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Background: Budd-Chiari syndrome (BCS) is a rare global condition with
high recurrence rates. Existing prognostic scoring models demonstrate limited
predictive efficacy for BCS recurrence. This study aims to develop a novel
machine learning model based on multiple kernel learning to improve the
prediction of 3-year recurrence in BCS patients.

Methods: Data were collected from BCS patients admitted to the Affiliated
Hospital of XuzhouMedical University between January 2015 and July 2022. The
dataset was divided into training, validation, and test sets in a 6:2:2 ratio. Models
were constructed by evaluating all combinations of four kernel functions in the
training set. Hyperparameters for each model were optimized using the particle
swarm optimization (PSO) algorithm on the validation set. The test set was
used to compare kernel function combinations, with the area under the curve
(AUC), sensitivity, specificity, and accuracy as evaluation metrics. The optimal
model, identified through the best-performing kernel combination, was further
compared with three classical machine learning models.

Result: A kernel combination integrating all four basic kernels achieved the
highest average AUC (0.831), specificity (0.772), and accuracy (0.780), along
with marginally lower but more stable sensitivity (0.795) compared to other
combinations. When benchmarked against classical machine learning models,
our proposed MKSVRB (Multi-Kernel Support Vector Machine Model for Three-
Year Recurrence Prediction of Budd-Chiari Syndrome) demonstrated superior
performance. Additionally, it outperformed prior studies addressing similar
objectives.

Conclusion: This study identifies risk factors influencing BCS recurrence
and validates the MKSVRB model as a significant advancement over
existing prediction methods. The model exhibits strong potential
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for early detection, risk stratification, and recurrence prevention in BCS patients.
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Introduction

Budd-Chiari syndrome (BCS) is defined as the obstruction of
hepatic venous outflow at any level ranging from the small hepatic
venules to the junction of the inferior vena cava and right atrium,
caused by factors other than hepatic venous occlusive disease and
cardiac disease (Janssen et al., 2003). Common causes typically
include hypercoagulable states, infections, and malignant tumors
(Goel et al., 2015). This obstruction leads to increased hepatic
sinusoidal pressure and portal venous pressure, reduced blood flow,
resulting in hepatic congestion and ascites formation. Prolonged
hepatocyte hypoxia can result in hepatocellular injury, potentially
leading to cirrhosis and portal hypertension (Menon et al.,
2004; Valla, 2002).Budd–Chiari syndrome, is globally rare and
exhibits significant geographical variations in etiology, incidence,
and clinical presentation. Chronic cases are more prevalent,
while acute occurrences are uncommon. Typical features include
abdominal pain, ascites, hepatomegaly, and subcutaneous vascular
dilatation in the abdominal wall and trunk (Shukla et al., 2021).
Advances in endovascular therapies have significantly improved
patient prognosis, with a sustained decrease in mortality rates.
However, The phenomenon of recurrence still occurs frequently
(Shukla et al., 2021). Various prognostic scoring models exist
including Child–Pugh score, Model for end-stage liver disease
(MELD), Clichy PI, Rotterdam score, New Clichy PI, and BCS-TIPS
score, while these models have shown limited predictive efficacy for
recurrence of Budd–Chiari syndrome (Wang et al., 2023).

In a study by Zhongkai Wang et al., a model for predicting
BCS recurrence based on logistic regression (LR) and nomograms
demonstrated superior performance compared to traditional
scoring models (Wang et al., 2023). With the rapid development
of machine learning technology, its application in various industries
has expanded significantly. In the field of medicine, using
machine learning techniques to predict the diagnosis, mortality,
and prognosis of various diseases has become feasible. The
potential machine learning in predicting Budd-Chiari syndrome
recurrence as a more accurate and efficient predictive tool is
promising (Deo, 2015).

In the field of machine learning, common algorithms used for
predicting disease mortality or recurrence include random forest
(RF), support vector machine (SVM), extreme gradient boosting
(XGBoost), and LRmodels.These algorithms generally performwell
when the dataset exhibits relatively simple structural relationships or
minimal internal noise (Handelman et al., 2018; Jamin et al., 2021).
However, when the internal complexity of the dataset is high, there
are many noise and outliers, or the relationships between datasets
are difficult to represent with a single logical relationship, these
machine learning algorithms typically fail to achieve satisfactory
performance.For SVM, its performance largely depends on the
choice of kernel (Amari and Wu, 1999), while multiple kernel
learning (MKL) is a machine learning method that combines

multiple kernel functions or selects the optimal kernel function to
enhance the performance and generalization ability of the model.
Compared to traditional machine learning models, MKL can utilize
multiple kernel functions tomeasure the similarity between samples,
aiming to describe the internal relationships within the dataset
as comprehensively as possible. This approach better captures
the complexity inherent in the dataset, thereby improving the
utilization of data (Sonnenburg et al., 2006),When confronted
with classification and regression problems involving heterogeneous
datasets from various sources, multiple kernel learning has been
proven to be an effective solution. It finds wide applications in
many fields, including visual object recognition (Bucak et al., 2014),
early disease identification (Collazos-Huertas et al., 2019), disease
prognosis prediction (Wilson et al., 2019) and more.

