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Cardiovascular disease and
depression as mediators between
red blood cell distribution width
to albumin ratio and cognitive
impairment in older adults

Hui Wang1†, Xinyu Bai2†, Cong Wang1†, Sensen Wu1,
Dikang Pan1, Lianrui Guo1, Peng Yu2*, Jianming Guo1* and
Yongquan Gu1*
1Department of Vascular Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China,
2Department of Ophthalmology, The Second Hospital of Jilin University, Changchun, Jilin, China

Background: Cognitive impairment is a major public health concern in aging
populations, and early identification of risk factors is critical. The red blood cell
distribution width to albumin ratio (RAR) has emerged as a potential biomarker
reflecting inflammatory and nutritional status, but its association with cognitive
impairment remains unclear.

Objective: This study investigates the relationship between RAR and cognitive
impairment in older adults, and explores potential mediating variables that may
influence this association.

Methods: A total of 2,913 participants aged ≥60 years from the National Health
and Nutrition Examination Survey (NHANES) 2011–2014 cycles were analyzed,
including 1,291 with cognitive impairment. Logistic regression assessed the
association between RAR and cognitive impairment, adjusting for potential
confounders such as age, gender, race, education, marital status, weight, height,
and comorbidities. Restricted cubic spline (RCS) analysis evaluated the dose-
response relationship and identified nonlinear thresholds. Subgroup analyses
explored interactions between RAR and demographic/clinical factors. Causal
mediation analysis, using a generalized linear model with a probit link and
adjusting for age, sex, race, and education, was performed to estimate total,
direct, and indirect effects via bootstrap resampling.

Results: RAR was positively associated with cognitive impairment (P < 0.05).
RCS analysis revealed a nonlinear threshold, with RAR ≥3.2 significantly
increasing the risk of cognitive impairment (OR = 1.24, 95% CI: 1.11–1.38,
P < 0.001). Subgroup analysis showed significant interactions between
RAR and cardiovascular disease (CVD), hypertension, and depression (P for
interaction <0.05). Stratified analysis found a stronger association between
RAR and cognitive impairment in individuals without hypertension, CVD,
or depression. Mediation analysis indicated that CVD (P = 0.036) and
depression (P = 0.032) partially mediated the relationship, with CVD explaining
4.49% of the total effect. Hypertension had no significant mediating effect.
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Conclusion: RAR is significantly associated with cognitive impairment, with a
stronger association when RAR ≥3.2. CVD and depression partially mediate this
relationship, suggesting RAR as a potential biomarker for cognitive impairment
in older adults.

KEYWORDS

red blood cell distribution width/albumin ratio, cognitive impairment, NHANES, older
adults, cardiovascular disease, depression

Introduction

Cognitive impairment is a prevalent and critical health
concern affecting the global elderly population. As population
aging accelerates, it has emerged as a pressing public health
challenge. The World Health Organization estimates that nearly
half of individuals aged 65 and older experience some level of
cognitive decline, with approximately 10% at risk of advancing
to cognitive impairment (Langa and Levine, 2014; Pérez et al.,
2022). Cognitive impairment arises from a variety of causes
and is frequently linked to factors such as aging, genetic
predisposition, lifestyle choices, and chronic health conditions.
Chronic diseases, including cardiovascular disease (CVD), diabetes,
and hypertension, have been shown to have a strong association
with an increased risk of cognitive decline (Biessels andDespa, 2018;
Hainsworth et al., 2024; Santisteban et al., 2023; van der Flier et al.,
2018). Additionally, lifestyle factors such as healthy dietary practices,
regular physical activity, active social engagement, and good
sleep quality have been demonstrated to play a beneficial role
in preserving cognitive function (Biessels and Whitmer, 2020;
Petersen et al., 2018).

Growing evidence suggests that systemic inflammation and
malnutrition play central roles in cognitive decline, possibly
through mechanisms such as oxidative stress, blood–brain barrier
disruption, and endothelial dysfunction. Biomarkers that reflect
both inflammation and nutritional status may offer insight into
early cognitive deterioration. One such biomarker is the red
blood cell distribution width to albumin ratio (RAR), which
integrates hematologic and nutritional status and may be linked
to cerebrovascular and neurodegenerative processes (Li et al., 2024;
Li and Xu, 2023; Seo et al., 2022). Red blood cell distribution width
(RDW), which measures the standard deviation of red blood cell
volume distribution, indicates the variability in red blood cell size.
Research has demonstrated that increased RDW levels are linked
to several conditions, including anemia, inflammation, and CVD
(Montagnana et al., 2011; Turcato et al., 2016; Wang and Xu, 2024;
Winchester et al., 2018). Albumin (ALB), a protein produced by
the liver, is essential for maintaining colloid osmotic pressure in
the bloodstream. Reduced albumin levels are often indicative of
malnutrition, liver dysfunction, or chronic diseases (Min et al., 2022;
Murayama et al., 2017). The RAR integrates the attributes of RDW
and albumin, providing a more holistic measure of a patient’s health
status (Ma et al., 2024; Shan et al., 2024). Recent studies suggest that
elevated RAR may contribute to cognitive decline through multiple
biological pathways. Increased RDW reflects heightened systemic
inflammation and oxidative stress, both of which can exacerbate
neuroinflammatory responses and lead to neuronal damage

