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Effect of different blood flow
restriction training regimens
combined with low-intensity
training on muscle strength and
cardiovascular safety in older
adults: a systematic review and
network meta-analysis

Meiling Ren, Guangshen Xian, Xiangchao Tan, Shaocheng Sun
and Ming Zhang*

China Volleyball College, Beijing Sport University, Beijing, China

Background:Older adults are experiencing a gradual decline in physical function
as they age. Previous studies have shown that blood flow restriction (BFR)
combinedwith low-intensity training can improvemuscle strength andmaintain
cardiovascular fitness in older adults. However, it remains unclear which training
regimen is the most effective. This study aims to investigate the effects of
different BFR regimens combinedwith low-intensity training onmuscle strength
and cardiovascular safety in older adults.

Method: PubMed, Web of Science, Embase, the Cochrane Library, Scopus,
EBSCOhost, and CNKI were searched up toMarch 2025 to select eligible studies.
The randomized controlled trials that explored the effects of BFR training on
muscle strength and cardiovascular safety in older adults were included.

Results: A total of 18 studies with 626 participants were included. The results
of this network meta-analysis showed that: 1) in terms of improving muscle
strength: compared to the controls, low-frequency, low-pressure, and low-
intensity BFR training regimen was significantly related to one-repetition
maximum (1RM) strength [weighted mean difference (WMD) = 0.58, 95% CI:
0.81–1.08 P < 0.05]. Moreover, high-frequency, high-pressure, and low-intensity
BFR training was associated with increased muscle cross-sectional area [WMD
= 0.50,95% CI (−0.10,1.11), P > 0.05] and isometric muscle strength [WMD =
1.44,95% CI (0.75,2.12), P < 0.05]; 2) in terms of cardiovascular health: compared
to the controls, BFR training regimens at different pressures and frequencies
were not linked to changes in heart rate in older adults (P > 0.05). Moreover, low-
frequency, low-pressure, and low-intensity BFR training regimenwas associated
with increased systolic blood pressure [WMD = 3.40, 95%CI (0.61,6.19), P < 0.05]
and diastolic blood pressure [WMD = 13.40, 95%CI (8.96,17.84), P < 0.05] in
older adults.

Conclusion: Based on the results, high-frequency, high-pressure,
and low-intensity BFR training may serve as the optimal regimen
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to improve muscle strength and maintain cardiovascular fitness in older adults.

Clinical Trial Registration: https://www.crd.york.ac.uk/PROSPERO/,
Registration and protocol CRD42024534387.

KEYWORDS

blood flow restriction training, low-intensity training, older adults, muscle strength,
cardiovascular safety

1 Introduction

In 2024, the World Health Organisation (WHO) stated that
the global ageing population continued to rise, with individuals
aged 60 and over expected to reach one-sixth of the world’s
population by 2030. By 2050, people aged 60 and older will double
worldwide (2.1 billion). Ageing mainly impacts the muscular and
cardiovascular systems. In terms of the muscular system, ageing
leads to a loss of skeletal muscle mass, strength, and fibre size
(Grevendonk et al., 2021). Regarding the cardiovascular system,
ageing causes a reduction in the ejection fraction and the elasticity
of blood vessels (Vakka et al., 2023). The loss of muscle strength and
decline in cardiovascular function increase the risk of developing
chronic disease in older adults (Zuo et al., 2023). Studies have
demonstrated that the prevalence of chronic diseases in older people
is significantly higher than in adults, with a prevalence of 81.1
percent in people aged 60 and over (Xiang et al., 2024). Failure
to prevent these diseases in older adults will impact their health
and cause higher healthcare costs. Training interventions stand
as one of the main options to lower the risk of development of
these chronic diseases (Vikberg et al., 2019; Zhu et al., 2019).
Among the training interventions, traditional resistance training,
aerobic exercise (Hughes et al., 2018), and balance exercise
(Posadzki et al., 2020) have all been shown to have positive
effects on muscle growth. However, these training modalities often
require participants to perform high-intensity training with a load
value of 70%–80% of 1RM strength for a prolonged period of
time (Sharp et al., 2022). Since older adults have lower training
tolerance and a higher risk of injury and developing diseases
compared to younger adults, their ability to do high-intensity
training is limited (Xu et al., 2024). Therefore, the exploration of a
training modality that is effective in increasing muscle strength and
volume, as well as suitable for the older population is required in
medical research.

