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Studies have demonstrated that there are sex differences in the timing of
onset and severity of prenatally programmed hypertension, with consistently
milder phenotypes observed in females relative to male offspring. However,
the root cause(s) for these sex-specific effects is unknown. Activation of the
renin-angiotensin system (RAS), elevated oxidative stress and inflammation,
and sympathetic hyperactivity in the cardiovascular organs and cardiovascular
regulatory systems, are all involved in the pathogenesis of hypertension. Sex
hormones interact with these prohypertensive systems to modulate blood
pressure, and this interaction may lead to a sex-specific development of
programmed hypertension. A more complete understanding of the functional
capabilities of the sex hormones and their interactions with prohypertensive
factors in offspring, from early life to aging, would likely lead to new insights
into the basis of sex differences in programmed hypertension. Recently, we
have discovered that sex differences also occur in the sensitization of offspring
hypertension as programmed by maternal gestational hypertension and that
this requires the brain RAS and proinflammatory factors. In this review, we will
discuss the possible mechanisms underlying sex differences in sensitization to
hypertension in the offspring of mothers exposed to various prenatal insults.
These mechanisms operate at various levels from the periphery to the central
nervous system (e.g., blood vessel, heart, kidney, and brain). Understanding
the sex-specific mechanisms responsible for the sensitized state in offspring
can help to develop therapeutic strategies for interrupting the vicious cycle
of transgenerational hypertension and for treating hypertension in men and
women differentially to maximize efficacy.
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Introduction

The Developmental Origin of Health and Disease (DOHaD) theory (i.e., Barker
hypothesis) was first proposed byDavid Barker, who had discovered the association between
lower birth weight and higher mortality from ischemic heart disease (Barker et al., 1989).
Subsequently, mounting human epidemiological evidence and animal studies indicated a
link between in utero adverse stimuli during gestation and an increased risk of hypertension
later in life (Arima and Fukuoka, 2020; Falkner et al., 2024; Warrington et al., 2024). The
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sex differences of prenatally programmed hypertension in
offspring have been reported in many different animal models
inducing hypertension through a variety of drivers, such as
hypertensive disorders during pregnancy, nutritional deficits/excess,
uteroplacental perfusion insufficiency, glucocorticoids, nicotine,
testosterone treatment or hypoxia during pregnancy (Tomat and
Salazar, 2014; Dasinger and Alexander, 2016; Dasinger et al., 2016;
Xue et al., 2018; Xue et al., 2021; Xue et al., 2022a; Drury et al.,
2024; Darlas et al., 2025). Most of these studies observed that male
offspring develop hypertension, whereas female offspring seem
to be protected, suggesting a role for the sex hormones such as
testosterone and estrogen in modulating the long-term changes in
blood pressure (BP) in response to these prenatal insults (Tomat and
Salazar, 2014; Dasinger andAlexander, 2016; Drury et al., 2024).The
etiology of prenatally programmed hypertension is multifactorial
andmay include reduced nephron number, endothelial dysfunction,
activation of the sympathetic nervous system (SNS) and the
renin-angiotensin system (RAS), and elevated oxidative stress
and inflammation as well as epigenetic mechanisms (Tomat and
Salazar, 2014; Dasinger and Alexander, 2016; Dasinger et al., 2016;
Johnson and Xue, 2018; Liu and Liang, 2019; Xue and Johnson,
2023; Drury et al., 2024; Tain and Hsu, 2024). Sex hormones
interacting with these prohypertensive systems in male and female
offspring from early life to aging may reinforce the formation of
the sex differences seen in programmed hypertension (Tomat and
Salazar, 2014; Dasinger and Alexander, 2016; Dasinger et al., 2016;
Drury et al., 2024).

By using an Induction-Delay-Expression paradigm, we
demonstrated that the pretreatment with the non-pressor dose of
angiotensin (ANG) II given during Induction (1 week) produced a
significantly greater pressor response to the subsequent infusion
of slow-pressor doses of ANG II during Expression (2 weeks)
when compared to rats pretreated with saline during Induction.
This differential pressor response is referred to as hypertensive
response sensitization (HTRS) (Xue et al., 2012). Thereafter, we
have used a prenatal insult model to investigate the pathogenesis
of hypertension in offspring; we demonstrated similar sensitizing
effects of maternal gestational hypertension on the development
of hypertension in offspring when they are challenged as adults
(10 weeks of age) with ANG II or a high fat diet (HFD), as
“second hits” (Xue et al., 2017; Xue et al., 2021; Xue et al., 2022a).
Sex differences in the effects of prenatal insult to the mother on
sensitized hypertension expressed in adult offspring were evident
(Xue et al., 2018; Xue et al., 2021; Xue et al., 2022a).