(Salvagno et al., 2015; Hong et al., 2020). Concurrently, low serum
albumin levels may result in endothelial dysfunction, compromise
the integrity of the blood–brain barrier, and weaken the body’s
antioxidant defenses (Alzayadneh et al., 2023; Belinskaia et al.,
2021). These alterations collectively impair cerebral blood flow,
increase vascular permeability, and promote the accumulation
of neurotoxic substances—processes that may accelerate the
progression of cognitive deterioration. Based on the above evidence,
we hypothesize that elevated RAR may be associated with cognitive
impairment through mechanisms such as enhanced inflammation,
increased oxidative stress, and blood–brain barrier dysfunction,
and aim to explore potential mediators that may influence this
relationship.

The clinical applications of the RAR are becoming increasingly
widespread. As a simple and cost-effective indicator, RAR can
assist physicians in assessing disease risk, predicting patient
prognosis, and monitoring treatment response. For instance,
elevated RAR levels are often associated with poorer clinical
outcomes in patients with chronic conditions such as cardiovascular
diseases, diabetes, kidney disease, and cancer (Chen et al., 2024;
Hao et al., 2024; Zhao et al., 2022). RAR effectively reflects
factors that impact cerebrovascular health, enhance vascular
permeability, increase neuroinflammatory responses, and reduce
antioxidant capacity. Moreover, elevated RAR levels may also
be linked to the development of neurodegenerative diseases,
particularly Alzheimer’s disease and other types of cognitive
impairment. Thus, RAR could serve as a potential and easily
measurable biomarker for early identification of cognitive decline
risk in older adults and for assessing their clinical prognosis.
However, there are currently no studies directly confirming this
relationship.

Although previous studies have independently linked RDW,
ALB, and other inflammation-related biomarkers to cognitive
impairment, these indicators typically reflect only a single
physiological domain. In contrast, the RAR integrates both
inflammatory and nutritional components, potentially offering
greater sensitivity and specificity for identifying cognitive
decline. However, to date, no study has systematically examined
the association between RAR and cognitive impairment in a
nationally representative population of older adults. Therefore,
this study utilizes data from the National Health and Nutrition
Examination Survey (NHANES) to investigate the relationship
between RAR and cognitive impairment and to evaluate
its potential as an early screening and risk stratification
biomarker. The findings may provide novel insights for clinical
practice and inform strategies for early intervention and
prevention.
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Materials and methods

Study design

This investigation utilized data fromNHANES, a cross-sectional
program that captures comprehensive health and nutritional
insights from the U.S. civilian, non-institutionalized population.
Since its inception in 1999, NHANES has operated on a biennial
schedule to gather these metrics (GBD 2021 Causes of Death
Collaborators, 2024). Approval for the survey was granted by
the Research Ethics Review Board (Protocol #2011–14) at the
National Center for Health Statistics, part of the CDC, and all adult
subjects signed written informed consent forms. Data collection
involved structured interviews, standardized clinical assessments,
and laboratory analyses of biological specimens, including blood
samples. The study was conducted based on a checklist and followed
the STROBE (Strengthening the Reporting of Observational Studies
in Epidemiology) guidelines to ensure rigor and transparency.

Study population

This study analyzed data from the 2011–2012 and 2013–2014
NHANES cycles, which were specifically selected because they
were the only cycles that included all three cognitive evaluations:
the Consortium to Establish a Registry for Alzheimer’s Disease
(CERAD), the Animal Fluency Test (AFT), and the Digit
Symbol Substitution Test (DSST). The research focused on
individuals aged 60 and above who completed these cognitive
assessments. Participants were excluded if any one of the five
key variables—CERAD, AFT, DSST, RDW, or ALB—was missing.
For other variables, those with more than 30% missing data were
excluded using listwise deletion, while variables with less than 30%
missingness were imputed using the random forest algorithm.
In total, 2,913 individuals met the inclusion criteria and were
incorporated into the final analysis (Figure 1).

Measurement of RAR

The NHANES database employs specific methodologies for
measuring serum albumin and RDW. Serum albumin levels are
quantified using the bromocresol purple method, while RDW is
assessed through the Coulter automated blood analyzer, which
evaluates the variability in red blood cell volume distribution. RAR
was calculated by dividing RDW (%) by ALB (g/dL), yielding a
unitless ratio.

Definition of cognitive impairment

In NHANES, cognitive function is evaluated using a series of
standardized tools, including the CERAD Word Learning Subtest
(CERAD W-L), the AFT, and the DSST. The CERAD W-L assesses
memory by measuring both immediate and delayed recall of
new verbal information (Morris et al., 1989). It consists of three
consecutive learning trials and one delayed recall trial. In each
learning trial, participants read aloud 10 unrelated words presented

one at a time and immediately recall as many as possible. The
sequence of words changes across trials, with a maximum score of
10 per trial. The AFT evaluates categorical verbal fluency, an aspect
of executive function (Ma et al., 2020). Participants are tasked with
naming as many animals as possible within 1 min, receiving a score
for each correctly identified animal. This test has been validated
for distinguishing individuals with normal cognition from those
with mild cognitive impairment or advanced cognitive disorders,
including Alzheimer’s disease (Clark et al., 2009; Georgakis et al.,
2017; Canning et al., 2004). The DSST, part of the Wechsler Adult
Intelligence Scale (WAIS-III), examines processing speed, sustained
attention, and working memory. Participants are given 2 min to
pair symbols with corresponding numbers in a grid containing
133 boxes. The total number of accurate matches determines the
final score (Dori and Chelune, 2004).

