DM.
This ratio is considered a marker of cardiorespiratory coupling, as
it reflects the interplay between cardiac and respiratory rhythms
(Scholkmann and Wolf, 2019). Conventional linear indices (e.g.,
the mean or standard deviation of PRQ) can detect differences
between resting and orthostatic conditions in humans (Matić et al.,

2022). Yet, nonlinear approaches, such as RecurrenceQuantification
Analysis (RQA), offer complementary insights into the structural
changes in physiological time series (Webber and Zbilut, 1994).
In fact, RQA has already been applied to HRV analysis, including
studies on diabetic populations: for instance, Javorka et al. (2008)
reported that young patients with type 1 diabetes mellitus exhibit a
higher percentage of determinism in HRV signals compared with
healthy controls (Javorka et al., 2008). Thus, conventional linear
metrics of PRQ may not fully capture the cardiorespiratory changes
associated with autonomic dysfunction in T2DM.

This study aims to investigate whether T2DM alters the short-
term dynamics of PRQ time series through both linear and
nonlinear analyses. Specifically, we compare diabetic and non-
diabetic participants to assess potential changes in the RQA metrics
of PRQ time series across different conditions and stages of a
protocol that modulate the autonomic activity, which includes
supine rest, orthostatic challenge, paced respiration, and theValsalva
maneuver. We hypothesize that individuals with T2DM will exhibit
increased recurrence and reduced complexity in PRQ time series
compared to healthy controls, with more pronounced differences
during such tasks that challenge the cardiorespiratory regulation.

2 Methods

2.1 Description of participants

Recruitment and protocol testing took place between August
2023 and March 2024. This cross-sectional and exploratory study
included a total of 38 participants: 18 in the control group
and 20 with a confirmed diagnosis of T2DM. The sample size
was determined based on prior methodological considerations
established in the study protocol. Participants were then recruited
using a non-probabilistic convenience sampling approach. All
individuals were recruited at the “Nueva Oxtotitlán” Family
Medicine Clinic, which is part of the Institute for Social Security
and Services for State Workers (ISSSTE) in Toluca de Lerdo, State
of Mexico, Mexico. Before enrollment, each participant signed a
written informed consent. The study protocol was approved by
the Research Ethics Committee of the School of Medicine at the
Universidad Autónoma del Estado de México (CONBIOÉTICA-15-
CEI-002-20210531, approval number 016_2023).The study adhered
to the Mexican regulations for human research (NOM-012-SSA3-
2012).
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Participants were selected based on demographic and clinical
parameters, with a focus on individuals aged 50 to 70. The control
group was matched to have similar height and weight ranges as the
T2DM group but without any known history of diabetes (Table 1).
At the time of testing, fasting blood glucose levels in the control
group were within normal ranges (93.6 ± 7.3 mg/dL). Meanwhile,
the T2DM group consisted of individuals diagnosed with T2DM
for at least 5 years, confirmed in a hospital setting by HbA1c
or oral glucose tolerance tests. Although fasting glucose values
for the T2DM group were not available at the time of testing,
hospital physicians reported that their levels were stable or within
normal ranges based on their clinical follow-up. Most T2DM
participants were under pharmacological treatment, primarily with
metformin. Additionally, four participants in the T2DM group
had confirmed diabetic neuropathy, diagnosed through clinical
evaluation. Diabetic neuropathy was further assessed using the
standardized 10-point plantar sensitivity test with a 10 g-calibrated
monofilament, considering the absence of sensitivity in more than
four points as an indicator of neuropathy. Exclusion criteria included
acute illness immediately before or during the test day, participation
in intense physical activity within 24 h prior to the evaluation, or
consumption of caffeine, energy drinks, or alcohol.

2.2 Experimental protocol and data
acquisition

Following a brief acclimatization period in a quiet room, during
which participants were in a supine position for approximately
5 min, each participant completed four experimental stages, during
which cardiovascular and respiratory responses were continuously
recorded via electrocardiogram (ECG) and respiratory recordings
(RESP). In the first stage (S), participants rested in a supine
position for 5 minutes. Then, they stood upright for 5 minutes in
the second stage (O) for an orthostatic challenge assessment. In
the third stage (R), while remaining in a supine position, they
engaged in paced breathing or respiration at a rate of six breaths
per minute for 3 minutes, guided by an auditory cue to maintain a
synchronized respiratory rate at a 1:1 inspiration-to-expiration ratio.
A trained professional supervised the participants to ensure the
proper execution of the exercise. In the fourth stage (V), participants
intermittently performed the Valsalva maneuver while seated. They
were instructed to inhale for 5 s, hold their breath, and apply
pressure on their lungs for 15 s with the mouth closed, then exhale
for 5 s. This sequence was repeated for 2 min, leading to 5 to 6
repetitions of the maneuver. No participant reported dizziness or
discomfort during any respiratory exercise. As the V stage had the
shortest duration, analyses were restricted to the first 2 minutes of
data in each stage to ensure consistency. Although the first 2 minutes
of each stage may include transitional autonomic adjustments,
we selected this interval to capture the immediate physiological
responses to the experimental interventions. Given that the V stage
was limited to 2 minutes, analyzing the same initial period across
all stages ensured a consistent and directly comparable data set for
evaluating rapid cardiovascular and respiratory dynamics.