In this review by way of background of our and other studies,
we will review sex differences in the sensitizing effects of various
prenatal insults to development of hypertension in the offspring.
In particular, we will discuss the possible mechanisms of action
underlying these sex differences at several levels, ranging from
peripheral tissues to the central nervous system (CNS), including
blood vessel, kidney, heart, and brain.

Central nervous system mechanisms

Excessive SNS activation, autonomic dysfunction, activation
of the RAS and increased inflammation in the CNS have
been associated with development of hypertension (DiBona,

2013; Johnson and Xue, 2018; Xue et al., 2020). Numerous
clinical and experimental studies have shown that various prenatal
insults can enhance the impact of these central prohypertensive
systems. In other words, such prenatal insults can create a
sensitized state in the CNS that facilitates the development of
prenatally programmed hypertension in offspring later in life
(Jones et al., 2007; Tomat and Salazar, 2014; Johnson and Xue, 2018;
Zhang et al., 2018; Lim et al., 2021).

Adult obesity is a major risk factor for hypertension, with
increased SNS activity serving as the link between the increased
adiposity and the elevated BP (Da Silva et al., 2013). For example,
leptin is an adipokine that elevates BP via central activation of the
SNS, serving as a key mediator for obesity-related hypertension
(Da Silva et al., 2013; Taylor et al., 2014). Likewise, it has
been established that HFD-induced maternal obesity leads to
hypertension in the offspring that is also of sympathetic origin. This
was demonstrated by the elevated cardiovascular stress responses
to restraint, the enhanced pressor effects of a leptin challenge,
the increased sympathetic component of heart rate variability
and reduced baroreflex sensitivity in offspring (Prior et al., 2014;
Taylor et al., 2014; Gemici et al., 2021).

Perhaps not surprisingly, in animal models, the hypertension in
the adult arises from a direct influence of maternal obesity/HFD
on the development of BP regulatory pathways in the fetus
(Samuelsson et al., 2010). Samuelsson and colleagues support this
notion by demonstrating not only that HFD-induced maternal
obesity results in a significant increase in BP accompanied by
elevated SNS activity in rat offspring as adults, but also that these two
effects are already established in the juvenile offspring of obese dams
(at 30 days of age).This indicates that the sympathetic overactivation
and hypertension arise as a direct consequence of in utero exposure
tomaternal obesity (Samuelsson et al., 2010). Furthermore, there are
marked changes in anxiety and spatial learning in offspring from
obese dams, and these effects are all observed in adulthood, even
after the pups are placed on standard chow at weaning, confirming
that these outcomes are programmed early in life (Bilbo and Tsang,
2010). Finally, offspring exposed to maternal obesity/HFD show
sex-specific changes in metabolic, behavioral, and BP regulation
involving activation of SNS andRAS, hyperleptinemia and increased
neuroinflammation that persist into adulthood (Samuelsson et al.,
2016; Gemici et al., 2021; do Carmo et al., 2023).

Leptin, acting on melanocortin four receptors (MC4R) in
the paraventricular nucleus of hypothalamus (PVN), appears
to be required for early-life programming of hypertension
arising from either maternal obesity or neonatal hyperleptinemia
(Samuelsson et al., 2016). Using transgenic technology to restore
MC4R in the PVN of MC4R knockout mice, Samuelsson and
colleagues reported that neonatal hyperleptinemia due to maternal
obesity induces persistent changes in the central melanocortin
system resulting in sympathetic hyperactivity, thereby contributing
to offspring hypertension (Samuelsson et al., 2016). Furthermore,
do Carmo et al. (2023) found that the male and female offspring
of dams with maternal obesity were a greater risk for developing
hypertension when the offspring were also kept on the same
obesogenic diet, and crucially, found that offspring showed greater
reduction in BP during MC4R blockade. However, only the male
offspring from obese dams exhibited elevated BP when fed a normal
diet and they showed significant BP reduction after adrenergic and
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ANG II type I receptor (AT1R) blockade. These results confirmed
that brain leptin-mediated SNS hyperactivity contributes to the
sensitized BP response in obese offspring from obese dams and
indicated a sex difference in the mechanisms of BP sensitization in
male and female offspring of obese dams (do Carmo et al., 2023).

