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To investigate into the role of leptin in body mass in high-fat-fed animals.
Male striped field mice (Apodemus agrarius) fed high-fat diets were given
leptin (0.5 μg/g.d) via intraperitoneal injection for 28 days. Their body mass,
digestive metrics, and physiological parameters of food consumption and
energy metabolism were compared to those of the control and high-fat food
groups. Firstly, the high-fat diet did not cause weight gain in Apodemus
agrarius, and the animals on the diet ate less and had higher apparent
digestibility. Furthermore, exogenous leptin injection in A. agrarius reduced
food intake, increased fecal content, and reduced apparent digestibility.
Additionally, exogenous leptin injection inhibited the activity of the AMPK in the
hypothalamus, increased the activity of malonyl CoA, inhibited the expression
of orexigenic neuropeptide mRNA, promoted the expression of anorexigenic
neuropeptide mRNA, and thus reduced food intake and body mass. Finally,
exogenous leptin injection increased uncoupling protein 1 content, T45′-
deiodinase II activity, and cytochrome C oxidase activity in brown adipose tissue,
increased serum triiodothyronine, and increased animal energy consumption.
In conclusion, our data indicate that leptin affects body mass in animals on
a high-fat diet in two ways: by inhibiting food intake and increasing energy
expenditure.
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Introduction

Small animals typically respond to seasonal changes in their environment by altering
a variety of physiological traits, including thermogenesis, food intake, body weight,
and fat content (Heldmaier et al., 1982; Li and Wang, 2005). Central neural circuits
and peripheral target tissues regulate appetite and energy balance in a coordinated
and cohesive manner that includes negative feedback. The production and release
of peripheral metabolic hormones from adipose tissue, such as leptin, is a crucial
part of this negative feedback mechanism. Leptin is a 16-kD protein hormone with
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167 amino acids. In humans and mammals, leptin is primarily
synthesized and secreted by fat cells in white adipose tissue
(Zhang et al., 1994). Leptin, a hormone signal for obesity, affects
the central nervous system and helps mammals maintain energy
homeostasis (Xing et al., 2016). It is critical for regulating animal
food intake, body mass, and energy expenditure (Campfield et al.,
1995; Pelleymounter et al., 1995; Halaas et al., 1997). Animals
lacking leptin can become severely obese owing to two factors:
increased food intake (Fischer et al., 2020; Nedergaard et al.,
2023) and decreased energy production (Commins et al., 1999).
Leptin primarily regulates food intake and energy expenditure
via the hypothalamic receptor (Schwartz et al., 2000). High
levels of leptin inhibit adenosine-5′-monophosphate-activated
protein kinase (AMPK) activity in the hypothalamic arcuate
nucleus (ARC) and paraventricular nucleus (PVN), preventing
animal feeding (Minokoshi et al., 2004). Leptin is a stimulator
of the AMPK pathway, leading to a downstream activation
of this pathway, increasing malonyl CoA and inhibiting food
intake (Wolfgang et al., 2007). Furthermore, numerous studies
have found that leptin can increase the levels of anorectic
peptides such as pro-opiomelanocortin (POMC) and cocaine-
and amphetamine-regulated transcript (CART) mRNA while
decreasing the levels of orexigenic peptides such as neuropeptide
Y (NPY) and agouti gene-related protein (AgRP) mRNA (Flier,
2004; Morton et al., 2006). Leptin can also help the body lose
weight by increasing energy expenditure. Exogenous leptin
injections, for example, have been shown to stimulate sympathetic
nerve activity in animals. This stimulation results in increased
uncoupling protein 1 (UCP1) mRNA expression in brown
adipose tissue (BAT), reduces body weight (Cancello et al., 1998;
Demas et al., 2002; Gullicksen et al., 2002).