Budd-Chiari syndrome is characterized by its rarity, making
it challenging to obtain ample sample sizes in most studies.
Moreover, there are significant regional differences and complex
etiologies involved, most obstructions occur in the hepatic veins
and the segment of the inferior vena cava above their openings
can lead to the syndrome (Menon et al., 2004). The characteristics
of Budd-Chiari syndrome outlined above necessitate a broader
consideration when establishing predictive models, especially
for features not universally common due to rare causative
factors. Baseline data explained solely by a single-kernel model
often fails to provide reliable guidance on recurrence. MKL, as
a method capable of effectively handling heterogeneous data
sources and noisy datasets, should yield satisfactory results
when applied to predicting recurrence in Budd-Chiari syndrome
(Pavlidis et al., 2001; Kingsbury et al., 2005).

However, up to this point, MKL as a powerful descriptive
tool has not been applied to predict recurrence in Budd-Chiari
syndrome.Therefore, in this paper, wewill establish a new supported
vector machine model with MKL for feature learning and particle
swarm optimization (PSO) algorithm for hyperparameter selection,
in the purpose of predicting recurrence in Budd-Chiari syndrome
within 3 years.

Methods

Data source and study population

The dataset was obtained from patients diagnosed with BCS
admitted to the Affiliated Hospital of Xuzhou Medical University
between January 2015 and July 2022. Inclusion criteria were
based on symptoms, signs, and imaging examinations indicating
primary BCS, including magnetic resonance imaging (MRI),
computed tomography (CT), color Doppler ultrasound (CDUS),
and venography. Exclusion criteria were as follows: (1) patients
with secondary BCS caused by various reasons, including parasitic
invasion, abscess, cyst, malignant tumor compression, or venous
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injury after surgery; (2) patients with concurrent liver diseases,
including viral hepatitis, autoimmune hepatitis, alcoholic hepatitis,
and liver fibrosis; (3) patients with severe cardiac, hepatic, or
renal failure, or other reasons unable to undergo interventional or
surgical treatment; (4) patients who failed in revascularization due
to complete vascular occlusion or concomitant old thrombosis; (5)
patients with improper anticoagulation therapy; (6) patients with
significant missing information inmedical records; (7) patients with
follow-up time less than 12 months. According to these criteria, a
total of 522 patients were included in this study, with complete data
availability and no missing values.

This study was approved by the Institutional Review Board of
the Affiliated Hospital of Xuzhou Medical University. All methods
were performed in accordance with the relevant guidelines and
regulations.

Model framework

Before construsting the model, the feature data of Budd-Chiari
syndrome patients is required to be represented in the following
form: T = {(xi ,yi)

N
i=1} ,Among them, xi ∈ Rd is the patient’s feature

vector, yi ∈ {−1,+1} is the label indicating whether the patient with
Budd-Chiari syndrome has relapsed, yi = + 1 represents the patient
relapsing within 3 years, while yi = − 1 represents the patient not
relapsing within 3 years. km(xi ,xj) = ⟨ϕ(xi),ϕ(xj)⟩ with xi ,xj ∈ Rd

is defined as themethod to handle data that is linearly inseparable in
low-dimensional space, known as the kernel trick, where ϕ(x):Rd→
RD is the mapping function that maps the data, which is linearly
inseparable in low-dimensional space Rd, to high-dimensional space
RD, and km(xi ,xj) is referred to as the m-th kernel function.
Explicitly calculating the inner product of data mapped to high-
dimensional space is typically computationally challenging. The
kernel trick allows for the implicit computation of the inner
product in high-dimensional space by computing the kernel
function, significantly reducing storage space and computational
costs (Lanckriet et al., 2004; Scholkopf et al., 1999).

A composite kernel function is then established based on the
weights of different kernel functions:

k(xi ,xj) =
L

∑
m=1

ηmkm(xi ,xj) =
L

∑
m=1

ηmϕm(xi)
Tϕm(xj) (1)

In Equation 1 L is the number of kernels involved in model and
ηm represents the weight coefficients of each kernel function in the
composite kernel function, while the sum of the weight coefficients
of all kernel functions ∑Lm=1ηm = 1. In this paper, we discuss four
types of kernel functions, therefore L = 4.