Obesity is also characterized as a systemic inflammatory
condition. Studies showed that microglial activation markers and
expression of proinflammatory genes were basally increased in
the brain nuclei of neonates from obese dams (Bilbo and Tsang,
2010; Zhang et al., 2018; Wang et al., 2020; Wijenayake et al.,
2020). The PVN, amygdala, hippocampus, and prefrontal cortex
were among the affected nuclei. Dudele et al. demonstrated that
offspring exposed solely to maternal inflammation resemble those
born to obese dams. The similarities between offspring subjected to
maternal lipopolysaccharide (LPS) or a HFD provide experimental
evidence that inflammation is likely to be a key programming
factor in pregnancies produced by obesity/HFD (Dudele et al., 2017;
Deng et al., 2018). Our studies also confirmed that maternal HFD
modulates the brain RAS, oxidative stress, and proinflammatory
cytokines (PICs) that alter the actions of ANG II and TNF-α
and sensitize the ANG II-elicited hypertensive response in adult
offspring. Systemic inhibition of the RAS and PICs can block
maternal HFD-induced sensitization of ANG II hypertension,
which is associated with attenuation of brain RAS and PIC
expression in offspring (Zhang et al., 2018; Wang et al., 2020).
Notably, male HFD offspring showed greater proinflammatory gene
expression, whereas female HFD offspring exhibited increased anti-
inflammatory gene expression in response to simultaneous cortisol
and LPS administration. These findings suggest that exposure to
maternal HFD leads to sex-specific changes that alter inflammatory
responses in the brain (Dudele et al., 2017; Wijenayake et al.,
2020). Blood-borne PICs induce a pressor response and sympathetic
activation, operating on the brain cardiovascular nuclei to increase
RAS activity and inflammation (Wei et al., 2013; Wei et al., 2015;
Wei et al., 2018). Estrogen is anti-inflammatory at several levels,
including immune cells, adipose tissue, and the brain (Shi et al.,
2020). Considering these observations, it is likely that increased PICs
in the brains of both male and female offspring induced by prenatal
insults including maternal HFD/diabetes may be one of the origins
of SNS activation. Since the enhanced brain proinflammatory
response and activation of SNS programmed by prenatal insults
are sex-specific, they eventually lead to a sex difference in the
development of hypertension.

Age may exert a secondary impact on the development of
programmed hypertension (Virdis et al., 2011). Intapad et al.
showed that growth-restricted male offspring exhibit an increase
in BP after puberty, whereas BP is normalized after puberty in
growth-restricted female offspring (Alexander, 2003). However, BP
was significantly elevated in growth-restricted female offspring by
12 months of age, which was accompanied by increased circulating
leptin. This effect could be abolished by bilateral renal denervation.
These data indicate that age induces increases in visceral fat and
circulating leptin that result in a significant increase in BP in growth-
restricted female offspring, with the renal nerves serving as an
underlyingmechanism (Intapad et al., 2013). Renal denervation also
abolishes hypertension in growth-restrictedmale rats at 3 months of
age, further suggesting an important role for activation of the SNS in
the etiology of programmed hypertension and it age-dependent and

sex-specific manifestations (Alexander et al., 2005). Consistent with
the effect of aging on BP in the growth-restricted female offspring,
maternal HFD renders the offspring metabolically imbalanced and
impairs their ability to cope with a HFD when challenged during
aging. The metabolic effects of HFD challenge were more profound
in female offspring (Sadagurski et al., 2019) that exhibited more
significant changes in blood-brain barrier (BBB) permeability and
hypothalamic inflammation compared tomale animals (Contu et al.,
2019). Moreover, sex differences in hypothalamic estrogen receptor
α (ER-α) expression levels were lost in female offspring upon
HFD challenge, supporting a link between ER-α levels and
hypothalamic inflammation in offspring.These studies highlight the
programming potential of hypothalamic inflammatory responses,
loss of BBB integrity and maternal obesity, especially in aging
females (Contu et al., 2019; Sadagurski et al., 2019).

The RAS is a systemic hormonal regulator of vasoconstriction,
aldosterone production, and SNS activity that directly regulates BP.
The RAS exhibits autocrine and paracrine capabilities in numerous
organs including the brain (Nakagawa et al., 2020). It has been
demonstrated that the RAS is involved in prenatal programming
of sympathetic overactivity and hypertension. For example, studies
show that hypertension induced by maternal protein restriction
is associated with an enhanced AT1R expression in several brain
nuclei and that the intracerebroventricular administration of an
AT1R blocker results in a significant reduction in BP (Pladys et al.,
2004; Mizuno et al., 2014). Blockade of the RAS also abolishes
hypertension in growth-restricted adult rats exposed to placental
insufficiency (Ojeda et al., 2007; Ojeda et al., 2010). In our
studies with the ANG II-induced maternal hypertension model, we
found that adult male offspring exhibited upregulated expression
of both RAS components as well as upregulation of PICs in the
lamina terminalis (LT) and PVN. The LT and PVN are forebrain
structures with key roles in sodium and water homeostasis and
regulation of the cardiovascular system. These adult male offspring
also displayed HTRS to a slow-pressor dose of ANG II or to a
switch to a HFD post-weaning, when compared with the offspring
of normotensive dams (Xue et al., 2017; Xue et al., 2021). A
compromised BBB, elevated brain reactivity to pressor stimuli and
augmented sympathetic drive to the cardiovascular system likely
contributed to the HTRS (Xue et al., 2021). However, this maternal
hypertension-induced HTRS was sex-specific, as intact female
offspring exhibited an attenuated increase in BP when compared
to male offspring (Xue et al., 2018; Xue et al., 2022a). Importantly,
different centralmechanismswere responsible for the sex differences
in theHTRS. Leptinwas involved in the expression ofHTRS induced
by both maternal hypertension and post-weaning HFD feeding in
male offspring, but not in females (Xue et al., 2021; Xue et al.,
2022a), while antihypertensive components of the RAS, such as
angiotensin converting enzyme 2 and AT2R, play a protective role
in antagonizing the expression of the HTRS in females (Xue et al.,
2014; Xue et al., 2021; Xue and Johnson, 2023).