Leptin secretion is regulated by white adipose tissue (WAT)
(Rousseau et al., 2003; Li and Wang, 2005), This has been
found in the striped hairy-footed hamster (Phodopus sungorus),
the ringnecked lemming (Dicrostonyx groenlandicus), the long-
clucked gerbil (Meriones unguiculatus), and the great velvet mouse
(Eothenomys) (Klingenspor et al., 2000; Johnson et al., 2004; Zhang
and Wang, 2007; Zhu et al., 2010). So, leptin can be used as an
indicator of energy availability (Nedergaard et al., 2023). The studies
discovered that in small seasonal mammals such as Brandt’s vole
(Lasiopodomys brandtii), Dicrostonyx groenlandicus and Phodopus
sungorus, seasonal changes in food intake, body mass and body
fat content were associated with seasonal changes in leptin levels
(Klingenspor et al., 2000; Li and Wang, 2005). Exogenous leptin
injection regulates energy metabolism homeostasis differently in
different animals. Leptin injection, for example, can reduce food
intake while increasing energy consumption in both ob/ob and
wild-type mice (Pelleymounter et al., 1995; Levin et al., 1996;
Johnson et al., 2004). In mice, both peripheral and central leptin
injections reduced food intake and body fat (Halaas et al., 1997).
During leptin injection under long light conditions, narrow-headed
voles (Microtus agrestis) and Lasiopodomys brandtii showed leptin
antagonism, but their food intake did not change (Klingenspor et al.,
2000; Król and Speakman, 2007; Tang et al., 2009). Leptin injection
can reduce food intake and heat production in F344×BN obese
old rats (Shek and Scarpace, 2000). Wistar rats were injected
with leptin at low temperatures, and their food intake, heat
production capacity of BAT, and UCP1 concentration were all

reduced (Abelenda et al., 2003). These findings suggest that leptin
regulates energy homeostasis differently depending on the species.
Furthermore, several studies have shown that other hormones, such
as leptin, thyroid hormone, adiponectin, and ghrelin interact to
regulate energy homeostasis and lipid metabolism (Zimmermann-
Belsing et al., 2003; Hermann et al., 2006; Buonfiglio et al., 2018).

Striped field mice (Apodemus agrarius) are plant-eating, non-
hibernating small mammals from the Muridae family and the
genus Apodemus. It is widely distributed, plentiful, cold-resistant.
According to previous research on the number and distribution
of this mouse in Shanxi Province, this mouse has become
one of the most common pests in typical farmland areas of
Shanxi Province between 2015 and 2020 (Yang et al., 2021).
It is also the primary carrier of epidemic hemorrhagic fever
and leptospirosis (Zhang et al., 1997). This mouse’s reproduction
(Wang et al., 1994), ecological habits (Wang et al., 1997), fatness,
morphology (Yang, 1995; Yang, 2023), cold acclimation, and
seasonal acclimation (Sun et al., 2009) were all extensively studied
in the early period. However, researchers have not investigated the
effect of exogenous leptin on body mass of Apodemus agrarius. This
paper selected A. agrarius from Shanxi Province as the research
object, and studied the effects of exogenous leptin on the feeding
and energymetabolismofA. agrarius at different levels of individual,
tissue, organs and biochemistry. It is predicted that exogenous leptin
injection can reduce body weight by reducing food intake and
enhancing heat production.

Materials and methods

Subjects and experimental design

Male striped field mice used in this study were captured from
Xinzhou, Shanxi of China (113.3°E, 38.5°N) in September 2022.
Animals were transported to and housed in Shanxi Agricultural
University’s laboratory. The animals were housed individually
in plastic cages (33 cm × 21.5 cm × 16 cm). Cages were kept at
24 °C ± 2 °C temperature and natural light cycle. Water and food
(commercial rat chow; Shenyang QianMin Feed Co.) were provided
ad libitum. All animals were kept in these conditions for at least
1 month before participating in the experiment. The animals were
randomly divided into three groups based on body mass, including
a control group, which was fed with abundant commercial rat chow
(Con, n = 6); and a high energy food group, which was fed with
abundant high-fat foods (HFD, n = 6); and a leptin injection group,
which was both fed with abundant high-fat foods and injected with
leptin intraperitoneal (HFD-leptin, n = 7), and the animals were
injected with a PBS solution containing leptin at 50 ug per g of body
mass (Li et al., 2020). The Con and HFD groups were injected with
1×PBS solution 50 ug per g of body mass (Chen et al., 2022). Table 1
shows the food composition. The experiment ran for 28 days. After
28 days, the animals were killed. The serum, medial hypothalamus,
stomach, and retroperitoneal fat was collected and weighed, and
then quickly frozen using liquid nitrogen until being stored at
−80 °C. We also dissected and the remaining organs (Table 3).
The animal’s body mass was measured every day (14:00–16:00).
All animal operations follow the guidelines established by the
Animal Care andUse Committee of Shanxi Agricultural University’s
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TABLE 1 The food content.

Content Standard diet High-fat diet

Crude fat (%) 6.2 21.4

Crude protein (%) 20.8 17.6

Neutral detergent fiber (%) 21.5 19.6

Acid detergent fiber (%) 12.5 10.6

Ash (%) 10.0 8.5

Caloric value (kJ/g) 17.5 19.7

College of Veterinary Medicine. The committee approved
this study.