Blood flow restriction (BFR), also known as KAASTU, is a
method of restricting blood flow to proximal muscles by applying
a pressure band to the distal limb (Wilkinson et al., 2019). A
study has shown that BFR techniques contribute to creating
an exercise stimulus. By combining multiple exercise methods,
these techniques can enhance body adaptation (Bielitzki et al.,
2021). The combination of BFR training with low-intensity muscle
contraction exercise (20%–30% of 1RM) (Li et al., 2023) can
achieve the effects of high-intensity training (Chua et al., 2022).
Therefore, the combination of BFR training and low-intensity
exercise can be used as an exercise intervention for older adults
to improve their physical functions. BFR training combined with
low-intensity exercise enhances muscle hypertrophy and strength
gains by elevating metabolic stress (such as lactate accumulation)

and hormonal responses (such as growth hormone secretion)
(Takarada et al., 2000; Karabulut et al., 2010).

Training programs for older adults need to be carefully
designed and managed (Agostini et al., 2023). A study has
revealed that BFR pressure levels and exercise frequency are
key influencing factors for the effectiveness of muscle growth
(Yang et al., 2024). BFR pressure not only affects anabolic and
metabolic pathways but also impacts cardiovascular health in older
adults. Specifically, appropriate BFR pressure should maximise
metabolic stress without completely occluding arterial blood flow
or compromising the individual’s safety (McEwen et al., 2019).
Furthermore, BFR pressure simultaneously exacerbates the burden
on the cardiovascular system. Different levels of pressure have
varying effects on physiological functions. Higher pressure during
BFR training significantly impacts hemodynamics (Mouser et al.,
2019), the autonomic nervous system (Bane et al., 2024), and
hormonal responses (Thompson et al., 2024).Moreover, under high-
pressure BFR training, metabolic stress is maximized by notably
restricted venous return and arterial blood flow, but this may also
increase the risk of developing vascular disease (Vervloet et al.,
2024). In contrast, low-pressure BFR training partially restricts
venous return while preserving arterial blood flow, thus ensuring
an adequate supply of oxygen and nutrients during exercise.
(Angelopoulos et al., 2021).

Training frequency and duration must be carefully selected to
ensure the safety and effectiveness of different pressurised BFR
training combined with low-intensity exercise for older adults (Yuan
et al., 2023). However, the studies on how these factors influence
muscle strength and cardiovascular health in older populations were
insufficient and lacked definitive conclusions. Therefore, studies
that focus on evaluating the safety and effects of BFR training
in older adults, particularly in improving their cardiovascular
health, are required. The findings of this study provide effective
exercise plans for seniors, thus contributing to improving their
training results and reducing health risks. This network meta-
analysis compared the effects of different pressures and frequencies
of BFR training combined with low-intensity exercise on muscular
strength and cardiovascular health in older adults to find the
optimal training program, thereby offering insights for clinical
decision-making.

2 Materials and methods

This study strictly adhered to the guidelines outlined in the
Preferred Reporting Items for Systematic Reviews and Meta-
Analyses-Network Meta-Analyses (PRISMA-NMA) (Page et al.,
2021) and was registered in PROSPERO (CRD42024534387).
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2.1 Criteria for inclusion and exclusion

The inclusion criteria were as follows: 1) study type: randomized
controlled trial and randomized crossover trial; 2) individual age:
55 ≤ age <80 years old (de Jong et al., 2006); 3) intervention:
the interventions were categorised as experimental and control
groups, with the experimental group performing BFR with
low-intensity training (BFR-LI) and the control group (CG)
performing low-intensity training; the intensity of the training
(low intensity: 20%–30%1RM) (Li et al., 2023); the magnitude of
pressurization [high pressure (HP) ≥120 mmHg; low pressure (LP)
< 100 mmHg](Mattocks et al., 2019); the frequency [high frequency
(HF): ≥3 days/week; low frequency (LF): <3 days/week](Scott et al.,
2016); the experimental group used one of the following training
regimens: low-frequency, low-pressure, and low-intensity BFR
training (the LFLP regimen), low-frequency, high-pressure,
and low-intensity BFR training (the LFHP regimen), high-
frequency, low-pressure, and low-intensity BFR training (the HFLP
regimen), and high-frequency, high-pressure, and low-intensity
BFR training (the HFHP regimen), while the CG only performed
low-intensity training without additional pressurized training;
(d) outcome indices: one-repetition maximal strength (1RM),
muscle cross-sectional area (CSA), isometricmuscle strength (IMS),
heart rate (HR), systolic blood pressure (SBP), diastolic blood
pressure (DBP).