It is well established that sex hormones such as estrogen and
testosterone, are involved in sex differences in the development
of hypertension. In our previous study, we demonstrated that
relative to males, females were protected against the induction of
sensitized hypertension, whereas sensitized hypertensive response
was enhanced in male and ovariectomized (OVX) female rats.
Central administration of estrogen in either male or OVX female
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rats during induction blocked ANG II-induced sensitization of
hypertension (Xue et al., 2014). Similarly, central Cytochrome
P450 1B1 (CYP1B1)-estradiol metabolite, 2-Methoxyestradiol,
protects from neuroinflammation and hypertension in female
mice (Singh et al., 2020b). In contrast to the protective effects of
female sex hormones against the development of hypertension,
chronic dihydrotestosterone (DHT) treatment in female rats
induced an increase in BP through activation of the SNS and
hypothalamic MC4R (Maranon et al., 2015). Testosterone-
CYP1B1-generated metabolite 6β-hydroxytestosterone, most
likely in the PVN via androgen receptor and G protein-coupled
receptor C6A, elicited an increased reactive oxygen species (ROS)
production, activation of microglia and astrocyte, and elevated
neuroinflammation, contributing to ANG II-induced hypertension
in male mice (Singh et al., 2020a). There results indicate that sex
hormones and their metabolites act through CNS to contribute to
sex differences in the development of hypertension in adult animals.
However, few studies have explored pathways and mechanisms
through which these sex hormones and their metabolites regulate
BP in offspring exposed to various prenatal insults, and further
investigations are warranted in the future.

Collectively, the studies highlight the pathogenesis of elevated
CNS activity programmed by prenatal insults, which involve the
leptin/MC4R pathway, a compromised BBB, central activation of
the RAS and increased inflammation, either alone or synergistically.
These developmental origins of SNS hyperactivity eventually alter
the offspring’s phenotype so as to sensitize their response to
prohypertensive agents and/or HFD challenge (i.e., second hits),
thereby developing hypertension in adulthood. Sex hormones and
aging play an important role in this sensitization process resulting
in sex-specific development of programmed hypertension.

Kidney mechanisms

Epidemiological and animal studies have shown that various
prenatal insults all lead to low-birth-weight neonates with increased
risk for chronic kidney disease and hypertension (Baum, 2010;
Baum, 2018). The kidney dysfunction and elevation of BP that
are caused by prenatal insults involve a low nephron endowment,
dysregulation of the systemic and intrarenal RAS, increased renal
sympathetic nerve activity, and increased tubular sodium transport
(Moritz et al., 2009; Lankadeva et al., 2014; Singh andDenton, 2015).
Thus, kidney dysfunction plays an important role in generating and
maintaining prenatally programmed hypertension in humans and in
animal models. Sex difference in the timing of onset and severity of
hypertension after prenatal programming also may reflect, in part,
sex-specific differences in kidney development and/or the different
effects of sex hormones on renal function (Moritz et al., 2010;
Dasinger and Alexander, 2016; Drury et al., 2024).

Since nephrogenesis in rodents is not completed until postnatal
day 10, the kidney can be programmed not only by various
intrauterine perturbations but also by neonatal insults (Baum, 2010;
YimandYoo, 2015; Baum, 2018).Woods et al. reported that nephron
number is reduced in male, but not in female, offspring of low
protein dams, and that the formation of a low nephron endowment
results in impaired renal function, which in turn contributes to the
development of hypertension only in male offspring (Woods et al.,

2010). Similarly, both male and female growth-restricted rat
offspring have nephron deficits but only the males develop kidney
dysfunction and hypertension (Doan et al., 2021). Maternal low-
protein diet, neonatal overnutrition and glucocorticoid exposure
have similar effects on the reduction of nephron number and cause
similar alterations of glomerular morphology and renal cortical
oxidative stress in offspring (McMullen and Langley-Evans, 2005;
Pedroza et al., 2019; Alhamoud et al., 2021).