Since no universally accepted gold standard cutoff exists for
the CERAD, Animal Fluency, or DSST tests to define cognitive
impairment, this study defined low cognitive performance as scores
below the 25th percentile, calculated based on the distribution of test
scores within our own study population, consistent with approaches
adopted in previous literature (Chen et al., 2017). To account for the
substantial influence of age on cognitive performance, scores were
further stratified by age groups: 60 to <70 years, 70 to <80 years,
and ≥80 years (Dong et al., 2020; Li et al., 2019). For the CERAD
test, the cutoff scores indicating low cognitive ability were 22, 20,
and 16 for the respective age groups. Similarly, the cutoff scores for
the AFT were 14, 12, and 11, while for the DSST, they were 37,
32, and 28. Based on these thresholds, participants were classified
into two categories for each test: the low cognitive ability group,
comprising individuals scoring below the 25th percentile, and the
normal cognitive ability group, consisting of those scoring above it.

Covariates

A large number of covariates were included in this study. The
selection of covariates was based on prior literature and theoretical
considerations, aiming to control for potential confounders in the
association between RAR and cognitive function.These included age,
gender,height,weight,andrace/ethnicity, categorizedasnon-Hispanic
Black, non-Hispanic White, Mexican American, other Hispanic, and
other races.Marital statuswasgrouped intomarried/cohabiting, never
married, and widowed/divorced/separated. Socioeconomic status
was assessed using the poverty income ratio (PIR), divided into
low income (<1.30), middle income (1.30–3.49), and high income
(≥3.50). Education level was classified as less than high school, high
school graduate, or college and above. Lifestyle factors included
smoking status (never, former, and current smoker) and alcohol
consumption,with drinking defined as consuming alcohol 12 ormore
timesannually.Additionally,self-reportedphysiciandiagnosismedical
history covered conditions such as hypertension, diabetes, depressed,
sleep disorder, and other CVD.

Statistical analysis

Data analysis was performed from 5 August 2024, to 21
October 2024. Descriptive statistics of participant characteristics

Frontiers in Physiology 03 frontiersin.org

https://doi.org/10.3389/fphys.2025.1587635
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1587635

FIGURE 1
Selection of study population.

were calculated using appropriate sampling weights to account
for the NHANES survey design. Baseline characteristics were
reported as frequencies (percentages) for categorical variables. For
continuous variables, means and standard deviations (SD) were
presented for data with approximately symmetric distributions,
while medians and interquartile ranges (IQR) were used for skewed
distributions. Comparisons between participants with and without
cognitive impairment were conducted using independent sample t-
tests for continuous variables and Rao-Scott χ2 tests for categorical
variables. To investigate the association between RAR and cognitive
impairment, three logistic regressionmodels were developed:Model
1: Unadjusted. Model 2: Adjusted for age, race, education, marital
status, weight, and height. Model 3 included all variables in Model
2, with additional adjustment for comorbidities (e.g., diabetes,
hypertension, cardiovascular disease), PIR, smoking status, alcohol
consumption.

Subgroup and interaction analyses were conducted to examine
whether the association between RAR and cognitive impairment
differed across various population groups, stratified by factors
such as age, gender, race, education level, smoking status, alcohol
consumption, hypertension, and CVD. These analyses were
exploratory in nature. Although not pre-specified in the initial
study design, they were grounded in prior literature and biological
plausibility, and the findings may serve as a basis for hypothesis

generation in future research. To assess potential nonlinear
relationships between RAR and the risk of cognitive impairment,
restricted cubic spline (RCS) regression was performed using 4
knots placed at the 5th, 35th, 65th, and 95th percentiles of RAR,
following Harrell’s recommendations. The direct effects captured
the relationship between RAR and cognitive impairment, while
causal mediation analysis was utilized to estimate the proportion of
the relationship mediated by specific factors. This methodology not
only provides robust statistical support for mechanism exploration
but also aids in identifying underlying biological pathways.

Causal mediation analysis was conducted using a generalized
linear model with a probit link function, incorporating adjustments
for confounding factors such as gender, age, race, and education level
to account for covariate influences. Mediation effects were estimated
via nonparametric bootstrap resampling with 1,000 iterations, and
percentile-based confidence intervals were used to ensure reliability.
The analysis quantified total effects, direct effects, and indirect effects
mediated through specific pathways, calculating the proportion of
the total effect attributable to mediators. To evaluate the moderating
influenceofRARvalues,an interactionanalysis (X∗M)wasperformed,
while residual correlations between themediator andoutcomemodels
were assessed to exclude residual confounding.

All statistical analyses were carried out using Stata software
(version 17.0, StataCorp) and the R programming environment
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(version 4.4.2, R Project for Statistical Computing). A two-sided (P
< 0.05) was considered indicative of statistical significance.