Measurement of food consumption and
digestibility

Food intake was measured using the food balance method
(Liu et al., 2010). We provided food every 3 days. The amount of
food missing from the hopper was calculated and dried in an oven
at 60 °C. The average daily food intake was calculated by subtracting
the dry weight of the missing food from the throw food. Faeces
were collected every 3 days. The dry weight (±0.01 g) of the faeces
was measured after drying in an oven at 60 °C. Daily faecal output
(g/day/animal) = Total faecal dry weight/3; net food intake (g) =
daily food intake - daily faecal output; and apparent digestibility is
calculated as net food intake multiplied by 100% divided by daily
food intake (Liu and Wang, 2007; Yin et al., 2019).

Measurement of hormone concentration

Concentration of leptin in serum and white adipose tissue
(WAT), as well as the concentration of adiponectin, T3, and T4 in
serum were measured using ELISA kits (Preferred Biotechnology
Co., Shanghai, China; Kit No: Leptin: JM-02902M1, Adiponectin:
JM-02830M1, T3: JM-02857M2, T4: JM-02858M2), as described in
previous studies (Ren et al., 2022; Liu et al., 2022).

Measurement of leptin receptors, protein
activity and neuropeptide mRNA
expression in hypothalamic

The leptin receptors in hypothalamus were test using
ELISA kits (Preferred Biotechnology Co., Shanghai, China;
Kit No: Leptin receptor: JM-13102M2). AMPK activity and
malonyl CoA activity in the hypothalamus were measured using
enzyme-linked immunosorbent assay (ELISA) kits (Preferred
Biotechnology Co., Shanghai, China; Kit No: AMPK: JM-03142M2,
Malonyl CoA: JM-11403M2), as described in previous studied
(Liu et al., 2022).

Total RNA was extracted from the hypothalamus utilising
the TRIzol Kit (Invitrogen, Carlsbad, CA, United States), in
accordance with the manufacturer’s guidelines (Liu et al., 2022).
Isolated RNA was treated with DNase I (Promega, Madison,
WI, United States of America) at 37 °C for 30 min to eliminate
contaminating DNA, followed by an additional TRIzol extraction
to eliminate residual DNase I. For each sample, 3 µg of total RNA
was converted into first-strand cDNA utilising the M-MLV First
Strand Kit (Invitrogen) according to the manufacturer’s guidelines
(Preferred Biotechnology Co., Shanghai, China; Kit No: NPY: YX-
E20502M; AGRP: YX-E22211M; POMC: YX-E22212M; CART:
YX-E22217M). In accordance with the methodology outlined by
Liu et al. (2022), cDNA was synthesised from total RNA. The
real-time PCR was performed using the LightCycler System, a
component of Roche Diagnostic GmbH’s (Mannheim, Germany)
SYBR Green I sequence nonspecific detection method. Each PCR
was conducted as previously reported (Liu et al., 2022). Table 2
outlines the cycling conditions and primers utilised; all primers were
obtained from Sigma, Madrid, Spain. The software ABI7500 was
used to read the Ct value of each PCR reaction. The Ct value of
target gene subtract the value of reference gene as ΔCt, and ΔCtmean
value of treatment group subtract ΔCt mean value of control group
as ΔΔCt, ans then the 2−ΔΔCt represents the expression change of the
treatment and control groups.

Determination of protein content and
enzyme activity in BAT

Rapidly dissect the animals, meticulously isolate the liver and
interscapular BAT,weigh them to the nearest 0.001 g, and place them
into 5 mL and 2 mL centrifuge tubes, respectively. Subsequently,
immerse them in liquid nitrogen and transfer to a low-temperature
freezer (−80 °C) for storage and preservation. Upon completion
of sample collection, mitochondria from the liver and BAT were
extracted using the Tissue Mitochondria Isolation Kit (Shanghai
Biyuntian Biotechnology Co., Ltd., Product No. C3606). The UCP1
content, cytochrome C oxidase (COX, complex IV) activity, T45′-
deiodinaseII (T45′-DII) activity in BAT were determined by mouse
ELISA kits. UCP1 assay kit (Product No. JM-12185M2), COX assay
kit (Product No. JM-11693M1), T45′-DII assay kit (Product No. JM-
13120M1) were purchased from Shanghai Preferred Biotechnology
Co. (Shanghai, China). The experimental operation was carried out
according to the instructions.