The exclusion criteria were as follows: 1) conference papers; 2)
studies with unavailable full text or incomplete data; 3) duplicate
publications;4) studies without a clear description of training
intensity; 5) studies using intensity indicators that cannot be
converted into standard metrics (such as percentage of 1RM,
percentage ofmaximumheart rate, or ratings of perceived exertion).

2.2 Retrieval strategies

Searches were conducted separately by two researchers.
PubMed, Web of Science, Embase, the Cochrane Library, Scopus,
EBSCOhost, CNKI, Proquest, and medRxiv were searched up to
March 2025. The search terms included “BFR training,” “Elder,”
and “randomized controlled trial.” Specific search strategies are
illustrated in Supplementary Table S1.

2.3 Literature selection and data extraction

Two researchers screened the retrieved literature by reviewing
titles and abstracts. Based on inclusion and exclusion criteria,
the eligible studies were selected after the full-text review. Any
disagreements were addressed by a third reviewer. Data were
extracted using an Excel sheet, including the authors, year, sample
size, age, intervention program (frequency, intensity, period), and
outcome indicators.

2.4 Risk of bias evaluation

The risk of bias was assessed by two researchers using
the Physiotherapy Evidence Database (PEDro) scale, and any

disagreements were addressed by a third reviewer. 11 items were
scored by the PEDro scale. Since the evaluation of item 1 was
excluded, the total score was 10. When the score was ≥6, the study
was considered to have a low risk of bias.

2.5 Statistical methods

Data preprocessing and analysis were performed independently
by two researchers. The extracted data were pre-processed using
Excel 2016 and converted into mean differences or standard
deviations between pre- and post-intervention values. The network
meta-analysis was conducted using Stata 17.0. For outcomes with
consistent units, weighted mean difference (WMD) were used; for
outcomes with different units, standardized mean difference (SMD)
were used, along with 95% confidence intervals (CI). A network
evidence diagram was plotted for direct comparisons among
different combinations of intervention intensity and frequency.
In this diagram, the size of each node represented the sample
size, while the thickness of the connecting lines reflected the
amount of direct evidence between interventions. Two methods
were employed to assess inconsistency: 1) loop inconsistency
testing, where a 95% CI of 0 for the inconsistency factor indicated
good consistency; 2) the node-splitting method, which separated
each node (intervention) into direct and indirect comparisons to
evaluate the differences between them.When a significant difference
indicated inconsistency, an inconsistency model was applied. When
no significant difference was suggested in consistency, a consistency
model was used. The optimal combination of intervention intensity
and frequency was identified by the cumulative ranking probability
curve (SUCRA). To evaluate the robustness of the results, sensitivity
analysis was conducted by sequentially excluding individual studies
and re-analyzing the data to assess the stability of the findings.
Additionally, adjusted funnel plots were utilized to evaluate potential
small-sample effects or publication bias. To further examine the
impact of publication bias on the results, Egger’s regression test was
employed to assess the asymmetry of the funnel plots.

3 Result

3.1 Literature search results

A total of 1350 studies were selected. 84 studies remained after
the initial screening. Ultimately, 18 studies were included in this
net meta-analysis after a full-text review. The literature screening
process is shown in Figure 1.

3.2 Basic characteristics of included studies

A total of 18 studies involving 626 participants, all published in
English, were included. In the intervention group, two studies used
LFLP interventions (Ferraz et al., 2018; Scott et al., 2018); six studies
employed LFHP interventions (Vieira et al., 2013; Yasuda et al.,
2013; Yasuda et al., 2014; Yasuda et al., 2015; Cook et al., 2017;
Parkington et al., 2022); four studies applied HFLP interventions
(Patterson and Ferguson, 2011; Letieri et al., 2018; Lopes et al.,
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FIGURE 1
Literature retrieval flowchart.

2022); and eight studies employed HFHP interventions (Abe et al.,
2010; Ozaki et al., 2010; Ozaki et al., 2011; Segal N. et al., 2015;
Segal N. A. et al., 2015; Shimizu et al., 2016; Bigdeli et al., 2020).
The muscle strength indices included 1RM (n = 4), CSA (n = 3),
IMS (n = 3). These muscle strength indices covered various muscle
groups. The cardiovascular indices included HR (n = 3), SBP (n =
4), and DBP (n = 4). The basic characteristics of the included studies
are shown in Table 1.