do Carmo et al. (2024) examined the impact of maternal
obesity on offspring kidney function, morphology, and markers
of kidney damage after acute kidney injury (AKI) induced
by ischemia-reperfusion at 24–26 weeks of age. They found an
increased mortality rate and worse kidney injury scores after
AKI in male offspring from obese dams. Female offspring were
protected frommajor kidney injury after AKI.These results indicate
that maternal obesity predisposes offspring to kidney dysfunction
that sensitizes responses to ischemia-reperfusion injury in a sex-
dependent manner (do Carmo et al., 2024). Similarly, hypoxia
during late pregnancy disrupted growth of the kidney, particularly
the collecting duct network, in male neonates as early as postnatal
day 7. By mid-late adulthood (4–12 months of age), these offspring
developed early signs of kidney disease, notably a compromised
response to water deprivation. Female offspring showed no obvious
signs of impaired kidney development and did not develop
kidney disease, suggesting an underlying protective mechanism
against the hypoxia insult-induced kidney injury in females
(Walton et al., 2018).

The RAS is critical for normal renal development (Moritz et al.,
2010). In this regard, administration of an angiotensin-converting
enzyme inhibitor or an AT1 receptor antagonist during renal
development induces significant decreases in body weight and
nephron endowment that lead to deterioration of renal function
and a significant increase in BP (Saez et al., 2007; Gilbert and
Nijland, 2008; Tomat and Salazar, 2014). McMullen and Langley-
Evans found that prenatal low-protein and glucocorticoid exposure
induce a similar reduction of nephron number. They also found
that there are age- and sex-specific differences in the enhancing
effects of these two prenatal conditions on postnatal angiotensin
receptor expression (AT1R and AT2R) in the kidney, suggesting that
upregulation of the RAS plays an important role in the pathogenesis
of programmedhypertension through receptor-mediated changes in
ANG II activity (McMullen andLangley-Evans, 2005). In a ratmodel
of intrauterine growth restriction (IUGR) induced by placental
insufficiency, BP at 4 months of age is increased in male but not
female offspring with a normal glomerular filtration rate (GFR).
However, in response to a second hit such as acute ANG II, the
GFR is reduced in male, but not in female offspring with IUGR
(Ojeda et al., 2010; Ojeda et al., 2013; Intapad et al., 2019). Similarly,
administration of a postnatal HFD, as a second hit to prenatal
dexamethasone, sex-specifically alters protein profiles in offspring
kidneys and increases the vulnerability to prenatal-dexamethasone-
exposure-induced programmed hypertension, but only in male
offspring (Hsu et al., 2018).These data revealed a role for a sensitized
renal response to second hits, such as postnatal acute ANG II or
HFD, in the pathogenesis of prenatally programmed hypertension
in male, but not female, offspring.

Sex hormones such as estrogen and testosterone interact with
the RAS to modulate BP (Tomat and Salazar, 2014). In young
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male and aging female offspring programmed for hypertension by
placental insufficiency, the enhanced responsiveness to acute ANG
II is testosterone-dependent, and testosterone plays an important
role in maintaining the hypertension through enhancement of
intrarenal angiotensinogen (Ojeda et al., 2010; Davis et al., 2019a).
In contrast, growth-restricted female offspring are normotensive in
adulthood. OVX induces a marked increase in BP that is abolished
by RAS blockade, and renal hemodynamic responses to acute
ANG II are significantly enhanced in growth-restricted female
offspring that had undergone OVX, suggesting that sensitivity
to acute ANG II is modulated by ovarian hormones in growth-
restricted female offspring (Ojeda et al., 2011; Davis et al., 2019b).
In our ANG II-induced maternal hypertensive rat model, we
also found sex differences in the maternal hypertension-induced
sensitization of ANG II hypertension in offspring. Castration did
not alter the hypertensive response to ANG II in male offspring,
whereas OVX induced a greater increase in the pressor response to
ANG II in female offspring of hypertensive dams compared with
female offspring of normotensive dams. Furthermore, either RAS
blockade or renal denervation abolished thematernal hypertension-
induced sensitization of hypertension in offspring (Xue et al., 2017;
Xue et al., 2018). It has been shown that estrogens promote the anti-
hypertensive effects of the RAS by enhancing the Ang-(1–7)/AT2R
pathway while diminishing the ACE/AT1R pathway (Colafella and
Denton, 2018). Therefore, modulation of the renal RAS by estrogen
or testosterone serves as a potential mechanism in mediating the
sex-specific differences in hypertension in offspring programmed by
prenatal insults.

In summary, various prenatal insults lead to a reduced
number of nephrons, impaired renal development and function,
and disturbance of the RAS activity in the kidney, which may
fundamentally lead to a sensitized response to second hits (e.g.,
ANG II or HFD) that participate in both the development and the
maintenance of prenatally programmed hypertension in offspring.
Sex hormone interactions with the renal RAS play important roles in
the sex-specific processes during the development of programmed
hypertension.