Physiological data were captured at a sampling frequency of
128 Hz using a portable mobile amplifier, Mobi (TMSi Systems,
Netherlands), transferred in real-time to a computer interface via

Bluetooth 1.1. A three-electrode bipolar lead configuration was
used for the ECG recordings, with the negative electrode placed
in the right infraclavicular region, the positive electrode in the left
infraclavicular region, and the ground electrode positioned on the
left lateral chest at the level of the fifth rib. Additionally, a respiratory
sensor belt was positioned tomonitor respiration. Figure 1 illustrates
the electrode placement for ECG acquisition and the positioning of
the respiratory sensor belt.

2.3 Preprocessing and PRQ time series
computation

The Pan–Tompkins algorithm was applied to the ECG
recordings to detect R peaks, enabling the extraction of the R-
to-R peak interval (RRI) series (Sedghamiz, 2020). In parallel,
inspiratory peaks in the RESP signals were identified to form a
breath-to-breath (BB) time series. Subsequently, both the RRI and
BB time series underwent adaptive filtering to remove spurious
heartbeats or breaths that were not representative of the true
physiological signals (Wessel et al., 2000). Subsequently, each series
was spline-interpolated at 4 Hz to ensure uniform time spacing
and equidistant lengths (Zhao et al., 2019; Koppula et al., 2022),
facilitating further analysis of the PRQ. This metric is used to
evaluate potential alterations in both the linear and nonlinear
aspects of cardiorespiratory dynamics (Matić et al., 2022). The
PRQ is determined based on the RRI:BB ratio (m:1). It can be
computed automatically by recording ECG data and respiration
signals, extracting RRI and BB intervals, and directly calculating
their ratio.

When RRI and BB time series are expressed as counts per
minute, they correspond to instantaneous heart rate (HR) and
instantaneous breathing rate (BR), respectively. These relationships
are described by:

Heartrate (HR) = 60
RR
[heartbeats/min] (1)

Breathingrate (BR) = 60
BB
[respirations/min] (2)

PRQ = HR
BR

(3)

The PRQ analysis captures a distinct component of
cardiorespiratory activity (Matić et al., 2022). In this study, we
transformed the RRI and BB time series into instantaneous HR
(Equation 1) and BR (Equation 2) to calculate the PRQ time series.
The instantaneous PRQ was then determined by dividing the
instantaneous HR by BR (Equation 3). According to Scholkmann
and Wolf (Scholkmann and Wolf, 2019), it is essential to move
beyond the standard method of calculating the PRQ by simply
averaging the heart rate and breathing rate. Instead, an algorithm
should be utilized to continuously compute heartbeat intervals for
each respiratory cycle in real-time. In the present study, we used
the interpolated and equidistant BR and HR time series to derive
the PRQ time series over approximately 2-min segments. Here, the
“functional PRQ” was examined. Notably, when the PRQ value
stabilizes near 4—referred to as “PRQ normalization”—it signifies
an optimal PRQ concerning cardiovascular function, highlighting
the physiological significance of this state (Scholkmann et al., 2019).
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FIGURE 1
Schematic representation of the electrode configuration for electrocardiogram (ECG) acquisition and the positioning of the thoracic respiratory sensor.
The ECG was recorded using a three-electrode bipolar lead system, with the negative electrode placed on the right infraclavicular region, the positive
electrode on the left infraclavicular region, and the reference electrode positioned on the left lateral chest at the level of the fifth rib. The thoracic
respiratory sensor belt was positioned around the chest to monitor respiratory activity (RESP).

Next, the PRQ time series were analyzed using both linear
and nonlinear indices, including the mean PRQ (mPRQ) and
the PRQ standard deviation (SDPRQ). These metrics have been
shown to be sensitive to changes in the dynamic behavior of
cardiorespiratory coupling, such as variations in body posture and
breathing patterns. The mPRQ provides a summary measure of
overall PRQ levels (Matić et al., 2022).

2.4 RQA analysis

To represent recurrence behavior within a time series or
dataset, an N × N recurrence matrix is generated based on the
criterion (Equation 4):

Ri,j = Θ(εi− ∥x⃗i − x⃗j ∥), x⃗i, x⃗j ∈ ℝm, i, j = 1,…,N− (m− 1)τ (4)

Where Ri,j is the element at the ith row and jth column of the matrix,
indicating whether the state at time i recurs at time j. The Heaviside
step function Θ assigns a value of 1 if the distance between xi and
xj is smaller than the threshold εi , and 0 if it exceeds that threshold.
The parameter εi establishes the maximum distance allowed for two
states to be considered recurrent and ∥⋅∥ (e.g., the Euclidean norm)
measures the distance between the vectors in the reconstructed
phase space.

The vectors xi and xj lie in an m-dimensional phase space, ℝm.
The integer m is the embedding dimension, defining the number
of delayed copies of the original time series used to rebuild the

phase space. The embedding delay τ specifies the separation in time
between these delayed copies, ensuring that the essential dynamics
of the system are captured. A univariate time series ui is mapped
onto this higher-dimensional space via (Equation 5):

x⃗i = (ui,ui+τ,…,ui+(m−1)τ) for i = 1,…,N− (m− 1)τ (5)

Here, i and j range from 1 toN− (m− 1)τ, whereN is the length
of the time series. For the current study, a one-dimensional series of
PRQ was converted into anm-dimensional phase space using time-
delay embedding. Each point in this reconstructed space represents
the system’s state at a specific moment and is determined by the m
coordinates corresponding to the embedding dimension.