3.3 Risk of bias evaluation results

The PEDro scores of the included studies ranged from 4 to
10, with a median score of 7. Out of the 18 studies, 12 met the
predetermined threshold (≥6 points). The included studies were
randomized controlled trials and clearly defined their inclusion
criteria. Six studies provided detailed descriptions of allocation
concealment; 13 studies reported comparable baseline characteristics;
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TABLE 2 PEDro scale scores.

Author Year A B C D E F G H I J K Total score

Amorim 2022 1 1 1 0 1 0 0 1 1 1 1 7

Yasuda (1) 2013 1 1 0 1 0 0 0 1 1 1 1 6

Yasuda (2) 2014 1 1 0 1 0 0 0 1 1 1 1 6

Yasuda (3) 2015 1 0 0 1 0 0 0 1 1 1 1 5

Shimizu 2016 1 1 0 1 0 0 0 1 1 1 1 6

lopes 2022 1 1 0 0 0 0 0 1 1 1 1 5

Patterson 2011 1 0 0 1 0 0 0 1 1 1 1 5

Letieri 2018 1 1 1 1 1 0 1 1 1 1 1 9

cook 2007 1 1 1 1 0 0 0 1 1 1 1 7

Segal (1) 2015 1 1 1 1 0 0 0 1 1 1 1 7

Segal (2) 2015 1 1 1 1 1 0 1 1 1 1 1 9

Vieira 2013 1 1 0 0 0 0 0 1 1 1 1 5

Parkington 2022 1 1 0 1 0 0 0 1 1 1 1 6

Ferraz 2018 1 1 1 1 0 0 0 0 1 1 1 6

Bigdeli 2020 1 1 0 0 0 0 1 0 1 1 1 5

Abe 2011 1 1 0 1 0 0 0 1 1 1 1 6

Ozaki (1) 2011 1 0 0 1 0 0 0 1 1 1 1 5

Ozaki (2) 2011 1 1 0 0 0 0 0 0 1 1 1 4

(A) Eligibility criteria specified; (B) Random allocation of subjects to groups; (C) Concealed allocation; (D) Baseline similarity; (E) Blinding of subjects; (F) Blinding of therapists; (G) Blinding
of assessors; (H) >85% follow-up for key outcomes; (I) Intention-to-treat analysis; (J) Between-group statistical comparisons reported; (K) Point estimates and variability measures.

two studies implemented blinding for participants; none blinded the
investigators; three studies blinded outcome assessors; 15 studies
had a dropout rate exceeding 15%; and one study did not perform
an intention-to-treat analysis. All studies reported between-group
statistics, point estimates, and differences (as shown in Table 2).

3.4 Net meta-analysis

3.4.1 Network evidence diagram
The reticulation graphs showed that the LFHP regimen, HFHP

regimen, and controls had larger sample sizes, while the LFLP
regimen and the HFLP regimen had smaller sample sizes. Only
the LFHP regimen, HFHP regimen, and the controls included the
HRmetrics. Direct comparisons between other BFR-LI intervention
programs were lacking (as shown in Figure 2).

3.4.2 Inconsistency analysis
To assess the consistency in our network meta-analysis, the

Inconsistency Factor for each closed loop was calculated. For the
IMS, the Inconsistency Factor was 0.32 (95% CI: 0–2.51), with

the 95% confidence interval including 0, indicating no significant
inconsistency between direct and indirect comparisons (Figure 3).
This result was further validated using the node-splitting method.
It yielded a p-value >0.05 for IMS (Supplementary Table S2), thus
confirming the good local consistency. Based on these findings, a
consistency model was applied, as both the IF 95% CI included 0
and the node-splitting p-value >0.05 (Tu et al., 2014).

3.4.3 Meta-analysis results
For the 1RM outcome, compared to the CG, the LFLP

intervention significantly improved 1RM (WMD = 0.58, 95% CI:
0.81–1.08, P < 0.05). The LFHP intervention also significantly
increased 1RM (WMD = 0.38, 95% CI: 0.01–0.75, P < 0.05).
Moreover, LFLP intervention outperformed other BFR-LI training
regimens, though the difference was not statistically significant.
These results indicated that the low-frequency BFR-LI regimen,
whether high or low pressure, can improve 1RM (Figure 4A).