Results

Characteristics of the study population

Table 1 presents the baseline characteristics of participants
with and without cognitive impairment. Of the 2,913 participants
included in the study, 1,291 (44.3%) were identified as having
cognitive impairment, representing a significant proportion
of individuals aged 60 years and older. The average age of
participants was 69.69 ± 6.84 years, and 48.92% were male.
Significant differences were observed between participants with
and without cognitive impairment across several demographic
variables, including age, gender, height, weight, race, education level,
and marital status. Differences were also notable in biochemical
markers such as globulin, albumin, lymphocyte ratio, hemoglobin,
glycohemoglobin, and RDW. Additionally, medical history variables
such as hypertension, diabetes, depression, CVD, stroke, cancer,
as well as lifestyle factors like smoking and alcohol consumption,
exhibited statistically significant disparities (P < 0.05). Detailed
results are summarized in Table 1.

Association between the RAR and cognitive
impairment

Logistic regression analysis was performed to evaluate the
association between RAR and cognitive function in elderly
individuals, as detailed in Table 2. When RAR was treated as a
continuous variable, the analysis revealed a positive association
between RAR and the risk of cognitive impairment, indicating
that higher RAR values corresponded to an increased likelihood
of cognitive impairment (P < 0.05). When RAR was divided into
quartiles and analyzed as a categorical variable, results across
the unadjusted Model 1, partially adjusted Model 2, and fully
adjusted Model 3 demonstrated no significant differences between
the second, and third quartiles compared to the first quartile.
However, Participants in the highest quartile had an OR of 1.33
(95% CI: 1.04∼1.72, P = 0.026) compared to the lowest quartile,
suggesting a possible threshold effect. These findings highlight
the potential role of elevated RAR levels in cognitive decline
among the elderly population. RAR, as a composite marker of
RDW and albumin, may reflect underlying systemic inflammation,
oxidative stress, and poor nutritional status—factors that have been
independently associated with cognitive decline. To further explore
the dose–response relationship, we conducted an RCS regression
analysis, which revealed a nonlinear association between RAR and
cognitive impairment.

Dose-response analysis of RAR and
cognitive impairment risk

RCS analysis revealed a significant overall relationship between
RAR and cognitive impairment (P = 0.013), as shown in Figure 2.

The RCS curve identified an inflection point at RAR = 3.2, marking
a critical threshold in the association between RAR levels and
cognitive function. Based on this inflection point, participants
were stratified into two groups: RAR<3.2 and RAR≥3.2. Segmented
regression analysis was then performed for each group. The findings
indicated that for individuals with RAR≥3.2, each one-standard-
deviation increase in RAR was associated with a significantly
higher risk of cognitive impairment (OR = 1.24, 95%CI:1.11–1.38,
P < 0.001) (Table 3). In contrast, no significant association was
observed between RAR and cognitive impairment for participants
with RAR<3.2. These results suggest that elevated RAR levels
(RAR≥3.2) may act as an independent risk factor for cognitive
impairment. The identified threshold provides evidence for a
potential nonlinear dose-response relationship, warranting further
investigation into the mechanisms underlying the effect of RAR on
cognitive health.

Subgroup and stratified analysis of the
association between RAR and cognitive
impairment risk

Figure 3 presents the results of subgroup analyses investigating
the association between RAR and cognitive impairment across
diverse populations. Overall, elevated RAR levels were significantly
associated with cognitive impairment (OR = 1.59, 95% CI:
1.35–1.88, P < 0.001). A significant interaction was observed
in the hypertension subgroup (P for interaction = 0.008), with
a stronger association in individuals without hypertension (OR
= 2.34, 95% CI: 1.68–3.26, P < 0.001) compared to those
with hypertension (OR = 1.36, 95% CI: 1.12–1.65, P = 0.002).
Similarly, significant interaction effects were identified in the
depression (P = 0.038) and CVD subgroups (P = 0.015), with more
pronounced associations observed among participants without
these comorbidities. No significant interaction effects were found
across subgroups stratified by sex, race, educational level, marital
status, diabetes, stroke, cancer, or sleep disorders. For subgroups
with significant interaction effects, further stratified analyses were
performed to assess trends in odds ratios (ORs) and confidence
intervals across population groups (Supplementary Tables S1–S6).
In addition, multivariable models combined with RCS analyses
revealed significant nonlinear relationships between RAR and
cognitive impairment in individuals without hypertension, CVD, or
depression (Supplementary Figures S1–S6). These findings suggest
that the association between RAR and cognitive impairment may be
modified by specific health conditions.

Causal mediation analysis in the
relationship between RAR and the risk of
cognitive impairment

Causal mediation analysis evaluated the impact of RAR on
cognitive impairment, using CVD, depression, and hypertension as
mediators. When CVD was considered as a mediator, the estimated
mediation effect of RAR on cognitive impairment through CVD
was 0.001 (95% CI: 0.0003, 0.004, P = 0.036), suggesting a modest
but statistically significant indirect effect through the CVD pathway.

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2025.1587635
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Wang et al. 10.3389/fphys.2025.1587635

TABLE 1 Baseline characteristic of the study population.