Cardiovascular mechanisms

Alterations in the structure and function of vascular smooth
muscle, endothelium, and the heart are involved in the development
of prenatally programmed hypertension and of myocardial injury,
in which nitric oxide (NO), ROS, RAS activity and β-adrenergic
receptors play a mediating role (Tomat and Salazar, 2014).
Sex differences in vascular and heart dysfunction in different
animal models of prenatal programming are also observed,
and sex hormones play a modulatory role in cardiovascular
responses to an adverse fetal environment (Chen et al., 2019;
Drury et al., 2024).

After maternal malnutrition or fetal glucocorticoid exposure, it
is only the male offspring who suffer an increase in BP. Vascular NO
and ROS contribute to this sex-specific programmed hypertension.
While maternal malnutrition increased both superoxide-mediated
vasoconstriction and NO mediated vasodilation, the balance of
these factors favored the development of hypertension in males
and hypotension in females (Roghair et al., 2009). Moreover,

females counteract the adverse effects of maternal malnutrition
through the development of a better antioxidant status during
the critical developmental window of prenatal life. This early
female advantage, together with the ability of estrogen to scavenge
free radicals during pregnancy (Reyes et al., 2006), contribute to
the milder consequences of programmed hypertension in females
(Rodriguez-Rodriguez et al., 2015).

Cardiovascular changes are also involved in other forms of
prenatally programmed hypertension. Prenatal nicotine or hypoxia
had no effect on baseline BP but caused a heightened vascular
response to ANG II and increased the BP in adult male, but not
in female, rat offspring. This increase in BP was associated with
increased arterial media thickness and the ratio of AT1R/AT2R in
the aorta, but not with endothelial NO synthase activity in males.
These results suggest that prenatal nicotine or hypoxia exposure
alters vascular function via changes in ANG II receptor-mediated
signaling pathways in a sex-specific manner (Xiao et al., 2008;
Xiao et al., 2014). Estrogen counteracts heightened ROS production,
leading to protection of females from prenatal programming
of a hypertensive phenotype in adulthood (Xiao et al., 2013;
Xiao et al., 2014). In mouse offspring of dams with maternal
hypertension induced by vasopressin infusion throughout gestation,
a sensitized vascular response to a low dose of ANG II was
also evident. Moreover, genetic interference with peroxisome
proliferator-activated receptor-γ (PPARγ) specifically in the vascular
endothelium of these offspring augmented ANG II-induced
endothelial dysfunction. This impairment in endothelial function
was attenuated by scavengers of ROS, an effect more prominent in
male offspring than female offspring (Nair et al., 2019). In addition,
the finding that prenatal nicotine or hypoxia had no significant effect
on BP under resting conditions in adult offspring, but enhanced
the BP response to ANG II treatment in adult male offspring
are consistent with findings in several different animal models
including our maternal hypertension model (Peyronnet et al.,
2002; Xiao et al., 2009; Intapad et al., 2015; Xue et al., 2018).
These data suggest a sensitizing effect of prenatal insults
on vascular responses, thereby resulting in the development
of hypertension later in life when the subjects encounter
second hits.

Similarly, a maternal HFD causes a sex-specific regulation
of vascular AT1R and AT2R gene expression through epigenetic
DNA methylation, which leads to heightened vascular contraction
in adult male, but not female, offspring (Chen et al., 2021).
Estrogen plays a key role in this sex difference, as it normalizes
vascular dysfunction induced by maternal HFD in female
offspring by regulating ATRs, thereby leading to a reduced
development of a hypertensive phenotype in adulthood
(Chen et al., 2022).

In the rat model using prenatal dietary protein restriction, BP is
significantly higher inmale than in female offspring. However, OVX
induces a significant increase in BP in such females, while estrogen
replacement partially reduces the increased BP (Sathishkumar et al.,
2009, 2012). It has been shown that prenatal protein restriction
leads to compromised ovarian function, thereby contributing to
reduced levels of vascular ERα receptors and plasma estrogen,
and increased testosterone in female offspring (Leonhardt et al.,
2003; Guzman et al., 2006). Therefore, it is likely that prenatal
insults could have adversely impacted developing organs (e.g.,
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FIGURE 1
Schematic representation of sex differences in prenatal insult-elicited hypertensive response sensitization (HTRS) and associated peripheral and central
mechanisms. The figure shows prenatal insults elicit a sex-specific HTRS (i.e., prenatally programmed hypertension) through cardiovascular
dysfunction, nephrogenesis defects, and alterations of central nervous system (CNS) neuroplasticity and reactivity. Decreased nitric oxide (NO)
bioavailability, increased oxidative stress and inflammation, activation of the renin-angiotensin system (RAS), disruption of the blood-brain barrier (BBB),
and elevation of leptin/melanocortin 4 receptors (MC4R) and sympathetic nervous system (SNS) activity in the peripheral and CNS networks controlling
blood pressure (BP) mediate these sensitization processes, in which sex hormones such as estrogen and testosterone, are involved.