For the CSA outcome, the HFHP intervention showed greater
improvement than the CG (WMD = 0.50, 95% CI: −0.10–1.11,
P > 0.05), and HFHP intervention also outperformed other BFR-
LI training regimens, though differences were not statistically
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FIGURE 2
Network evidence diagram. (A): 1RM (B): CSA (C): IMS (D): HR (E): SBP (F): DBP.

FIGURE 3
Loop consistency testing of IMS.

significant. This suggested that HFHP intervention may be the most
effective for improving CSA (Figure 4B).

For the IMS outcome, pairwise comparisons showed that HFHP
intervention significantly improved IMS compared to the CG
(WMD = 1.44, 95% CI: 0.75–2.12, P < 0.05). Similarly, HFLP
intervention also significantly improved IMS (WMD=1.17, 95%CI:
0.09–2.24, P < 0.05).Thus, HFHP intervention can serve as themost
effective for enhancing IMS (Figure 4C).

Pairwise comparisons across 1RM, CSA, and IMS indicated that
HFHP intervention was more effective in boosting muscle strength
than other BFR-LI training regimens with different pressures and
frequencies.

For HR, although LFHP and HFHP interventions greatly
increased HR compared to controls, the differences were not
statistically significant (P > 0.05) (Figure 4D).

For SBP, the LFLP intervention significantly increased SBP
compared to controls (WMD = 3.40, 95% CI: 0.61–6.19, P < 0.05).
LFHP intervention also significantly increased SBP compared to
controls (WMD= 1.51, 95%CI: 0.15–2.87, P < 0.05). Other pairwise
comparisons showed no significant differences (Figure 4E).

For DBP, the LFLP regimen significantly increased DBP
compared to controls (WMD = 13.40, 95% CI: 8.96–17.84, P <
0.05). In addition, the LFLP regimen increasedmore DBP compared
to both LFHP (WMD = −12.46, 95% CI: −17.09 to −7.84, P
< 0.05) and HFHP regimens (WMD = −13.25, 95% CI: −18.07
to −8.44, P < 0.05). Other comparisons were not statistically
significant (Figure 4F).

3.4.4 Cumulative probability ranking results
For 1RM, CSA, and IMS outcomes, a higher cumulative

area under the SUCRA curve indicated that the intervention
was more effective in enhancing muscle strength in older
adults. Conversely, for HR, SBP, and DBP, a higher
SUCRA value suggested a more detrimental effect on
cardiovascular health.
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FIGURE 4
Results of reticulated meta-analysis (A): 1RM (B): CSA (C): IMS (D): HR (E): SBP (F): DBP.

The results indicated that among muscle strength measures,
HFHP intervention showed the best performance for both CSA
and IMS, while LFLP intervention performed best for 1RM. In
cardiovascular measures, the LFLP intervention caused the greatest
increases in both SBP and DBP, while the HFHP intervention
led to the highest increase in HR. These findings suggested that
high-pressure training performed more than three times per week
may be optimal for improving muscle strength in older adults.
However, older adults should limit LPLF training to maintain
cardiovascular health. (Figure 5).

3.4.5 Publication bias test
The funnel plot for each indicator was symmetrical. Most of

the points were evenly distributed in the funnel plot, with only a
small number of points falling on the outside of it. It suggested
that the results were generally even. Since publication bias may
exist, the results should be interpreted with caution (Figure 6). In
the assessment of publication bias, we evaluated the results using
Egger’s test. Egger’s test indicated no significant publication bias
for metrics such as 1RM, CSA, IMS, HR, and SBP (p > 0.05).
However, for DBP, Egger’s test showed significant publication bias
(p < 0.05). Given the small sample size for DBP (n < 10), the
reliability of Egger’s test results is limited, and we did not proceed
with the trim-and-fill method. We recommend future studies with
larger sample sizes further to validate the impact of publication
bias on DBP. (Supplementary Figure S1).

3.4.6 Subgroup analysis
This study conducted subgroup analyses based on gender.

The participants were divided into male, female, and mixed
groups to analyse the effects of different pressurization training
regimens on 1RM.

In the female group, the LFLP regimen showed statistical
significance compared to the control group [WMD = 0.58, 95%
CI (0.08, 1.08), P < 0.05] (Supplementary Figure S2B). The results
indicated that the LFLP regimen ranked highest in the cumulative
probability ranking for 1RM values (Supplementary Figure S2C).
The funnel plots for the indicators were largely symmetrical, with
most points evenly distributed (Supplementary Figure S2D).