Then the EasyMKL algorithm, proposed by Fabio Aiolli and
Michele Donini in 2015, was used to obtain the weights of each
base kernel in the kernel set by solving a simple QP problem
with the learning strategy that considering the balance between the
minimum and average values of the boundary (Aiolli and Donini,
2015; Donini et al., 2019; Aiolli et al., 2008):

max
η
 min

γ
 (1−φ)γTY(

L

∑
m=1

ηmKm)Yγ+φ‖γ‖22 (2)

In the above equation, a trade-off parameter φ is defined as
φ ∈ [0,1], Y = {yi|1 ≤ i ≤ N } and K are kernel matrices formed by

the kernel function values between training samples, obviously
K ∈ RN×N. The probability vector γ ∈ RN represents a collection of
probabilities for each sample being selected among all positive or
negative instances. Due to ∑i∈⊕γi = 1 and ∑i∈⊖γi = 1, while i ∈ ⊕
represents all positive samples, i ∈ ⊖ represents all negative samples,
‖γ‖1 = 2 can be clearly obtained. η is called the weight vector, defined
as the set of weight coefficients of all the kernel function, η =
{ηm|m = 1,2, ......,L}.

Then, for Equation 2, a iteration process is employed to optimize
the objective function. In each optimization step, the algorithm
selects a pair of variables (γr ,γq) , keeping other variables fixed,
and iteratively updates these two probability variables to compute
their optimal solution. This process continues until convergence is
achieved and resulting in the global optimal solution.

γ′r ← γr + ϵ, γ
′
q← γq − ϵ (3)

In Equation 3, ϵ is the change in a pair of variables (γr ,γq)
selected during each update, it is necessary for the optimal
solution that the partial derivative of ∇L(γ) = L(γ

′) − L(γ) when the
objective function in Equation 2 defined as L(γ) with respect to ϵ is
equal to zero:

∂∇L(γ)
∂ϵ
= 0 (4)

In Equation 4, the solution for ϵ within the feasible domain is
obtained, followed by acquiring the probability vector γ and weight
vector η.

In our study, four common kernel functions were selected
as alternative options for support vector machines. The kernel
functions are as follows:

LinearKernel: k1(xi ,xj) = ⟨xi,xj⟩ = xTi xj (5a)

PolynomialKernel: k2(xi ,xj) = (xTi xj + o f fset)
degree (5b)

SigmoidKernel: k3(xi ,xj) = tanh(αx
T
i xj + β) (5c)

GaussianKernel: k4(xi ,xj) = exp(−σ‖xi − xj‖
2) (5d)

In these functions, o f fset is a constant term, degree is the degree
of the polynomial, α is a scale parameter affecting the extent of data
transformation in the non-linear space, constant β adjusts the bias
of the Sigmoid kernel function, and parameter σ controls the width
of the Gaussian kernel function.

Finally considering how to optimize the aforementioned
parameters and trade-off parameter φ, PSO algorithm is an
optimization algorithm proposed by James Kennedy and Russell
Eberhart in 1995 (Kennedy and Eberhart, 1995).By simulating
the process of foraging in bird flocks and fish schools in nature,
leveraging the collaboration of a group to find optimal solutions
to problems, PSO algorithm offers advantages such as requiring
fewer parameters to be tuned and being easy to implement. Today,
it has been widely employed in various fields including geophysics
(Pace et al., 2021), network data classification (Carneiro et al.,
2019), energy engineering (Ali Ahmadi et al., 2013) and others for
optimization problems.

After predefining a set of kernel combinations as inputs,
the position of the h-th particle in the l-th iteration
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within the Z-dimensional search space is denoted as Wl
h =

(wl
h,1,w

l
h,2,w

l
h,3, ...,w

l
h,Z), where both the number of particles and

maximum iterations are defined as 10 during the optimization
process. The parameter Z corresponds to the total number of
hyperparameters requiring optimization, including the Polynomial
kernel’s o f fset and degree, the Sigmoid kernel’s α and β, the Gaussian
kernel’s σ, and a universal trade-off parameter φ shared across all
kernel combinations.

In the particle swarm optimization process, the distance
and direction of movement for the h-th particle during the l-
th iteration are represented as Vl

h = (v
l
h,1,v

l
h,2,v

l
h,3, ...,v

l
h,Z). The

historical best position of the h-th particle is denoted as pbh =
(ph,1,ph,2,ph,3, ...,ph,Z), while the global historical best position
across all particles is denoted as gb = (p1,p2,p3, ...,pZ). During each
iteration, the spatial position of the h-th particle is updated based on
its position from the previous iteration, combined with the current
iteration’s movement direction and distance.