The embedding delay τ was chosen as the first zero-crossing
of the mean autocorrelation function across all PRQ signals
(Javorka et al., 2008; Calderón-Juárez et al., 2020). In Figure 2,
thin lines depict the autocorrelation function for each individual
recording, while thick lines represent the group averages for all
the studied stages of Control and T2DM groups. The averaged
autocorrelation function reached zero between lags 14 and 16,
leading us to select τ = 14 for all subsequent analyses.

Figure 3 illustrates the proportion of false nearest neighbors as
a function of the embedding dimension for each recording and
condition (thin lines) alongside the group-averaged values (thick
lines). An overall rapid decrease in false neighbors was observed
with increasing dimension. By an embedding dimension of 5, at least
50% of the recordings fulfilled the criterion of having fewer than
10% (i.e., 0.1) false nearest neighbors. Following the guideline by
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FIGURE 2
Assessment of the autocorrelation function for each Pulse-Respiration Quotient (PRQ) time series (thin lines) and averaged values per group (thick
lines). The panels compare control participants (upper row) and individuals with type 2 diabetes mellitus (T2DM, lower row) across four experimental
conditions: supine rest (S), orthostatic challenge (O), paced breathing (R), and the Valsalva maneuver (V). The autocorrelation function quantifies the
temporal dependencies in the PRQ time series, providing insight into the underlying dynamics of autonomic regulation in response to different
physiological challenges.

Abarbanel and Kennel (1993) (Abarbanel and Kennel, 1993), which
suggests that an embedding dimension yielding fewer than 10% false
neighbors is sufficient to recapture the system’s dynamics without
significant projection errors, we selected m = 5. Distances between
points in the reconstructed phase space were computed using the
‘fan’ option in the recurrence plots toolbox, which selects a fixed
number of nearest neighbors. To ensure that each column of the
recurrence plot has a local recurrence rate of 7%, we preselected
the number of nearest neighbors corresponding to 7% recurrent
points. The toolbox then automatically and dynamically determined
the appropriate threshold, εi, for each recording.

From these PRQ time series—acquired during the S, O, R,
and V stages—several RQA metrics were calculated using the
Cross Recurrence Plot Toolbox for MATLAB, Version 5.29 (R38)
(Marwan et al., 2007; Marwan, 2024). The toolbox can be accessed
at https://tocsy.pik-potsdam.de/CRPtoolbox/. Below is a concise
overview of the RQA metrics used:

Recurrence rate (RR) represents the density of recurrence
points within the recurrence plot (Marwan et al., 2007). The
threshold εi directly influences RR , its corresponding formula
is given in Equation 6:

RR = 1
N2

N

∑
i,j=1

Ri,j (6)

DET or determinism measures the fraction of recurrence
points forming diagonal lines of at least (lmin) points relative
to the total number of recurrence points, thus reflecting the
system’s predictability. In this study, lmin=2 was chosen, which
is a commonly used default value (Babaei et al., 2014). In
Equation 7, P(l) represents the frequency distribution of these

diagonal line lengths (Marwan et al., 2007).

DET =

N

∑
l=lmin

l · P(l)

N

∑
l=1

l · P(l)

(7)

The L measure represents the mean prediction time over which
trajectories in the phase space remain in proximity (Marwan et al.,
2007). Formally, it is defined in Equation 8:

L =

N

∑
l=lmin

lP(l)

N

∑
l=lmin

P(l)

(8)

LMAX is the length of the longest diagonal structure found in
the recurrence plot, providing insights into the attractor’s stability
(Marwan et al., 2007). Mathematically, it is defined in Equation 9:

LMAX =max{l ∣ P(l) > 0} (9)

Entropy (ENTR) evaluates the distribution of diagonal line
lengths in the recurrence plot, specifically through the probability
distribution p(l), rather than providing a direct measure of system
complexity. For uncorrected entropy, periodic dynamics can exhibit
large ENTR values, chaotic dynamics can also have high ENTR,
while random dynamics often yield relatively low ENTR. When
border effect corrections are applied, the periodic dynamics tend to
have lower entropy values (Kraemer and Marwan, 2019). Formally,
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FIGURE 3
Assessment of the false nearest neighbors’ method for each Pulse-Respiration Quotient (PRQ) time series (thin lines) and averaged values per group
(thick lines). The panels compare control participants (upper row) and individuals with type 2 diabetes mellitus (T2DM, lower row) across four
experimental conditions: supine rest (S), orthostatic challenge (O), paced breathing (R), and the Valsalva maneuver (V). The false nearest neighbors’
method estimates the optimal embedding dimension for nonlinear analysis, helping to determine the minimal dimensionality required to reconstruct
the system’s phase space and assess its underlying complexity.

it is formulated in Equation 10:

ENTR = −
N

∑
l=lmin

p(l) log p(l) (10)

Laminarity (LAM) calculates the fraction of recurrence points
forming vertical lines in the recurrence plot, indicating that
the system remains in a specific state for extended periods
(Marwan et al., 2002). If P(w) represents the probability of finding
a vertical line of length w, and wmin is the minimum length
considered. In this study, wmin = 2 in accordance with standard
practice (Marwan, 2024). LAM is expressed in Equation 11:

LAM =

N

∑
w=wmin

wP(w)

N

∑
w=1

wP(w)

(11)

Trapping time (TT) is the mean length of vertical lines in the
recurrence plot, reflecting the stability of “trapped” states within the
system (Marwan et al., 2002). It is expressed in Equation 12:

TT =

N

∑
w=wmin

wP(w)

N

∑
w=wmin

P(w)

(12)

Recurrence time of the first type (T1) characterizes the
average time interval between recurrent points along the
ith column of a recurrence plot, interpreted as the mean
duration for a state in the embedding space to reappear.