Variables Total
(n = 2,913)

Non-cognitive impairment
(n = 1,621)

Cognitive impairment
(n = 1,292)

P value

Age, y 69.69 ± 6.84 69.44 ± 6.88 70.01 ± 6.78 0.025

Sex, n (%) <0.001

 Male 1,425 (48.92) 729 (44.97) 696 (53.87)

 Female 1,488 (51.08) 892 (55.03) 596 (46.13)

Weight (kg) 79.55 ± 19.44 80.46 ± 19.69 78.39 ± 19.07 0.004

Hight (cm) 165.22 ± 9.99 165.70 ± 9.94 164.60 ± 10.03 0.004

Race, n (%) <0.001

 Mexican American 268 (9.20) 115 (7.09) 153 (11.84)

 Other Hispanic 296 (10.16) 102 (6.29) 194 (15.02)

 Non-Hispanic White 1,397 (47.96) 995 (61.38) 402 (31.11)

 Non-Hispanic Black 675 (23.17) 269 (16.59) 406 (31.42)

 Other Race - Including Multi-Racial 277 (9.51) 140 (8.64) 137 (10.60)

Marital status, n (%) <0.001

 Married/Living with Partner 1,665 (57.16) 989 (61.01) 676 (52.32)

 Widowed/Divorced/Separated 1,075 (36.90) 549 (33.87) 526 (40.71)

 Never married 173 (5.94) 83 (5.12) 90 (6.97)

Education levels, n (%) <0.001

 < High school 778 (26.71) 221 (13.63) 557 (43.11)

 High school 682 (23.41) 364 (22.46) 318 (24.61)

 College or above 1,453 (49.88) 1,036 (63.91) 417 (32.28)

Income status <0.001

 High income 460 (17.23) 156 (10.39) 304 (26.05)

 Middle income 1,188 (44.51) 615 (40.95) 573 (49.10)

 Low income 1,021 (38.25) 731 (48.67) 290 (24.85)

Albumin (g/L) 41.87 ± 3.11 42.09 ± 2.92 41.60 ± 3.31 <0.001

Globulin (g/L) 28.63 ± 4.91 27.78 ± 4.63 29.69 ± 5.05 <0.001

Total protein (g/L) 70.49 ± 4.97 69.86 ± 4.78 71.28 ± 5.11 <0.001

Lymphocyte percent (%) 28.91 ± 9.18 28.51 ± 8.84 29.42 ± 9.57 0.008

Hemoglobin (g/dL) 13.73 ± 1.46 13.87 ± 1.32 13.56 ± 1.60 <0.001

Glycohemoglobin (%) 6.08 ± 1.10 5.96 ± 0.90 6.23 ± 1.29 <0.001

RDW 13.63 ± 1.33 13.53 ± 1.24 13.76 ± 1.41 <0.001

RAR 3.28 ± 0.46 3.24 ± 0.42 3.34 ± 0.51 <0.001

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristic of the study population.

Variables Total
(n = 2,913)

Non-cognitive impairment (n
= 1,621)

Cognitive impairment
(n = 1,292)

P value

Total Cholesterol (mg/dL) 190.93 ± 43.13 193.58 ± 43.11 187.60 ± 42.95 <0.001

CERAD 24.53 ± 6.77 27.84 ± 4.74 20.37 ± 6.65 <0.001

AST 16.42 ± 5.52 19.18 ± 4.68 12.96 ± 4.44 <0.001

DSST 45.95 ± 17.30 55.02 ± 13.12 33.96 ± 14.68 <0.001

Alcohol, n (%) <0.001

 No 532 (18.26) 228 (14.07) 304 (23.53)

 Yes 2,381 (81.74) 1,393 (85.93) 988 (76.47)

High Blood Pressure, n (%) 0.003

 No 1825 (62.65) 977 (60.27) 848 (65.63)

 Yes 1,088 (37.35) 644 (39.73) 444 (34.37)

High Cholesterol Level, n (%) 0.345

 No 1,632 (56.43) 925 (57.20) 707 (55.45)

 Yes 1,260 (43.57) 692 (42.80) 568 (44.55)

Diabetes, n (%) <0.001

 No 2,127 (73.02) 1,255 (77.42) 872 (67.49)

 Yes 786 (26.98) 366 (22.58) 420 (32.51)

Depressed, n (%) <0.001

 No 2,119 (73.88) 1,285 (80.01) 834 (66.09)

 Yes 749 (26.12) 321 (19.99) 428 (33.91)

CVD, n (%) 0.002

 No 2,398 (82.32) 1,366 (84.27) 1,032 (79.88)

 Yes 515 (17.68) 255 (15.73) 260 (20.12)

Stroke, n (%) <0.001

 No 2,690 (92.50) 1,540 (95.18) 1,150 (89.15)

 Yes 218 (7.50) 78 (4.82) 140 (10.85)

Cancer, n (%) <0.001

 No 2,340 (80.41) 1,244 (76.84) 1,096 (84.90)

 Yes 570 (19.59) 375 (23.16) 195 (15.10)

Sleep Disorder, n (%) 0.131

 No 2047 (70.30) 1,121 (69.15) 926 (71.73)

 Yes 865 (29.70) 500 (30.85) 365 (28.27)

(Continued on the following page)
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TABLE 1 (Continued) Baseline characteristic of the study population.