In the male group, the HFHP regimen indicated statistical
significance compared to the control group [WMD = 0.46,
95% CI (0.06, 0.86), P < 0.05] (Supplementary Figure S3B).
The results suggested that the HFHP intervention ranked
highest in the cumulative probability ranking for 1RM
values (Supplementary Figure S3C). The funnel plots for the
indicators were largely symmetrical, with most points evenly
distributed (Supplementary Figure S3D).

For the mixed group, pairwise comparisons revealed
no significant differences among the various regimens. No
statistical significance was observed when comparing each BFR
regimen with the control group (Supplementary Figure S4B).
The results indicated that the LFLP intervention ranked
highest in the cumulative probability ranking for 1RM values
(Supplementary Figure S4C). The funnel plots for the indicators
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FIGURE 5
Cumulative ranked probability plots of the effects of each intervention programme on muscle strength and cardiovascular effects. (A): 1RM (B): CSA
(C): IMS (D): HR (E): SBP (F): DBP.

FIGURE 6
Publication bias testing. (A):1RM (B): CSA (C): IMS (D):HR (E): SBP (F): DBP.
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were largely symmetrical, with most points evenly distributed
(Supplementary Figure S4D).

3.4.7 Sensitivity analysis
Since the age of the included participants mainly

ranged between 60 and 70 years, a sensitivity analysis was
conducted by excluding studies with higher age ranges.
The results showed that the differences in the outcomes
for the effects of different BFR-LI training on 1RM
(Supplementary Figure S5) and IMS (Supplementary Figure S6)
among older adults were minimal before and after the exclusion.
Therefore, the results of this study are relatively reliable and stable.

4 Discussion

This net meta-analysis aims to investigate the effects of
various BFR-LI training regimens combined with low-intensity
exercise on muscle strength and cardiovascular function in older
adults. We integrated four exercise regimens based on different
pressure levels (high-pressure BFR ≥120 mmHg; low-pressure
BFR <100 mmHg) and exercise frequencies (low frequency <3
sessions per week; high frequency ≥3 sessions per week) to
identify the optimal BFR-LI training strategy. This net meta-
analysis revealed that under high-pressure conditions, BFR-LI
exercise performed three or more times per week yielded greater
improvements in both CSA and IMS. Conversely, under low-
pressure conditions, BFR-LI exercise performed less than three
times per week resulted in better improvements in 1RM. However,
under low-pressure conditions, there was a significant increase
in both systolic and diastolic blood pressures in the BFR-LI
training, while HR remained unaffected by changes in pressure or
frequency.

Regarding muscle strength outcomes, both the chosen pressure
level and training frequency significantly influenced post-training
muscle growth in older adults. Our analysis demonstrated that
the HFHP regimen was the most effective for increasing muscle
strength. Specifically, high-pressure conditions, on average, were
more effective in enhancing muscle strength than low-pressure
conditions. This finding is consistent with previous studies which
suggested that under high cuff pressures (mean > 120 mmHg),
low-intensity exercise at high pressures can yield muscle strength
improvements comparable to those achieved with high-intensity
exercise at high pressures (Mahmoud et al., 2021). When using very
low exercise loads, higher BFR pressures may be more conducive
to muscle growth (Dankel et al., 2017). The underlying reasons for
these effects are twofold. First, from a hemodynamic perspective,
high-pressure BFR-LI leads to greater hemodynamic responses,
including significant increases in HR, blood pressure, cardiac
output, and the rate-pressure product, compared to low-pressure
BFR-LI (Mouser et al., 2019). Second, there are differences inmuscle
activation. High-pressure BFR-LI may enhance muscle activation,
whereas low-pressure BFR-LI might reduce it (Hwang and
Willoughby, 2019). This difference potentially influences the degree
of muscle strength and hypertrophy achieved (Brandner et al.,
2015). Under high-pressure conditions, reduced blood flow
to active muscles can result in the accumulation of inorganic
phosphate, which induces muscle fatigue (Lixandrão et al., 2015)