Although other approaches to recurrence-time statistics
exist (Ngamga et al., 2012), T1 offers a direct and intuitive
measure suitable for our analysis. Formally, it is represented in
Equation 13:

T1 = 1
N

N

∑
i=1

T(1)i (13)

Where T(1)i represents the average of the minimum time
difference between points in the neighborhood of a point i on the
reconstructed trajectory.

Recurrence time of the second type (T2) measures the average
time needed for a state to be revisited in the embedding space,
excluding single time-unit intervals (Marwan et al., 2007). It is
expressed in Equation 14:

T2 = 1
N

N

∑
i=1

T(2)i (14)

Where T(2)i represents the average return time,
defined as the minimum time difference between the
recurrence points in the neighborhood of point i on the
reconstructed trajectory, excluding all successive time points
(Marwan et al., 2007).

We selected RQA because it is particularly effective for
short and noisy physiological time series and is well-suited
for signals produced by nonlinear systems (Chatain et al.,
2021). Additionally, RQA has proven to be a versatile
tool for investigating nonstationary data, aligning with the
complex nature of the cardiorespiratory signals examined in
this study.
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2.5 Cardiorespiratory coupling assessment
by mutal information (MI)

Mutual Information enables the assessment of information
flow as a function of the time lag, τ. This method quantifies
the information obtained from observations of one random
variable in relation to another, capturing both linear and nonlinear
dependencies between the two random variables, X and Y. In
this study, the cross-mutual information (MI) function was used
to quantify the cardiorespiratory coupling between two signals:
x(t), representing the R-to-R peak interval (RRI) series, and y(t) ,
representing the breath-to-breath (BB) time series.

MI is the nonlinear equivalent of the cross-correlation function
and is based on the Shannon entropy, which measures the
uncertainty of a random variable. The Shannon entropy of a time
series x(t) is calculated using its discrete probability distribution
p(xi(t)), resulting in Hx(t), as expressed in Equation 15:

Hx(t) = −
I

∑
i=1

p(xi(t)) log2 (p(xi(t))) (15)

where I represents the number of bins required to estimate the
amplitude the histogram of x(t), which serves as an approximation
of the signal’s probability distribution function (Hoyer et al., 2002).
Similar formulas provide Hx(t) and Hx(t)y(t+τ). Here, Hx(t) represents
the entropy of x(t), and Hx(t)y(t+τ) is the joint entropy, which is
calculated by summing over the bivariate probability distribution
p(x(t),y(t+ τ)), as expressed in Equation 16:

Hx(t),y(t+τ) = −∑
x(t)
∑

y(t+τ)
p(x(t),y(t+ τ)) log2 [p(x(t),y(t+ τ))] (16)

The MI between x(t) and y(t+ τ) is defined in Equation 17:

MIx(t)y(t+τ) =Hx(t) +Hy(t) −Hx(t)y(t+τ) (17)

where Hx(t)y(t+τ) is the joint entropy computed from the bivariate
probability distribution of x(t) and y(t+ τ). This joint entropy
quantifies the shared uncertainty between two-time series, reflecting
the amount of information one signal provides about the other
x(t) and y(t+ τ). A higher MI value indicates a stronger statistical
dependence between x(t) and y(t+ τ), while a lower MI value
suggests weaker coupling (Pompe et al., 1998).

For this study, a function was programmed in MATLAB (The
MathWorks, Inc., Natick, MA, United States, version R2023a) to
calculate the mutual information between the RRI and BB time
series. The maximum lag was set to τ = 30 based on an empirical
evaluation of mutual information across different time delays,
ensuring that the selected range effectively captured the interaction
between both time series, as recommended by Pompe et al., 1998.
Additionally, the Shannon entropy was estimated using a histogram
approach with 10 bins.

2.6 Statistics

All variables were assessed for normality using the
Kolmogorov–Smirnov test. For those meeting the normality
assumption, we performed a two-way repeated-measures ANOVA
with group (Control vs T2DM) as the between-subjects factor

TABLE 1 Clinical and demographic characteristics of the study
population (mean ± SD).

Parameter Control
N = 18

T2DM
N = 20

Age (years) 56 ± 6 56 ± 5

Weight (kg) 71.4 ± 10.3 79.8 ± 20.1

Height (m) 1.60 ± 0.07 1.61 ± 0.08

BMI (kg/m2) 27.6 ± 4.7 30.2 ± 5.6

Systolic blood pressure
(mm/Hg)

109 ± 10a 123 ± 15

Diastolic blood pressure
(mm/Hg)

71 ± 7a 79 ± 10

Gender (female, %) 61 65

Glucose (mg/dL) 93.6 ± 7.3 -

Time span since diagnosis of
diabetes (years)

- 10 ± 6

Presence of diabetic neuropathy
(n/N)

- 4/20

ap < 0.05 between Control vs T2DM.

and time (S, O, R, and V) as the within-subjects factor. Post hoc
comparisons were carried out using the Uncorrected Fisher’s
LSD test, and for nonparametric data—including comparisons
of MI—the Mann–Whitney test was used. Although multiple
comparisons were made across the experimental phases (S, O, R,
and V), given the exploratory nature of our study, no statistical
corrections were applied. In exploratory studies, adjustment for
multiple comparisons is not desirable for several reasons, as such
corrections may increase the risk of type II errors by masking
potentially meaningful trends. Instead, the analyses were performed
without adjustment, with the understanding that additional
dedicated studies are needed to confirm these results (Althouse,
2016). All statistical analyses were carried out using GraphPad
Prism version 10.0.0 (GraphPad Software Inc., La Jolla, CA, United
States), and a p-value less than 0.05 was considered statistically
significant.