Variables Total
(n = 2,913)

Non-cognitive impairment (n =
1,621)

Cognitive impairment
(n = 1,292)

P value

Smoke, n (%) <0.001

 Never 1,443 (49.54) 803 (49.54) 640 (49.54)

 Current 380 (13.04) 180 (11.10) 200 (15.48)

 Quitting smoking 1,090 (37.42) 638 (39.36) 452 (34.98)

AFT, animal fluency test; CERAD, Consortium to Establish a Registry for Alzheimer’s Disease; CVD, cardiovascular disease; DSST, Digit symbol substitution test; RAR, red blood cell distribution
width and albumin ratio; RDW, red cell distribution width.
Continuous variables were shown in mean (SD) and categorical variables were shown in percentages.

TABLE 2 Association of the RAR with cognitive impairment in the multivariate linear regression model.

Variables Model 1 Model 2 Model 3

Or (95%CI) P Or (95%CI) P Or (95%CI) P

RAR (continuous) 1.62 (1.37 ∼ 1.91) <0.001 1.24 (1.01 ∼ 1.53) 0.036 1.23 (1.01 ∼ 1.51) 0.048

RAR (quartile)

 Quartile 1 1.00 (Reference) 1.00 (Reference) 1.00 (Reference)

 Quartile 2 1.00 (0.81–1.23) 0.999 0.97 (0.76–1.23) 0.785 0.95 (0.74–1.21) 0.663

 Quartile 3 1.20 (0.97–1.47) 0.092 1.13 (0.89–1.44) 0.326 1.07 (0.84–1.37) 0.599

 Quartile 4 1.74 (1.41 ∼ 2.14) <0.001 1.41 (1.10 ∼ 1.80) 0.007 1.33 (1.04 ∼ 1.72) 0.026

CI, confidence interval; OR, Odds Ratio; RAR, red blood cell distribution width to albumin ratio.
Model 1: Crude.
Model 2: Adjust: Age, Education, Height, Marital status, Race, Weight.
Model 3: Adjust: Age, Cancer, Cardiovascular diseases, Depression, Diabetes, Education, Height, Hypertension, Marital status, Race, Sleep disorder, Stroke, Weight.
Note: Bold font denotes statistically significant differences.

FIGURE 2
Association between RAR and Cognitive with the Restricted Cubic
Spline function. RAR: Red Blood Cell Distribution Width to Albumin
Ratio. Model with 4 knots located at 5th, 35th, 65th and 95th
percentiles. Y-axis represents the OR to present Cognitive for any
value of RAR compared to individuals with reference value (50th
percentile) of RAR.

TABLE 3 Effect of standardized RAR level on cognitive: odds ratios from
segmented logistic regression analysis.

Variables N OR per SDa 95% CIa p-value

RAR (<3.2) 1,428 0.98 0.88, 1.09 0.75

RAR (≥3.2) 1,476 1.24 1.11, 1.38 <0.001

aOR, odds ratio, SD: standard deviation, CI, confidence interval.

The proportion of the total effect mediated by CVD was estimated
at 4.49% (Figure 4A). When depression was used as a mediator, the
estimatedmediation effect of RARon cognitive impairment through
depression was 0.001 (95% CI: 0.001, 0.004, P = 0.032), with the
proportion of the total effect mediated by depression estimated at
4.1% (Figure 4B). For hypertension as a mediator, the mediation
effect of RAR on cognitive impairment through hypertension was
0.001 (95% CI: 0.0005, 0.02, P = 0.468), indicating that hypertension
did not serve as a mediator in the relationship between RAR
and cognitive function (Figure 4C). The interaction tests (X∗M
interaction) between RAR and cardiovascular disease, depression,
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FIGURE 3
Associations Between Ratio of Red Blood Distribution Width to Albumin and cognitive impairment Among Subgroups CVD, cardiovascular disease.

and hypertension showed that the correlation between the residuals
of the mediator model and the outcome model was less than 0.05,
suggesting no unmeasured confounding in the exposure–mediator
and mediator–outcome relationships.

Discussion

This large-scale cross-sectional study analyzed data from
NHANES, concentrating on Americans aged 60 years and older.
Using three cognitive function assessments—CERAD, AFT, and

DSST—the study identified a statistically significant association
between RAR and cognitive impairment. The results demonstrated
that higher RAR levels, particularly RAR≥3.2, are robust association
to an increased prevalence of cognitive impairment in older
adults. The RCS analysis identified an inflection point at RAR
= 3.2, suggesting a potential threshold above which the risk
of cognitive impairment may increase more sharply. Although
this specific value has not been previously established in earlier
literature, it is biologically plausible. Elevated RDW, a component
of RAR, reflects increased systemic inflammation and oxidative
stress, while decreased albumin indicates malnutrition and reduced
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FIGURE 4
Path Diagram of the Mediation Analysis Model for the Relationship Between RAR and Cognitive Impairment (A) cardiovascular disease (CVD); (B).
Depression; (C). Hypertension. In the mediation analysis, RAR is defined as the exposure factor, cognitive impairment as the outcome variable, and CVD
as the mediator. Path a represents the regression coefficient for the association between RAR and the mediator. Path b represents the regression
coefficient for the association between the mediator and cognitive impairment. Path c represents the simple total effect of RAR on cognitive
impairment, unadjusted for the mediator’s influence. Path c’ represents the direct effect of RAR on cognitive impairment after controlling for the
mediator’s influence. The adjusted confounding factors included age, race, education level, marital status, weight, height, diabetes, stroke, cancer, and
sleep disorders.