ovarian dysfunction, and reduced ERα in blood vessels) such that
they became less responsive to estrogen. As a result, estrogen
replacement reversed only the OVX-induced increase in BP but
not that induced by maternal protein restriction (i.e., BP was not
recovered to control level) (Sathishkumar et al., 2012). Similar
to the aforementioned studies, in our maternal hypertension rat
model, for female offspring challenged with postnatal ANG II, OVX
increased BP and estrogen replacement partially rescued this effect
(Xue et al., 2018).

The sympathetic branch of the autonomic nervous system
exerts its predominant impact on cardiomyocytes via β-adrenergic
receptors, which can be affected by prenatal programming
(Giussani et al., 2012; Harvey et al., 2015). The inotropic and
chronotropic responses to the β-adrenergic receptor agonist,
isoproterenol, following prenatal protein restriction, were unaltered
in female offspring, but significantly higher in male offspring.
Estrogen plays a key role in regulation of the expression of β-
adrenergic receptors in the heart. Expression of β-adrenergic
receptors is upregulated in the OVX rat heart but quickly reversed
following estrogen replacement (Elmes et al., 2009). Moreover,
male offspring exposed to prenatal hypoxia had an increased
susceptibility to ischemic myocardial injury (similar to heart
failure involving diastolic dysfunction in adult life) compared with
both offspring from healthy pregnancies and with their female
counterparts (Shah et al., 2017). These results suggest that prenatal

insults such as prenatal low protein or hypoxia, sex-specifically
program the sensitivity of β-adrenergic receptors to stimulation
and alter AT1R/AT2R expression patterns in the offspring’s heart,
which may explain the higher sympathovagal balance and increased
susceptibility to ischemia-reperfusion injury in male offspring
subject to prenatal insult when compared to female offspring
(Elmes et al., 2009; Giussani et al., 2012; Harvey et al., 2015;
Xue et al., 2015).

In summary, the prenatal insults induce an increased ratio
of AT1R/AT2R, elevated ROS production, and decreased NO
bioavailability in conduit and resistance arteries, and these changes
act collectively to elicit a sensitized vascular responsiveness,
thereby resulting in elevation of the BP. The prenatal insults
also program the expression and sensitivity of β-adrenergic
receptor in cardiomyocytes to increase susceptibility to ischemic
myocardial injury. Female sex hormones, especially estrogen,
play a protective role in the prenatal insult-induced sensitization
processes, which manifest as cardiovascular dysfunction in a
sex-specific manner.

Alterations and effects of maternal sex
hormones in prenatal insults

Sex hormones, including estrogen, progesterone, and
testosterone, are essential for the physiological regulation of
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pregnancy such as vascular adaptations, pregnancy maintenance
and labor process. However, low levels of estrogen or high
levels of testosterone during pregnancy have been shown
to initiate various prenatal insults, such as preeclampsia
(Shu et al., 2021; Darlas et al., 2025).

Several clinical studies have documented a significant decrease
in the levels of estradiol during preeclampsia (Berkane et al.,
2017; Cantonwine et al., 2019). The decrease in estrogen levels
is due to alterations in enzyme activities including a decrease
in Hydroxysteroid (17-β) dehydrogenase 1 (17β-HSD1, an
enzyme converting estrone to estradiol), aromatase (an enzyme
converting androgens to estrogens), catechol-O-methyltransferase
(COMT, an enzyme for the synthesis of 2-methoxyestradiol)
(Taravati et al., 2017; Berkane et al., 2018). The exogenous
administration of estrogen normalized the BP and other
associated symptoms of preeclampsia in both animal models
and preeclampsia patients (Djordjevic et al., 2010; Babic et al.,
2018; Lin et al., 2020). These beneficial effects of estrogen
involve the activation of GPR30, endothelial NOS and PI3K-Akt
signaling pathway, reduced release of inflammatory cytokines
and oxidative stress, leading to improved placental perfusion
(Shu et al., 2021).

A meta-analysis reveals that expectant mothers with
hyperandrogenic polycystic ovary syndrome (PCOS) had increased
odds ratios for gestational diabetes mellitus and preeclampsia
compared to those with a non-hyperandrogenic PCOS (Guo et al.,
2024). Indeed, maternal androgen levels are already elevated
in the early second trimester among women who eventually
develop preeclampsia. Thus, hyperandrogenism is involved in the
pathogenesis of preeclampsia, and may be considered an early
risk marker of preeclampsia (Carlsen et al., 2005). Chinnathambi
et al. confirmed that increased maternal testosterone in female
rats, at concentrations relevant to abnormal clinical conditions,
induces blunting of NO-mediated vasodilation and increased
vascular resistance, leading to maternal gestational hypertension
(Chinnathambi et al., 2013a).