3 Results

Table 1 summarizes the clinical and demographic characteristics
of the participants. Although most parameters showed no
statistically significant differences between groups, the T2DM
cohort exhibited elevated systolic and diastolic blood pressures
compared to the Control group (109 ± 10/71 ± 7 mmHg vs 123 ±
15/79 ± 10 mmHg, p < 0.05).

Regarding the mPRQ values (Figure 4e), a two-way repeated-
measures ANOVA revealed a significant time × group interaction
(F (3,108) = 2.939, p = 0.0365) and a main effect of time (F (3,108) =
5.970, p = 0.0008). Post hoc comparisons for Controls indicated that,
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FIGURE 4
Comparison of recurrence quantification analysis (RQA) indices and linear indices for Pulse-Respiration Quotient (PRQ) time series across different
experimental stages: supine rest (S), Orthostatic challenge (O), Paced respiration (R), and Valsalva maneuver (V) for control (blue) and diabetic (red)
groups. Panels represent the following indices: (a) Trapping time (TT), (b) Entropy (ENT), (c) Recurrence time of first type (T1), (d) Recurrence time of
second type (T2), (e) Mean of PRQ (mPRQ), and (f) Standard deviation of PRQ (SDPRQ). Data are expressed as mean ± SEM. Significant differences are
indicated as follows:∗p < 0.05 between Control vs T2DM; p < 0.05 for #(S vs R), ¬(S vs O),-(S vs V), &(O vs R), +(O vs V), and ^(R vs V). The color of the
symbol represents the group: blue for the control group and red for the diabetic group.

from S (3.72 ± 0.85) to the orthostatic challenge (O: 4.22 ± 1.51),
mPRQ increased significantly (p = 0.0283), also for S vs R (4.17 ±
1.23, p = 0.0485). Further comparisons showed differences between
O and Valsalva (V: 3.38 ± 0.78, p = 0.0003) and between R and V
(p = 0.0006). In T2DM, a significant increase in mPRQ occurred
from S (3.28 ± 0.91) to O (3.84 ± 0.74, p = 0.0098), but no other
stage-to-stage comparisons reached significance.

Analysis of the SDPRQ (Figure 4f) showed a significant main
effect of time (F (3,108) = 4.441, p = 0.0055), but no overall group
effect (F (1,36) = 3.666, p = 0.0635). Within the Control group,
SDPRQ rose from S (0.38 ± 0.17) to R (0.66 ± 0.42, p = 0.0004)
and showed additional within-group differences between O (0.49 ±
0.35) and R (p = 0.0331), as well as between R and V (0.43 ± 0.34,

p=0.0037). InT2DM,SDPRQincreased fromS(0.30±0.26) toV(0.46
± 0.18, p = 0.0325), with no other significant changes between stages.

Nonlinear analysis of PRQ time series via RQA (Figure 5)
indicated a significant group effect for RR according to the two-
way repeated-measures ANOVA (column factor: F (1,36) = 7.020,
p = 0.0119). Post hoc tests revealed that during the R stage, RR
was higher in the T2DM group than in Controls (p = 0.0015; 0.029
± 0.13 vs 0.018 ± 0.10, Figure 5a). Within the Control group, RR
also differed between R and V (p = 0.0028; 0.018 ± 0.10 vs 0.028
± 0.009, Figure 5a). For the RQA index T1 (Figure 4c), the overall
ANOVA showed a significant group effect (F (1,36) = 6.979, p =
0.0121). Although the pairwise comparison at the R stage yielded p
= 0.0504, we still considered this a trend-level meaningful difference
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FIGURE 5
Comparison of recurrence quantification analysis (RQA) indices for Pulse-Respiration Quotient (PRQ) time series across different experimental stages:
supine rest (S), Orthostatic challenge (O), Paced respiration (R), and Valsalva maneuver (V) for control (blue) and diabetic (red) groups. Panels represent
the following RQA indices: (a) Recurrence Rate (RR), (b) Determinism (DET), (c) Mean diagonal line length (L), (d) Longest diagonal line (LMAX), (e)
Laminarity (LAM), and (f) Maximum vertical line length (VMAX). Data are expressed as mean ± SEM. Significant differences are indicated as follows:∗∗p <
0.01 between Control vs T2DM; p < 0.05 for #(S vs R), and ^(R vs V). The symbol’s color represents the group: blue for the Control group and red for the
T2DM group.

because of the numerical gap between the means of Controls (7.15 ±
4.48) and T2DM (9.81 ± 3.72). These findings are visually supported
by Figure 6, which illustrates representative PRQ time series and
recurrence plots for both groups.TheT2DMgroup exhibits a regular
or structured and repetitive PRQ signal (Figure 6j) compared to the
presence of more fluctuations seen in the Control group (Figure 6i).
Recurrence plots further highlight this contrast: while the Control
group (Figure 6k) shows a more fragmented pattern, indicative of
greater dynamical complexity, the T2DM group (Figure 6l) displays
increased recurrence and longer diagonal structures, suggesting a
more deterministic or rigid, and less adaptive cardiorespiratory
interaction.