anti-inflammatory capacity—both strongly linked to cognitive
dysfunction. The fact that individuals with RAR ≥3.2 in our analysis
exhibited significantly higher cognitive impairment prevalence
further supports the potential clinical relevance of this threshold.
Therefore, RAR= 3.2may serve as ameaningful indicator for clinical
risk stratification. Further studies, particularly prospective cohorts,
are needed to validate this cutoff and determine its applicability in
diverse populations.

This finding supports the hypothesis that inflammatory states
and metabolic abnormalities are involved in the development of
cognitive impairment. As an integrated indicator combining RDW
and ALB, RAR reflects both systemic inflammatory burden and
changes in nutritional status. Elevated RDW is often associated
with inflammatory responses and oxidative stress (Hong et al.,
2019; Jiang et al., 2021; Li et al., 2024; Song and Lee, 2020),
mechanisms that may directly impair cognitive function through
microcirculatory disturbances, cerebral small vessel disease, and
neuroinflammation (Hassan et al., 2015; Yu et al., 2024). Meanwhile,
reduced albumin levels indicate a weakened anti-inflammatory and
antioxidant capacity, further exacerbating cerebral inflammation
and oxidative stress. Elevated RAR may play a dual role in
the development of cognitive impairment. On one hand, the
persistent activation of inflammatory factors can lead to vascular
endothelial dysfunction in the brain, impairing blood flow and
oxygen delivery to brain tissue, thereby accelerating neuronal
degeneration (Daiber et al., 2019; Gu et al., 2021; Wang et al.,
2019). In contrast, increased RAR may drive the pathological
progression of neurodegenerative diseases such as Alzheimer’s
disease by altering metabolic homeostasis and promoting the
formation of inflammasomes (Liu et al., 2014; McManus and
Latz, 2024; Zhuang et al., 2015). Particularly in the elderly
population, the accumulation of systemic inflammation and
metabolic imbalance with aging may significantly enhance the
predictive value of RAR for cognitive impairment.

Subgroup analysis demonstrated significant interactions
between depression, hypertension, and CVD in the relationship
between RAR and cognitive impairment (P for interaction<0.05).
These findings suggest that these factors modulate the effect of

RAR on cognitive function across different subgroups. Further
stratified analysis revealed a significant linear relationship between
RAR and cognitive function in non-hypertensive, non-CVD,
and non-depressed participants. This finding may indicate that,
in these subgroups, RAR serves as a more direct and reliable
biomarker for predicting cognitive impairment. One possible
explanation is that, in individuals without hypertension, CVD,
or depression, the effects of inflammation and nutritional
imbalance—as reflected by RAR—may be more pronounced and
less confounded by other dominant pathological processes. In
contrast, among those with such comorbidities, factors such as
chronic vascular remodeling, neuroinflammatory cascades, or long-
standing endothelial dysfunction may exert stronger influences on
cognitive function, thereby attenuating or obscuring the impact
of RAR (Cai et al., 2021; Hall et al., 2021; Zhang et al., 2023).
Chronic vascular remodeling, characterized by arterial stiffness
and atherosclerotic plaque formation, can lead to reduced cerebral
perfusion and disruption of neurovascular coupling, ultimately
resulting in chronic cerebral hypoxia and white matter lesions.
Neuroinflammatory cascades, often triggered by systemic diseases,
involve activation of microglia and astrocytes, the release of pro-
inflammatory cytokines such as IL-1β and TNF-α, and increased
oxidative stress—all of which collectively impair synaptic function
and neuronal integrity (Bairamian et al., 2022; Tastan and Heneka,
2024; Xu et al., 2023). Endothelial dysfunction, a hallmark of
both hypertension and CVD, may result in reduced nitric oxide
bioavailability, increased leukocyte adhesion, and enhanced blood-
brain barrier permeability, thereby exacerbating neurodegenerative
processes (Andjelkovic et al., 2023; Sweeney et al., 2018). These
chronic pathological mechanisms may dominate the clinical
presentation, potentially masking the modest effects of RAR
in individuals with significant comorbidities. Furthermore,
commonly prescribed medications for hypertension, CVD, and
depression—such as ACE inhibitors, statins, and selective serotonin
reuptake inhibitors (SSRIs)—may alter systemic inflammatory and
metabolic states, further attenuating the direct impact of RAR
(Guo et al., 2023; Pan et al., 2023). These notable differences across
subgroups highlight the heterogeneity in the relationship between
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RAR and cognitive function and underscore the importance of
considering interaction effects within specific disease contexts.