Conditions of excess androgen in women, such as PCOS,
often exhibit intergenerational transmission. In a human study,
women born to mothers with the highest levels of maternal
bioactive androgens demonstrated a 4.84-fold increased odds for
having hypertension and were associated with an increased risk
for incident metabolic syndrome (Huang et al., 2018). In animal
studies, Sherman et al. demonstrated that prenatal exposure to
excess androgen negatively impacted cardiovascular function by
increasing BP and decreasing heart rate in adult female offspring.
Prenatal androgen was also associated with gut microbial dysbiosis.
These results suggest that prenatal exposure to hyperandrogenemia
in daughters of womenwith PCOSmay lead to long-term alterations
in gut microbiota and cardiometabolic function (Sherman et al.,
2018). Similarly, male offspring of hyperandrogenemic dams had a
normal baseline BP, but an exaggerated pressor response to ANG
II infusion, suggesting that adult sons of PCOS mothers may also
be at increased risk of cardiometabolic disease (Zuchowski et al.,
2021). Further, prenatal testosterone leads to an increase in BP
in both male and female offspring but involves a sex-specific
mechanism responsible for blunting of endothelial cell-associated
relaxation: endothelium-derived hyperpolarizing factor (EDHF)-
related in males and NO-related in females (Chinnathambi et al.,

2013b). The ACE inhibitor enalapril has a positive influence
on endothelial function with improvement in EDHF relaxation
(More et al., 2015).

In summary, both decreased estrogen and increased testosterone
during pregnancy contribute to the initiation of prenatal insults,
particularly preeclampsia, which is associated with detrimental
consequences for bothmothers andoffspring, exhibiting sex-specific
cardiovascular dysfunctions.

Conclusion

In this review, we have described the sex differences in the
pathogenesis of prenatally programmed hypertension and the
associated peripheral and central mechanisms. The prenatal insults
program the cardiovascular system and cardiovascular-regulating
organs, such as the blood vessels, heart, kidney, and the CNS, to
adversely alter their structures and functions in a way that increases
the risk for hypertension in adults. These prenatal and/or early life
alterations include reduced nephron endowment, changes in factors
that affect endothelial and arterial compliance, and alterations
in RAS and SNS activity in the periphery and the CNS. These
changes increased the sensitivity of the offspring ofmothers exposed
to various prenatal insults to a second hit (e.g., stress, HFD or
prohypertensive agents), increasing the likelihood that the offspring
will develop hypertension later in life. Sex hormone interactions
with the prohypertensive systems in the cardiovascular organs play
a pivotal role in the pathogenesis of sex-specific and age-dependent
hypertension programmed by various prenatal insults (Figure 1).
However, despite intense investigation into the mechanisms
underlying fetal programming of adult hypertension, there is still
no consensus on how these different mechanisms and pathways are
programmed in utero and how they interact with sex hormones
to ultimately lead to a sex-specific increase in BP later in life.
Future studies are warranted to investigate themechanisms involved
in initiating programming events in utero, and the subsequent
sensitization to postnatal challenges (i.e., stresses). Understanding
these mechanisms is important for the development of novel, sex-
specific strategies for prevention and treatment of hypertension in
men and women.

Since the current evidence shows that fetal and early postnatal
life are critical developmental windows, one opportunity for
interventions to ameliorate prenatally programmed hypertension
is around these developmental periods. We and others have
demonstrated the beneficial effects of anti-RAS or anti-
inflammatory agents administered to mothers or offspring on
improving fetal programming outcomes (Mizuno et al., 2014;
Xue et al., 2017; Deng et al., 2018; Li et al., 2020). However,
these therapies cannot be used during pregnancy or postnatally
in human because these treatments are likely to interfere with
renal and CNS development in the offspring. Thus, there is great
need for developing therapeutic strategies for women exposed
to prenatal insults which do not involve the risk of teratological
toxicity. Exercise in the mother during pregnancy and in the
offspring may be a promising strategy to prevent or reprogram
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latent HTRS (Kusuyama et al., 2020). Our recent studies showed
that voluntary exercise in offspring plays a beneficial role in
preventing maternal hypertension-induced HTRS elicited by
postweaning HFD (Xue et al., 2022b). Further studies are
needed to investigate the underlying mechanisms involved
in the positive reprogramming effects of “good” therapeutic
strategies, not limited to exercise, that will improve maternal and
offspring health and prevent the vicious cycle of transgenerational
hypertension.
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