The results shown in Figure 7 illustrate the MI across different
time delays (τ) during the R and V stages for both groups.
Although no statistically significant differences were observed at
individual τ values, the overall MI behavior across the entire
range was significantly different (p < 0.001). Specifically, during
paced respiration (Figure 7a), the Control group consistently
exhibited higher MI values compared to the T2DM group.
Conversely, during Valsalva (Figure 7b), the T2DM group displayed
a progressive increase in MI, surpassing the Control group
at longer time delays. When averaging MI values across all
τ within each condition, a statistically significant difference
emerged between groups, indicating that the global dynamics of
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FIGURE 6
Representative example of Pulse-Respiration Quotient (PRQ) time series and corresponding recurrence plots across four experimental stages—supine
rest (S), orthostatic challenge (O), paced respiration (R), and Valsalva maneuver (V)—for a control participant (blue) and a participant with type 2
diabetes mellitus (T2DM, red). In this 4 × 4 panel figure, each row corresponds to a stage (S, O, R, V) while the first and second columns display the PRQ
time series for the control and T2DM groups, respectively, and the third and fourth columns show the corresponding recurrence plots. Panels (a), (b),
(e), (f), (i), (j), (m), and (n) correspond to PRQ time series, and panels (c), (d), (g), (h), (k), (l), (o), and (p) to recurrence plots (RP).

cardiorespiratory interaction differ between Control and T2DM
participants.

We computed descriptive statistics for HRV and BB variability
in both groups. In the control group, mean RRI values ranged from
approximately 746–927 ms, with standard deviations between 134
and 215 ms, while mean BB values ranged from about 3,076 to
3,297 ms (SD ≈ 428–557 ms). In contrast, the T2DM group showed
similar average RRI and BB values; however, during the O, R, and
V stages, the T2DM participants exhibited lower RRI variability
(with SDs of approximately 120, 150, and 152 ms, respectively)
compared to controls (195, 215, and 191 ms, respectively). This
reduced variability in RRI among T2DM subjects is consistent
with our recurrence quantification analysis, which revealed higher
recurrence rates and prolonged recurrence times in the PRQ series.

4 Discussion

The present findings underscore how nonlinear short-term
analyses of the PRQ—particularly through RQA—can provide
complementary insights of the cardiorespiratory function in
individuals with T2DM. First, the RQA results demonstrated a
significantly higher recurrence of the PRQ time series of T2DM
individuals during the paced respiration stage compared to the
non-diabetic group, possibly involving higher regularity in these
time series. This result is in line with a previous work that
suggests that chronic hyperglycemia and its associated autonomic
dysfunction reduce the adaptive complexity of physiological signals
(Javorka et al., 2008; Trunkvalterova et al., 2008). The increased
T1 metric in T2DM further suggests that such participants exhibit
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FIGURE 7
Mutual Information (MI) as a function of time delay (τ) ranging from 1
to 30, computed between interpolated R-to-R peak interval (RRI) and
breath-to-breath (BB) signals in control (blue) and type 2 diabetes
mellitus (T2DM, red) groups. (a) MI during the Paced respiration (R)
stage, where the control group exhibits consistently higher MI values
along delays compared to the T2DM group. (b) MI during the Valsalva
maneuver (V) stage, showing an opposite trend, where the T2DM
group presents higher MI values at larger time delays. Data are
expressed as mean ± SEM.

prolonged intervals before returning to a similar state, reflecting
a more deterministic and less adaptable cardiorespiratory control
mechanisms.

Moura-Tonello et al., 2014 revealed that individuals with
T2DM—even without cardiac autonomic neuropathy—can exhibit
increased sympathetic modulation while being at rest, though their
complexity indices (e.g., sample entropy) may remain comparable
to healthy controls. Moreover, autonomic responses to postural
changes appear largely preserved, suggesting that early-stage T2DM
does not necessarily disrupt all aspects of the cardiac autonomic
function. Although the results reported by Moura-Tonello et al.
(2014) were obtained in the early stages of diabetes, the participants
in our study have been living with the disease for approximately
10 years, which we believe may have influenced our findings.
Furthermore, our results also align with evidence from Bassi et al.
(2018), indicating that coexisting hypertension may exacerbate
autonomic dysfunction in T2DM.

Second, it is noteworthy in particular that the significant
changes in linear and nonlinear indices of the PRQ time series
between stages—specifically from supine rest to paced respiration

and from paced respiration to Valsalva—were observed exclusively
in the Control group but not in T2DM. These findings may
imply that healthy individuals could adjust more dynamically
their cardiorespiratory rhythms under these varying physiological
demands or challenges, whereas individuals with T2DM show
a diminished capacity for such modulations. Reduced variability
and diminished adaptive responses in diabetes may result from
autonomic neuropathy or other diabetes-related impairments in
cardiovascular control pathways (Jaiswal et al., 2013). For example,
previous research has shown that patients with T2DM and
microalbuminuria exhibit decreasedHRV in response to respiratory
and postural challenges, despite retaining a relatively normal
blood pressure response (Chen et al., 2006). Our findings are
consistent with this pattern, reflecting a partial preservation of
certain autonomic responses (e.g., S vs O).