Wl+1
h =W

l
h + v

l+1
h (6)

The direction and distance of movement in Equation 6 in each
iteration are determined by three factors: the direction and distance
from the previous iteration, the particle’s historical best position, and
the swarm’s global historical best position:

vl+1h = ψv
l
h + c1r1(pbh −W

l
h) + c2r2(gb−W

l
h) (7)

The first part in Equation 7 is the inertial component, which
encourages particles to retain their previous motion state, governed
by the inertia weight ψ. This parameter reflects the particle’s
confidence in its prior trajectory. The second component is the
cognitive term, directing particles toward their individual historical
best positions, quantified by the individual learning factor c1, which
determines the reliance on the particle’s own exploration history.
The third component is the social term, guiding particles toward
the swarm’s global historical best position, regulated by the social
learning factor c2, representing the influence of collective swarm
knowledge. In the modeling process, ψ, c1, and c2 are empirically
specified as 0.9, 2, and 2, respectively. Random numbers r1 and r2
,which uniformly sampled between 0 and 1, were incorporated to
balance exploration-exploitation trade-offs between individual and
group experiences.

The optimization objective focused on maximizing the
validation set AUC. For each particle in every iteration,
hyperparameters were systematically recorded, and the
configuration yielding the highest AUC was selected as the optimal
hyperparameter set for the corresponding kernel combination.

Study design

Budd-Chiari syndrome patients included in the study were
randomly divided into training, validation, and testing sets in a 6:2:2
ratio. The training set was utilized for the model to learn the data
features. After determining a suitable set of hyperparameters using
the PSO algorithm, a model associated with these hyperparameters
was constructed, and the validation set was used to evaluate the
model’s performance to select the best hyperparameter combination.

In many previous studies on multi-kernel learning, specifying
kernel combinations was typically empirical. Jian Hou et al.

proposed that a linear combination of more kernels may not
necessarily be superior to the average combination of single
strong kernels or base kernels (Hou et al., 2018). To clearly
observe the measuring ability of different kernel functions for
sample similarity and determine the best kernel combination, we
arranged combinations of four base kernels. The testing set was
used to compare the performance of a total of four single-kernel
support vector machine models and eleven multi-kernel models.
Additionally, three classical machine learning models, including
RF, XGBoost, and KNM, were also considered. Ultimately, a total
of eighteen models were included in this study for the evaluation
of predictive performance for BCS patient recurrence. Ten rounds
of validation were conducted on each of the aforementioned
models, and the evaluation was performed using the average
performance metrics and standard deviation, including AUC (area
under the curve), sensitivity, specificity and accuracy.The flowchart
depicted in Figure 1.

Statistical analysis

In the statistical analysis stage, we conducted baseline analysis
of the dataset to detect baseline feature differences between BCS
patients who experienced recurrence during the observation period
and those who did not. For categorical variables, we described the
number and composition of each category in the recurrence and
non-recurrence groups, and employed the chi-square test to identify
differences between the two groups. For continuous variables, we
first conducted tests for normality in both groups. For variables
following a normal distribution, we described them using mean
and standard deviation and then used independent samples t-
test to identify differences. For variables not following a normal
distribution, we described them in terms of median and IQR and
then conducted the non-parametric Mann-Whitney U test.

After determining the variables with statistically significant
differences in baseline analysis, a univariate logistic regression
analysis was conducted to examine the relationship between various
data features and the recurrence of BCS, and to identify factors that
may affect patient recurrence. Subsequently, a multivariate logistic
analysis was performed to determine the independent risk factors
affecting recurrence and their corresponding risk levels. In this
study, all statistical analyses were considered statistically significant
at P < 0.05.The software used for analysis included R (version 4.4.1)
and Python (Version 3.10.9).

Results

Baseline characteristics

Among all 522 Budd-Chiari syndrome patients included in the
study, 169 experienced recurrence during the observation period,
while 353 did not (1:2.09). Valid data obtained in this study include
patients’ age, gender, occupation, Budd-Chiari syndrome subtype,
and other information, as detailed in Figure 2 and Figure 3.

As shown in Figure 2 and Figure 3, Budd-Chiari syndrome
patients who experienced recurrence during the observation period
differed significantly from those who did not in terms of age (P
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FIGURE 1
Flow chart of study design.

FIGURE 2
The distribution of qualitative variables between the relapsed group and the non-relapsed group with significance marked between the two groups (p ≥
0.05 -; p < 0.05∗; p < 0.01∗∗; p < 0.001∗∗∗).
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FIGURE 3
The distribution of quantitative variables between the relapsed group and the non-relapsed group with significance marked between the two groups (p
≥ 0.05 -; p < 0.05∗; p < 0.01∗∗; p < 0.001∗∗∗).

< 0.001), occupation (P = 0.029), type (P = 0.005), endovascular
intervention (P = 0.01), Neutrophils (NEU) levels (P = 0.002),
Platelets (PLT) levels (P = 0.044), Prothrombin Time (PT) levels (P
= 0.007), Albumin (ALB) levels (P = 0.02), Glucose (GLU) levels
(P = 0.004), and Alpha-Fetoprotein (AFP) levels (P = 0.032). We
conducted collinearity analysis among these variables in Figure 4,
revealing strong collinearity between NEU and PLT, while no
significant collinearity was found among the other variables.