and prompts the recruitment of fast-twitch fibers and additional
motor units to preserve force production, ultimately leading to
muscle hypertrophy (Schoenfeld et al., 2019). Furthermore, several
studies have shown that low-intensity exercise under low-pressure
BFR-LI also contributes to muscle strength gains. For example,
when performing elbow flexion exercises at 40% and 90% of arterial
occlusion pressure in older adults, no significant differences in
strength gains were observed between different pressure levels
(Counts et al., 2016). This suggests that lower BFR-LI pressures can
be effectively used during training. Regarding training frequency,
our analysis indicated that high-pressure training required at least
three sessions per week to optimally enhance muscle strength.
Increased training frequency enhances muscular adaptations by
promoting greater muscle fiber recruitment, activating metabolic
pathways, and stimulating protein synthesis (Schoenfeld et al.,
2019). Under high-pressure BFR-LI, higher training frequencies
can elevate metabolic stress, including the accumulation of lactate
and other metabolites, which is a key factor in promoting muscle
growth (Moesgaard et al., 2022). Although some studies have
suggested that as long as the total training volume is sufficient,
lower frequencies can also induce muscle hypertrophy (Neves et al.,
2022), the relatively low exercise load in BFR-LI exercise makes
increasing frequency a more effective strategy to promote muscle
activation. Studies have found that there are differences in the
responses to pressurization training between genders. In the
female group, the LFLP regimen significantly improved 1RM,
while in the male group, the HFHP regimen was more effective
in improving 1RM. This suggests that men and women may
have different requirements for the intensity and frequency of
pressurization training in muscle strength exercise. This difference
may potentially be due to variations in physiological structure,
hormone levels, or types of muscle fiber. In the subgroup analyses,
the funnel plots were largely symmetrical with evenly distributed
points, indicating minimal bias in the study results and high
reliability of the data. This supports the credibility of the study’s
conclusions and indicates the rigor of the study design and
methodology.

This network meta-analysis revealed that a LFLP regimen was
associated with more adverse cardiovascular effects. Regarding
pressure, cuff pressure is one of the most important factors
influencing the safety of BFR-LI training. Our findings are
controversial compared to previous studies, which have indicated
that following the LFLP regimen, the cardiovascular load is
lower than that observed with high-intensity exercise without
BFR (Ferreira et al., 2017). However, our study further observed
that under low-pressure BFR-LI conditions, the cardiovascular
responses during low-intensity exercise were more pronounced.
Specifically, during low-pressure BFR-LI exercise, HR, SBP, and
DBP increased significantly compared to both pure low-intensity
exercise and other BFR exercises. This phenomenon may be related
to exercise frequency. BFR-LI training has a dual impact on the
autonomic nervous system. In the short term, BFR-LI training
may activate the sympathetic nervous system and increase heart
rate and blood pressure by partially restricting blood flow, thus
leading to local muscle hypoxia and the accumulation ofmetabolites
(such as lactate and hydrogen ions). These metabolites send signals
to the central nervous system by stimulating type III and IV
afferent fibers in the muscles, thus activating the sympathetic
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nervous system and increasing heart rate and blood pressure to
cope with local hypoxia and metabolic stress, especially during
high-pressure training (Igor S, 2021). In the long term, BFR-LI
training may increase the release of nitric oxide (NO) and promote
vasodilation by enhancing the activity of the parasympathetic
nervous (Ferreira Junior et al., 2019) and improving vascular
function (Shimizu et al., 2013; Killinger et al., 2020). The
enhancement of parasympathetic nervous activity helps balance
the overactivation of the sympathetic nervous system, thereby
improving heart rate variability and blood pressure regulation, and
reducing cardiovascular risk (Ma et al., 2024). The included studies
that investigated low-pressure BFR-LI training involved relatively
low exercise frequencies and durations and did not cover the
impact of theHFLP regimen on cardiovascular outcomes.Therefore,
future studies should explore the HFLP regimen to comprehensively
evaluate the effects of different frequencies on cardiovascular
health in older adults. Some studies have pointed out that due to
excessive cuff pressure, high-pressure BFR-LI training can induce
vascular occlusion thatmay trigger excessivemuscle reflex activation
(such as the activation of type III and IV afferent fibers), thus
resulting in overactivation of the sympathetic nervous system,
increased HR, elevated blood pressure, and increased vascular
resistance (Sacino and Rosenblatt, 2019). However, the HFHP
regimen can produce adaptive responses in older adults. Long-term
BFR-LI training may reduce the muscle’s sensitivity to accumulated
metabolites and signaling molecules, thereby potentially mitigating
the training-induced increases in systolic blood pressure (Cho
and Lee, 2024) and resulting in less cardiovascular harm. In
contrast, LFLP training may provoke a marked acute increase
in HR, systolic, and diastolic blood pressures. These responses
are similar to those seen in high-intensity exercise (Zhang et al.,
2022), which could elevate the risk of cardiovascular adverse events
and neural injury (Sacino and Rosenblatt, 2019), causing greater
discomfort for participants. This discrepancy may be attributed to
age-related changes in the autonomic nervous system and neural
aging in individuals who lack long-term regular physical exercise,
which affects blood pressure regulation (Liu et al., 2022), thereby
significantly increasing the risk of cardiovascular events during and
after exercise.