The regular physical activity in diabetic populations, which
improves glycemic control and reduces blood pressure, has also
been demonstrated to enhance HRV (Sridhar et al., 2010). While
the present study did not directly assess exercise interventions, our
results underscore the potential value of targeted training programs
to restore or bolster cardiorespiratory adaptability, particularly in
the light of the blunted responses we observed in stages like
paced respiration and the Valsalva maneuver. In parallel, nerve
conduction studies suggest that T2DM-associated neuropathy can
simultaneously affect large motor and sensory fibers as well as
smaller autonomic fibers, which could help explain the diminished
capacity for moment-to-moment modulation of PRQ signals
(Motataianu et al., 2021). Moreover, other research on type 1
diabetes has highlighted the possibility of early vagal impairment,
manifesting in resting conditions despite still preserving responses
to classic autonomic challenges (Castiglioni et al., 2022). Our data in
T2DM similarly indicate that some traditional autonomic responses
are preserved, but the underlying complexity and dynamic adaptive
range are curtailed—a finding further supported by another study
of T2DM women having good metabolic control, in which their
HRV was consistently lower despite showing a relatively normal
sympathetic-parasympathetic ratio (Robles-Cabrera et al., 2021).

Third, linear indices of the PRQ time series, including
mPRQ and SDPRQ, reinforce their utility in detecting autonomic
and postural changes. A mPRQ value near 4 has been
consistently reported in healthy participants, suggesting optimal
synchronization or phase-locking between cardiac and respiratory
rates (Scholkmann and Wolf, 2019). In contrast, individuals with
T2DM showed a less stable pattern around this physiological
reference, as illustrated in Figure 4e. This observation suggests
that diabetes may affect the delicate balance between cardiac and
respiratory dynamics. It also highlights the relevance of linear PRQ
analysis as a meaningful complement to nonlinear approaches like
RQA in the assessment of autonomic function. Notably, while both
mPRQ and SDPRQ were sensitive to orthostatic transitions and
respiratory challenges, these indices did not reveal the differences
between Control and T2DM that were by contrast evident by
considering the RQA of PRQ time series. This suggests that RQA
may detect subtler changes in the structure and complexity of
PRQ time series, underlining the potential of this analysis for a
more detailed clinical evaluation. Finally, the analysis of the MI
between RRI and BB suggests that T2DM participants may exhibit
distinct compensatory mechanisms during paced respiration and
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the Valsalva maneuver (Figure 7). Although no individual time
delay showed statistically significant differences, the overall MI
pattern of longer delays in Valsalva implies that T2DM could be
associated with an impaired or incomplete autonomic response
and an altered cardiorespiratory coupling (Da Silva et al., 2023).
These observations raise the possibility that the dysautonomia, or
partial autonomic dysregulation, is contributing to the reduced
cardiorespiratory coupling in T2DM, especially during the more
demanding respiratory challenges. Interestingly, previous studies
using frequency-domain analyses, such as that by Rivera et al.
(2016), show that healthy individuals maintain a well-defined
respiratory peak during controlled breathing, indicating robust
autonomic modulation. In contrast, T2DM tends to dampen this
peak and reduce its frequency, hinting at a less flexible heart rate
control. Together, these findings support the idea that diabetes
may impair both vagal and sympathetic regulation of the heart,
resulting in a diminished coupling between respiration and cardiac
function—particularly evident during tasks that place higher
demands on the autonomic nervous system (Rivera et al., 2016).

Together, these findings demonstrate how linear and nonlinear
analyses of PRQ time series can be combined to obtain a
more thorough insight of the ways in which T2DM affects
the cardiorespiratory function. RQA and MI reveal more levels
of complexity and structural organization, while the mean and
standard-deviation metrics validate the PRQ’s sensitivity to reveal
differences among typical physiological challenges. Aiming to help
with individualized interventions and management strategies, an
integrated approach using linear and nonlinear analyses may prove
clinically relevant in detecting early or subclinical manifestations of
the autonomic dysfunction in T2DM patients.

Previous research has successfully employed RQA to assess
the coupling between cardiac and respiratory signals (Censi et al.,
2002; 2015). In our study, the motivation for applying RQA to the
PRQ stemmed from prior observations in COVID-19 survivors,
particularly those with diabetes, where the linear and nonlinear
analysis of PRQ showed trends approaching significance (Sánchez-
Solís et al., 2023). Moreover, both linear and nonlinear analyses
of PRQ in COVID-19 survivors during an induced relaxation
test revealed statistically significant differences. These findings
encouraged us to investigate RQA as a potentially sensitive
tool for capturing subtle changes in cardiorespiratory coupling.
While we acknowledge that alternative nonlinear metrics—such
as detrended fluctuation analysis, multiscale entropy, symbolic
analysis, or others—could also provide valuable insights into the
complex dynamics of physiological signals. Although our current
focus is on RQA due to its established applications and promising
preliminary results, incorporating these additional methods in
future studies could enrich the understanding of PRQ dynamics
and offer a more comprehensive evaluation of cardiorespiratory
interactions.