Considering the significance of the differences, we decided to
exclude PLT.

Feature selection

The results of univariate and multivariate screening are
presented in Table 1. In the univariate screening, eight variables
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FIGURE 4
The Correlation Matrix of quantitative variables after baseline analysis.

were identified, including age (P < 0.001), occupation (P = 0.029),
type (compared to inferior vena cava type, hepatic vein type with
P = 0.005, mixed type with P = 0.02), endovascular intervention
(compared to simple balloon dilation, stent implantation with P =
0.025, catheter-directed thrombolysis with P = 0.043), NEU (P =
0.001), PT (P = 0.031), ALB (P = 0.01), and AFP (P = 0.022).

The results of multivariable logistic regression screening
indicated that age ≥50 years may be a protective factor for Budd-
Chiari syndrome patients compared to age <50 years (P < 0.001,
OR = 0.419), which is consistent with the findings of Wang et al.
(2023). Higher NEU levels were identified as an independent
risk factor for Budd-Chiari syndrome recurrence (P = 0.003,
OR = 1.197), while higher levels of ALB (P = 0.033, OR =
0.967) and AFP (P = 0.025, OR = 0.92) were found to have
protective effects against Budd-Chiari syndrome recurrence.Among
the various endovascular interventions for Budd-Chiari syndrome,
patients undergoing stent implantation seemed to have a lower risk
of recurrence compared to those undergoing simple balloon dilation
(P = 0.021, OR = 0.419). However, patients undergoing catheter-
directed thrombolysis showed a higher tendency for recurrence (P
= 0.008, OR = 2.57).

Selection of the best combination of kernel
functions

In our study, we constructed support vector machine models
based on fifteen combinations of four types of kernel functions,
including four single-kernelmodels and elevenmulti-kernelmodels.
The combinations of kernel functions are listed in Table 2.
Each combination model underwent ten rounds of validation
and the evaluation was based on the average and standard
deviation of ten results, including metrics such as AUC, sensitivity,
specificity, and accuracy, as detailed in Figure 5 and Table 2.
It can be observed that among all four base kernels, the
Linear Kernel demonstrated the best fit for our Budd-Chiari

syndrome patient data and achieved the highest average AUC,
sensitivity, specificity, and accuracy while Gaussian Kernel having
the poorest average performance.Surprisingly, in terms of kernel
combinations, Config 9, which combines the Polynomial Kernel
with the Gaussian Kernel—the two weaker kernels among the
four base kernels—outperformed Config 6, which combines the
Linear Kernel and the Sigmoid Kernel, both of which had
higher individual performances among the single kernels. This
finding demonstrates the effectiveness of our study, suggesting
that combinations of multiple weaker kernels may outperform
single strong kernels. For configurations with more kernels, the
three-kernel classifier combinations of Config 12 and Config 14
exhibited stronger performance and stability. However, the four-
kernel classifier was deemed optimal, as it demonstrated the most
comprehensive data descriptive and learning capabilities. Despite
Config 9 surpassing Config 15 in average sensitivity, considering
overall stability, the four-kernel classifier was deemed to have the
most robust performance.

From Figure 5 and Table 2, it can be observed that the four-
kernel classifier simultaneously achieved the highest average AUC,
specificity, and accuracy, with slightly inferior but more stable
sensitivity. Therefore, we consider the four-kernel combination
based on the Linear Kernel, Polynomial Kernel, Sigmoid Kernel,
and Gaussian Kernel as the optimal kernel combination we
sought. This classification model has been namedMKSVRB (Multi-
Kernel Support Vector Machine Model for Three-Year Recurrence
Prediction of Budd-Chiari Syndrome) by us.

Model performance evaluation

After we selected the four-kernel classifier as our optimal model,
we compared it with other commonly used machine learning
models, including RF, XGBoost, and KNN, using the same ten
rounds of validation approach to further validate its performance.
The performance was evaluated based on the average and standard
deviation of AUC, sensitivity, specificity, and accuracy of the
ten results.

Figures 6a–e depicts the trend lines of the evaluation metrics for
the four models across the ten validation rounds. From the figure,
it is evident that compared to RF, XGBoost, and KNN, our model
achieved better results in each metric in every validation round.
Table 3 presents the average values and standard deviations of the
evaluation metrics for the four models across the ten validation
rounds. We can observe that our model exhibits greater advantages
over all commonly usedmachine learningmodels. Figure 6f displays
the ROC curves of the four machine learning models during the
first validation round, while Figure 6g shows the confusion matrix
of the MKSVRB model during the same validation round, further
demonstrating the effectiveness of our approach.