The impact of BFR-LI training on cardiovascular health in
older adults is complex. For individuals who cannot tolerate
high mechanical stress on joints and suffer from skeletal muscle
dysfunction, BFR-LI trainig may offer benefits (Rolnick et al., 2022).
However, in patients with chronic conditions such as hypertension
(Bezerra Silveira et al., 2022), diabetes (Camm et al., 2018), and
chronic inflammation, improper use of BFR may increase the risk
of cardiovascular diseases.

In terms of venous thrombosis, the effects of BFR-LI training
on older adults are dual-sided: on one hand, it improves blood
circulation by increasing the shear stress of blood flow, enhancing
endothelial function, and promoting collateral circulation (Pereira-
Neto et al., 2021). BFR-LI training also facilitates fibrinolysis
by increasing tissue plasminogen activator (t-PA), reducing
plasminogen activator inhibitor-1 (PAI-1), and activating the
fibrinolytic system, thereby lowering the risk of thrombosis
(Landers et al., 2025); on the other hand, it may increase
the risk of thrombosis due to blood stasis, endothelial injury,
and hypercoagulability (Engbers et al., 2010). Blood stasis

occurs because older adults often have slower blood flow
(Rosendaal et al., 2007), and BFR-LI trainingmay further exacerbate
this stasis. Endothelial injury is due to mechanical damage
to vascular endothelial cells resulting from improper use of
the cuff or excessive pressure during BFR-LI training (Chulvi-
Medrano et al., 2023). Additionally, BFR-LI training may activate
the coagulation system and inflammatory responses, causing a
hypercoagulable state. Since older adults already have stronger
coagulation function, BFR-LI training may further increase the
risk of thrombosis. BFR-LI training should be conducted under
professional guidance, with comprehensive screening and for
thrombosis risks in older adults to ensure safety and effectiveness.
(Heitkamp, 2015).

In future studies, it is essential to further investigate the
impact of the HFLP regimen and the HFHP- regimen on
cardiovascular indices in older populations. Although existing
studies have revealed that the LFLP regimen has a pronounced
effect on improving 1RM, the potential for LFLP training to
trigger substantial cardiovascular responses in older adults must
be considered. Therefore, considering the need to enhance muscle
strength while preserving cardiovascular health, the HFHP regimen
may represent a more suitable training strategy. This regimen aims
to optimize the parameters of BFR-LI training to effectively boost
muscle strength in older individuals while minimizing potential
cardiovascular risks. It is recommended to further investigate the
long-term effects of BFR-LI in different populations (such as older
adults, and patients with chronic diseases) and clarify its safety and
indications.

5 Limitation

1) The daily training habits of participants varied; the BFR-
LI application sites were inconsistent; and the lack of blinding
may led to uncertain outcomes. 2) Heterogeneity may occur
in the cardiovascular effects of different training modalities on
older adults. 3) Due to the limited number of studies included,
statistical significance may not have been established; however,
clinical significance cannot be ruled out. 4) Considering the limited
literature and the insufficient data on individual differences and
long-term safety, a systematic review of future studies should be
conducted to refine our findings and strengthen data support for
further research.

6 Conclusion

The HFHP regimen (pressures above 120 mmHg, 3 days
per week) effectively enhances muscle strength and maintains
cardiovascular health in older adults. In contrast, the LFLP regimen,
though enhancing 1RM, may not be suitable for those with
cardiovascular issues due to stronger physiological responses. The
cardiovascular effects of the HFLP regimen remain unstudied and
warrant further investigation.

When conducting research on different BFR-LI regimens, it is
also important to consider various factors. In BFR-LI training, while
training frequency and pressuremagnitude are critical, other factors
such as band size, duration, and intervals should also be considered
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to optimize the regimen. Although the HFHP regimen is beneficial,
the cardiovascular risks associated with BFR-LI training remain
uncertain. These risks, such as blood stasis and thrombosis, are
particularly concerning for high-risk individuals, including those
with hypertension or diabetes.

To address these challenges, Tailoring protocols based on gender,
goals, and physiological traits can maximize benefits and reduce
risks. Further research is needed to enhance BFR-LI training’s safety
and effectiveness across diverse populations.
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