The stronger linear relationship between RAR and cognitive
impairment observed in individuals without hypertension, CVD, or
depressionmay reflect the absence of confounding fromoverlapping
pathologies or medication effects. In these populations, RAR
likely captures systemic inflammation and nutritional status more
directly. Without the vascular remodeling, neurochemical changes,
or pharmacologic interventions common in comorbid individuals,
the pathophysiological link between RAR and cognitive function
may be more clearly expressed. This highlights the potential
utility of RAR as a more sensitive biomarker in relatively healthy
older adults, and underscores the importance of disease context
when interpreting biomarker effects. This observation suggests that
RAR may serve as a potential biomarker for predicting cognitive
impairment in older adults, particularly among those without major
comorbidities. Second, the linear association provides a rationale
for defining RAR thresholds and guiding risk stratification, which
could facilitate the early identification of high-risk populations.
Furthermore, this finding underscores the potential utility of RAR
as a screening tool in public health settings. As an inexpensive
and widely available parameter, the observed linearity supports its
use as a preliminary risk assessment tool, even in resource-limited
healthcare environments. Such an approach may inform triage
strategies and enable early detection of individuals at increased
risk of cognitive decline. While not intended to replace diagnostic
methods, the use of RAR as a blood-based indicator could enhance
early-stage screening efforts and promote timely intervention,
particularly in underserved populations.

Causal mediation analysis further revealed that CVD and
depression play significant roles in the relationship between
RAR and cognitive impairment, while hypertension showed
no significant mediating effect. Among these mediators, CVD
accounted for a larger proportion of the mediation effect compared
to depression, suggesting that it may be the primary modulating
factor in the influence of RAR on cognitive function. CVD may
indirectly affect cognitive function through multiple pathways: on
one hand, systemic hypoxia, endothelial dysfunction, and chronic
inflammation induced by CVD can directly impair cerebral blood
flow and neuronal health (Chen, 2023; Iadecola et al., 2019;
Stephan et al., 2017). In contrast, these pathological changes may
alter RDW and ALB in the blood, thereby increasing the RAR value
(Fu et al., 2023; He et al., 2024). In contrast, while depression also
acts as an important mediator, its effects are likely concentrated
on neurotransmitter imbalances, elevated levels of inflammatory
factors, and psychological and behavioral changes (Berk et al.,
2013; Beurel et al., 2020; Zhao et al., 2019) These mechanisms
collectively explain the multidimensional pathways through which
RAR indirectly impacts cognitive function via CVD and depression.
Although the mediation effects of CVD (4.49%) and depression
(4.1%) were relatively modest, they were statistically significant and
may still carry clinical relevance. Even small-to-moderatemediation
proportions can represent biologically plausible pathways in the
context of cognitive impairment, a multifactorial and complex
condition. In large populations, suchmodest indirect effectsmay still
translate into meaningful public health burdens. These findings also
point to potential cardiovascular and neuropsychiatric susceptibility
subgroups, which may serve as targets for early intervention.

Nonetheless, we acknowledge that the modest magnitude of these
mediation effects limits their utility as standalone predictive factors.
Therefore, RAR is best interpreted as part of a multifactorial risk
assessment framework.

This study, by combining subgroup analysis and causal
mediation analysis, provides an in-depth understanding of the
complex regulatory mechanisms linking RAR and cognitive
impairment. The significant interaction effects and mediating roles
underscore the importance of considering comorbid conditions
when studying the impact of RAR on cognitive function. The
identification of CVD and depression as key mediators offers new
insights into the role of RAR in brain health and points to potential
directions for clinical intervention strategies. Future research
should further explore the causal pathways between RAR and
cognitive impairment under specific disease contexts, incorporating
additional biomarkers such as inflammatory factors and brain
imaging indices to develop more comprehensive predictive models.
Moreover, clinical trials could validate whether interventions
targeting CVD and depression can effectively improve RAR levels
and slow the progression of cognitive impairment, providing
stronger evidence for personalized treatment. These studies will
hold profound implications for improving the prevention and
management of cognitive impairment in the elderly.

Limitations

Although this study only analyzed data from the 2011–2012
and 2013–2014 NHANES cycles, it is important to note that
NHANES employs a complex, multistage probability sampling
design intended to yield a nationally representative sample of
the non-institutionalized U.S. population. Thus, the findings are
statistically generalizable to older adults in the United States,
albeit with certain limitations. First, the cross-sectional design
precludes causal inference between RAR and cognitive impairment.
Second, although RAR is a simple and easily measurable biomarker
with clinical potential, it may not be entirely specific to cognitive
decline. RAR levels can be influenced by multiple confounding
factors, including hepatic dysfunction, systemic inflammation,
malnutrition, and underlying chronic diseases. Additionally,
unmeasured confounders and the reliance on self-reported data
for certain variables may affect the robustness of our findings.
Therefore, future longitudinal studies are warranted to account
for these potential sources of bias and to further validate the clinical
utility of RAR.

Conclusion

RAR is significantly associated with cognitive impairment in
elderly patients, with a stronger correlation observed when RAR
≥3.2. Both CVD and depression not only influence but also partially
mediate this relationship. These findings suggest that RAR could
serve as a potential biomarker and screening tool for cognitive
impairment, particularly among elderly individuals without major
comorbidities, where the nonlinear association appears more
evident. Nevertheless, longitudinal studies are warranted to validate
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the predictive value of RAR and explore its clinical utility in early
identification and prevention strategies.
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