To the best of our knowledge, prior to this study, the
model constructed by Zhongkai Wang et al. was considered the
optimal model in the field of predicting recurrence of Budd-Chiari
syndrome. It outperformed traditional scoring models with an AUC
of 0.82. Our model achieved an average performance of 0.831
across the ten validation rounds, indicating that our model can be
regarded as a more reliable predictor for the recurrence of Budd-
Chiari syndrome.
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TABLE 1 Univariate and multivariate regression analysis of risk factors for recurrence of Budd-Chiari syndrome.

Characteristic Univariate analysis Multivariate analysis

OR 95%CI P OR 95%CI P

Age

 ≤50 ref ref ref ref ref ref

 >50 0.445 0.304–0.650 <0.001 0.419 0.280–0.627 <0.001

Occupation

 Others ref ref ref

 Farmer or worker 0.661 0.455–0.958 0.029

Type

 Inferior vena cava ref ref ref

 Hepatic vein 1.857 1.202–2.870 0.005

 Mixed 1.866 1.103–3.157 0.02

Endovascular intervention

 Simple balloon dilation ref ref ref ref ref ref

 Stent implantation 0.443 0.217–0.905 0.025 0.419 0.200–0.878 0.021

 Catheter-directed thrombolysis 1.979 1.022–3.834 0.043 2.57 1.273–5.188 0.008

 TIPS 1.515 0.595–3.856 0.383 0.809 0.287–2.279 0.689

NEU 1.21 1.078–1.358 0.001 1.197 1.062–1.349 0.003

PT 1.046 1.004–1.090 0.031

ALB 0.963 0.936–0.991 0.01 0.967 0.937–0.997 0.033

GLU 0.992 0.874–1.125 0.899

AFP 0.919 0.855–0.988 0.022 0.92 0.854–0.990 0.025

The bolded text represents variables with P value <= 0.05.

Meanwhile, compared to the AUCs of several prognostic
scoring models in previous studies, such as the Child-Pugh
score of 0.70, Clichy PI of 0.55, MELD score of 0.67, and
Rotterdam score of 0.73, our model also demonstrates advantages
(Wang et al., 2023).

Interpretability of feature importance

Kernel machines, as black-box models, can be effectively
interpreted using SHAP values, a method proposed by Lundberg
and Lee (2017). In Figure 7a, the mean SHAP values of the
MKSVRB model are ranked in descending order to illustrate
feature contributions in the test set. The analysis revealed that age
exerted the strongest influence on model predictions, followed by
ALB, NEU, AFP, and endovascular intervention type. Figure 7b

further visualizes the impact of each feature on individual patients
in the test cohort. The color gradient of data points reflects
feature magnitudes, with red and blue representing values near the
maximum and minimum, respectively, and intermediate values in
purple. The corresponding SHAP values indicate both the direction
and magnitude of each feature’s effect.

As illustrated in the figures, advanced age and elevated ALB
levels were identified as protective factors against recurrence in BCS
patients, whereas higher NEU levels correlated with an increased
likelihood of recurrence. Notably, lower AFP levels also showed
a statistical association with recurrence risk. Among endovascular
interventions, catheter-directed thrombolysis was associated with
a higher recurrence rate compared to simple balloon dilation
or stent implantation. The mechanistic underpinnings of these
associations are discussed in detail in the second paragraph of the
Discussion section.
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TABLE 2 The Fifteen combinations of kernel functions and mean and standard deviation of indexs of fifteen kernel function combinations in ten rounds
of validation.

Combinations Kernel
functions

AUC Sensitivity (%) Specitivity (%) Accuracy (%)