4.1 Limitations

Although we found significant differences in both linear and
nonlinear metrics of the PRQ time series, our findings are limited
in their depth and generalizability by a number of factors. First,
given the exploratory nature of this study, the statistical power may

be limited by the relatively small sample size (n = 38), which could
account for the fact thatwe saw trends in themajority of RQA indices
not reaching formal significance. Larger cohorts are necessary to
confirm these preliminary results and ensure the repeatability of
the observed patterns. Second, our cross-sectional design precludes
causal inferences and fails to capture disease progression over time,
which is especially relevant in T2DM, where participants may
exhibit an evolving cardiac autonomic neuropathy (Williams et al.,
2022). Additionally, our chosen sampling frequency of 128 Hz, while
employed in other short-term signal-processing studies (Wang et al.,
2018), is suboptimal for comprehensive ECG analysis compared to
the recommended ≥1,000 Hz range. This limitation was recognized
late in the study and may have constrained the depth of our
nonlinear metrics, possibly affecting our results.

Although we instructed participants to avoid specific
medications before testing, residual pharmacological effects
cannot be entirely ruled out. Furthermore, the presence of
comorbidities—particularly hypertension—could introduce
confounding effects due to its strong association with T2DM and its
known effects on cardiovascular autonomic control. Indeed, while
our diabetic participants were generally under clinical management,
their elevated blood pressure relative to controls may have
influenced our results. Another consideration is the brief duration
of our data segments, which primarily concentrated on swift
responses (2-min recordings). Whereas such short-term analyses
can reveal rapid autonomic adjustments, longer recordings (e.g.,
≥5 min) may uncover additional aspects of the cardiorespiratory
variability, potentially providing a more comprehensive assessment.
We recognize that the brevity of our recordings aligns with some
recent initiatives in ultra-short HRV research but may also reduce
the reliability of certain metrics (Wehler et al., 2021). Longer data
segments could better capture complex physiological patterns and
enhance the robustness of both linear and nonlinear assessments.
Future research should consider using higher sampling rates to
enhance temporal resolution and ensure more robust estimations of
cardiac autonomic function. Moreover, our T2DM group was not
homogeneouswith respect to the disease duration (ranging from5 to
20 years) or sex distribution, both of which are known to impact the
autonomic function (Koenig and Thayer, 2016; Dabelea et al., 2017).

A relevant study has specifically presented evidence of HRV as a
biomarker for diabetic autonomic neuropathy inT2DM(Metelka et al.,
2018), highlighting its usefulness as a convenient method for
assessing varying degrees of autonomic dysfunction in diabetic
populations. Although diabetic neuropathy could be considered a
distinct subgroup or a more severe condition within individuals
with T2DM, we chose to include the four participants diagnosed
with diabetic neuropathy to maintain an adequate sample size
representative of the broader T2DM population. Upon reviewing
their data, we confirmed that these participants did not exhibit
significant deviations from the remainder of the T2DM group
regarding the primary outcomes of the present study. Nevertheless,
we acknowledge this as a limitation, and we recommend that
future research should separately consider groups of participants
with T2DM, T2DM with diabetic neuropathy, and healthy
controls, to better delineate the impact of diabetic neuropathy on
autonomic function.

Finally, because most female participants were between 45 and
68 years of age—likely perimenopausal or postmenopausal—the
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influence of varying menstrual phases was considered minimal.
Nevertheless, collecting more detailed information on menopausal
status or hormone replacement therapy may be beneficial in future
studies, particularly if a wider age range of female participants is
included. Future studies should, therefore, increase sample size,
stratify participants by sex, and consider grouping individuals by
diabetes duration to better elucidate the interplay between T2DM
severity and cardiorespiratory coupling. Furthermore, the use of
MI to quantify cardiorespiratory coupling in the present study was
based on prior research from our group, in which MI, alongside
PRQ, was successfully applied to assess cardiorespiratory coupling
in women with preeclampsia (Pichardo-Carmona et al., 2023).
Although MI offers a simple way to quantify shared information
between cardiovascular and respiratory signals, more advanced
methods—such as Granger causality or transfer entropy—may
provide deeper insights into the causal structure of the interaction
and are planned for future analyses.

5 Conclusion

Our findings suggest that the RQA of short-term PRQ time
series may offer valuable and complementary information on
cardiorespiratory dynamics in T2DM. During paced respiration,
T2DM participants exhibited significantly higher recurrence and
T1 values compared to controls, indicating more rigid and less
adaptive cardiorespiratory dynamics. Furthermore, while control
participants showed several significant PRQ differences across
stages of the experimental protocol, this was not the case for
T2DM participants. Thereby suggesting a reduced capacity for
cardiorespiratory adjustments in diabetes. Linear indices of the PRQ
time series proved useful for detecting posture-related and autonomic
changes—particularly once considering the fact that an mPRQ value
close to 4 is a recognized norm in healthy individuals. Yet, such
indices did not capture certain alterations revealed by RQA. This
underscores the potential clinical benefit of combining linear and
nonlinear assessments. Lastly, the MI analysis of RRI and BB time
series suggests that T2DM could involve a lower cardiorespiratory
coupling compared to controls during paced respiration accompanied
by incompletecompensatoryresponsesduringmoredemanding tasks,
such as those introduced by theValsalvamaneuver.This pattern likely
reflects theeffectsofdysautonomiaorpartialautonomicdysregulation,
whichcompromise theoptimal cardiorespiratory coupling indiabetes.
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