Config 1 k1 0.8030 ± 0.0479 79.21 ± 7.89 73.14 ± 4.93 75.34 ± 5.47

Config 2 k2 0.7660 ± 0.0731 75.27 ± 9.46 70.48 ± 6.53 72.38 ± 6.58

Config 3 k3 0.7600 ± 0.0867 76.32 ± 9.28 70.48 ± 6.53 72.76 ± 7.35

Config 4 k4 0.7110 ± 0.0399 70.79 ± 6.01 63.73 ± 5.17 66.29 ± 4.88

Config 5 k1 + k2 0.7840 ± 0.0753 77.89 ± 9.22 70.90 ± 6.10 73.43 ± 7.05

Config 6 k1 + k3 0.6880 ± 0.1054 70.53 ± 12.82 70.15 ± 7.52 70.29 ± 7.90

Config 7 k1 + k4 0.7310 ± 0.0493 71.58 ± 6.30 65.82 ± 5.00 67.91 ± 5.18

Config 8 k2 + k3 0.6960 ± 0.1170 69.47 ± 12.78 66.12 ± 8.68 67.34 ± 9.88

Config 9 k2 + k4 0.8120 ± 0.0329 81.05 ± 4.08 74.78 ± 2.68 77.05 ± 2.89

Config 10 k3 + k4 0.6430 ± 0.1031 64.47 ± 8.25 57.76 ± 10.48 60.19 ± 9.49

Config 11 k1 + k2 + k3 0.7020 ± 0.1183 68.49 ± 12.79 66.12 ± 10.50 67.14 ± 11.07

Config 12 k1 + k2 + k4 0.8010 ± 0.0399 75.79 ± 7.53 75.23 ± 3.32 75.43 ± 4.35

Config 13 k1 + k3 + k4 0.6960 ± 0.0488 67.11 ± 3.34 66.12 ± 5.63 66.48 ± 4.62

Config 14 k2 + k3 + k4 0.8270 ± 0.0116 80.53 ± 6.35 76.27 ± 2.77 77.81 ± 2.70

Config 15 k1 + k2 + k3 + k4 0.8310 ± 0.0099 79.48 ± 3.23 77.17 ± 2.82 78.00 ± 2.03

The bolded text represents the combination with the highest evaluation metric among all kernel function combinations.

FIGURE 5
Evaluation and comparison of models were conducted using AUC, accuracy, sensitivity, and specificity.
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FIGURE 6
Model performance evaluation. (a) Evaluation and comparison of models were conducted using AUC, accuracy, sensitivity, and specificity. (b–e)
Variations of index of MKSVRB Model and three other machine learning models in ten rounds of validation. (f) ROC curves for four machine learning
models. (g) Confusion Matrix of MKSVRB Model.

Benefits of model application

Decision Curve Analysis (DCA) is a method for evaluating
the clinical utility of predictive models in actual clinical decision-
making scenarios. In contrast to metrics such as sensitivity,
specificity, and the AUC, which measure the diagnostic accuracy
of predictive models but fail to account for their clinical
utility, DCA offers the advantage of integrating patient or

decision-maker preferences into the analysis. It compares the
net benefit of different predictive models at specific clinical
decision thresholds, including treating all patients or treating none.
Net benefit refers to the overall effect considering the benefits
and harms of false positives and false negatives (Vickers and
Elkin, 2006).

In Figure 8, we present the decision curves of our proposed
model alongside three other machine learning models. It is evident
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TABLE 3 Mean and standard deviation of index of four models.

Models AUC Sensitivity (%) Specificity (%) Accuracy (%)

RF 0.6610 ± 0.0509 61.32 ± 3.93 62.39 ± 4.44 62.00 ± 3.92

XGBoost 0.6330 ± 0.0424 60.79 ± 2.30 59.11 ± 2.83 59.72 ± 1.42

KNN 0.6560 ± 0.0363 56.58 ± 5.44 64.18 ± 3.45 61.43 ± 1.57

MKSVRB 0.8310 ± 0.0099 79.48 ± 3.23 77.17 ± 2.82 78.00 ± 2.03

The bolded text represents the combination with the highest evaluation metric among all models.

FIGURE 7
The model’s interpretation: (a) The importance ranking of variables according to the mean (|SHAP value|); (b) SHAP beeswarm summary plot for impact
of each feature in each patient on model output.

that our model provides the highest net benefit for decisions
regarding recurrence in patients with BCS across the widest range
of probability thresholds, demonstrating its significant clinical
decision-making utility.

Deployment of the model

Our model can be accessed at https://mksvrb-5as8kyh4zie.
streamlit.app/. It is divided into three sections. Firstly, Figure 9a
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FIGURE 8
Decision curve analysis of the four prediction models. X-axis indicates the threshold probability for recurrence of BCS and y-axis represents the net
benefit gained from intervening on patients with a risk of recurrence at or above the threshold probability. The curve “Treat all” represents the net
benefit gained from intervening on all patients while he curve “Treat none” represents the net benefit gained from not intervening on any patients.

illustrates the relationship plot between model scores and the risk of
recurrence within 3 years, with a risk threshold set at 0.59. Figure 9b
functions as a prediction module where patients sequentially input
Age, Endovascular interventions, NEU level (x10^9/L), ALB level
(g/L), and AFP level (ug/L). By clicking the predict button, the
module assesses the risk of recurrence, categorizing it as high
risk if above the risk threshold or low risk if below. Due to
limitations in the study sample and considerations for accuracy,
the predictor currently supports only simple balloon dilation, stent
implantation, catheter-directed thrombolysis, and TIPS procedures,
excluding others. Figure 9c displays the SHAP Force Plot after risk
assessment for each patient, showing how each feature contributes to
the risk of Budd-Chiari syndrome recurrence. A red arrow indicates
a feature increases recurrence risk, while a blue arrow indicates a
decrease. Bar length represents themagnitude of each feature’s effect
on recurrence.

Discussion

In this article, our research introduced the MKSVRB model
for predicting the recurrence of Budd-Chiari syndrome with
3 years. Through the detailed experiments encompassing kernel
function combinations within our model and comparisons with
other machine learning models, we demonstrated its superior
performance.

Budd-Chiari syndrome is characterized by its rarity, significant
regional variations, and complex etiology, leading to high variability
in features (Menon et al., 2004). In terms of model variables,
we found that older age may be a protective factor for disease

recurrence, which could be related to the fact that Budd-
Chiari syndrome is more common in middle-aged individuals
(Macnicholas et al., 2012). ALB and NEU are traditional and
classical indicators that are widely used in predicting the disease
prognosis of liver disease patients. Many studies have confirmed
that higher ALB levels are associated with liver function recovery
(Su et al., 2019). Liver dysfunction typically causes an increase
in AFP levels; however, in extreme cases, such as severe liver
failure, the synthesis and release of AFP may decrease. In terms
of endovascular interventions, our study found that compared to
simple balloon dilation, stent implantation had a lower likelihood of
recurrence, while catheter-directed thrombolysis showed a higher
risk. The result is similar to a study comparing the long-term
prognosis of acute venous thrombosis patients who underwent
pharmacomechanical catheter-directed thrombolysis (PCDT) or no
PCDT. In this study, there was no significant difference in the
recurrence rate between the PCDT group and the no PCDT group
within 24 months (Kearon et al., 2019). In another experiment
comparing the recurrence rates of catheter-directed thrombolysis
and balloon-occluded thrombolysis in patients with Budd-Chiari
syndrome, catheter-directed thrombolysis also showed a higher
recurrence rate. This higher recurrence rate may be related to the
persistent microthrombi on the stent wall, which could serve as a
focus for recurrence (Mukund et al., 2024).

Consequently, commonmachine learningmodels, including RF,
XGBoost, and KNN, struggle to provide accurate predictions for
recurrence of Budd-Chiari syndrome. The EasyMKL algorithm,as
proposed by Fabio Aiolli and Michele Donini, proves effective for
making predictions on small, noisy datasets (Aiolli and Donini,
2015). It aligns well with our data compared to other MKL
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FIGURE 9
The predictor of recurrence risk of BCS within 3 years: (a) The relationship plot between predicted scores and recurrence risk. (b) The main part of
predictor: Calculate the recurrence risk based on input values. (c) The SHAP Force Plot shows the contribution of each patient feature to the risk of
recurrence of Budd-Chiari syndrome.

algorithms. By jointly optimizing internal parameters for kernel
functions and the balance parameter in EasyMKL, we combined
the PSO algorithm with EasyMKL algorithm, and finally achieved
satisfactory results.

On the other hand, we have explored the selection of internal
kernel function combinations in SVM for predicting recurrence
of Budd-Chiari syndrome.By comparing combinations of four
common kernel functions, we found that the Linear Kernel
performed best among single-kernel SVMs, but a composite kernel
function based on all four base kernels was more suitable for the
interrelation of features in Budd-Chiari syndrome data. In terms
of combining multiple kernels, our research found that convex
combinations of multiple kernels are not always effective. The
Linear Kernel performed the best among all base kernels, but
the performance of the combination with the Sigmoid Kernel,
Config 6, was far worse than either kernel alone, nearly achieving
the lowest rating among all kernel combinations. Similarly, Config 8
and Config 10 also performed much worse than their constituent
base kernels. This phenomenon was also observed in three-kernel
combinations: Config 11 and Config 13 performed lower than any
single base kernel in their composition.

However, this does not imply that multi-kernel learning itself
is flawed. Config 9, Config 12, Config 14, and ultimately our
desired four-kernel classifier are excellent success cases of multi-
kernel learning, where combinations of base kernels have created
more effective new hybrid kernels. Additionally, Config 5 and

Config 7 produced more moderate performance between the two
base kernels.The question of why strong kernel combinations can
pruduce weak hybrid kernels, as well as potentially stronger kernels,
and why the same is true for weak kernel combinations, remains an
unsolved problem inmachine learning. Internal kernelmachines are
still considered a black box, making this issue difficult to explain.
Kernel tricks cleverly calculate the inner product of data features
in an infinite-dimensional feature space, which we typically cannot
fully imagine or position (Johnson et al., 2020).

In addition, we have conducted clinical decision analysis to
assess the practical clinical utility of the model. After we have
determined that the model would contribute to clinical decision-
making, we deployed it online for use by all doctors and patients
in need. We aim for our model to assist in evaluating Budd-Chiari
syndrome patients with high-risk recurrence factors, supporting
personalized treatment and prognosis decisions for each patient.

Conclusion

In this paper, we have explored risk factors influencing relapse
of BCS patients and proposed a MKSVRB model that effectively
predicts the recurrence of BCS patients within 3 years. Experimental
results demonstrate that ourmodel outperforms previous prediction
methods and other machine learning models, demonstrating
significant potential for clinical application. We hope that our

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2025.1589469
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Xue et al. 10.3389/fphys.2025.1589469

model will contribute to prognosis decision support and recurrence
prevention for Budd-Chiari syndrome patients.
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