Data analysis

Data were analysed using SPSS 26.0 software (SPSS Inc.,
Chicago, IL, United States). Before all statistical analyses, data
were examined for normality and homogeneity of variance using
Kolmogorov-Smirnov and Levene tests, respectively. Differences
in organ masses among groups were examined using analysis of
covariance (ANCOVA), with fat-free body mass as a covariate,
followed by LSD post hoc tests. Continuous changes in body mass,
food intake, daily faecal output, net food intake, and apparent
digestibility were detected by repeated-measures ANOVA. Group
disparities in food consumption, digestibility assessment, leptin and
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TABLE 2 Gene-specific primers used for real-time qPCR.

Primer Oligonuncleotide sequence (5′–3′) Product size (bp)

NPY (forward) GTGTGGACTGACCCTCGCTCTATC
155

NPY (reverse) TGGTGATGAGATTGATGTAGTGTCGC

AgRP (forward) GTGTTCTGCTGTTGGCACTG
157

AgRP (reverse) ACTTCTTCTGCTCGGTCTGC

POMC (forward) CGCTGGAGACGCCCGTGTTTC
193

POMC (reverse) CGTGGACTCGGCTCTGGACTGC

CART (forward) AGAAGAAGTACGGCCAAGTCC
84

CART (reverse) CACACAGCTTCCCGATCC

β-action (forward) AGGTCATCACTATTGGCAACGAG
151

β-action (reverse) TTGGCATAGAGGTCTTTACGGAT

adiponectin levels, leptin receptor expression, and hypothalamic
neuropeptide expression were evaluated using one-way analysis
of variance (ANOVA) accompanied by LSD post hoc tests. The
linear correlation among leptin content, hormone concentration,
neuropeptide levels, and protein in BAT was examined using linear
regression analysis. And relevant heat maps were created using
online analysis software (https://www.genescloud.cn/hom). Results
are expressed as means ± SEM, with P < 0.05 deemed statistically
significant.

Results

Changes in body mass and organs mass

Over a 28-day monitoring period, the body masses of male
striped field mice in the HFD-leptin group exhibited a significant
reduction (F = 15.063, P = 0.01; Figure 1), with a decline of 4.734 g
after 28 days. No significant difference was observed between the
Con group and the HFD group (P > 0.05; Figure 1).

The organ mass results for the animals presented in Table 3
indicate that the stomach and cecum masses with food in the HFD
group were significantly greater than those in the other two groups,
whereas the wet weight of the stomach and cecum does not differ
significantly among the three groups. Furthermore, the BAT mass
in the HFD group was significantly lower than in the other groups,
while the HFD-leptin group exhibited the highest BAT mass (F =
5.961, P < 0.05). The kidney mass in the HFD group and the HFD-
leptin group was significantly greater than that in the Con group
(F = 4.772, P < 0.05). The organ masses exhibited no significant
differences among the three groups (P > 0.05).

Food consumption and digestibility

The variations in food intake, daily fecal output, net food
intake, and apparent digestibility were shown in Figure 2. Firstly,
the Con group exhibited a significantly higher food intake than
the other groups over the 28-day period (P < 0.05; Figure 2A).
After 14 days, the HFD group commenced consuming significantly
greater quantities of food than the HFD-leptin group (F = 23.690,
P < 0.05). Food intake of HFD group significantly increased from
18 days (F = 4.654, P < 0.01). Furthermore, the food intake of the
HFD-leptin group exhibited a significant reduction starting from
day 14 (F = 32.737, P < 0.01). Secondly, a noteworthy discovery
indicated a disparity between the alterations in food consumption
and the modifications in faecal dry weight. The HFD-leptin group
demonstrated a significantly reduced food intake compared to the
HFD group, but additionally exhibiting a notably increased faecal
dry weight (P < 0.05, Figure 2B). The faecal dry weight of the
HFD-leptin group was significantly greater than that of the Con
group on both day one and day four (P < 0.05). Furthermore, the
faecal dry weight of the high-fat diet was the lowest. Moreover,
akin to the food consumption outcomes, the net intake of the
Con group was markedly greater than that of the other groups
(P < 0.01, Figure 2C). After 14 days, the net intake of the HFD
group was significantly greater than that of the HFD-leptin group
(P < 0.05, Figure 2C). The HFD group exhibited greater apparent
digestibility compared to the Con group. The HFD-leptin group
exhibited significantly lower apparent digestibility compared to both
the HFD group and the Con group (P < 0.01). Our data indicate
that the HFD-leptin group exhibited the least food intake, while
exhibiting a significant faecal dry weight, leading to the lowest
apparent digestibility (Figures 2A,B,D).
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FIGURE 1
Changes in body mass of male striped field mice. Significant differences within group were indicated by different alphabetic letters. And significant
between groups differences were indicated by∗, and∗as significant, P < 0.05,∗∗as extremely significant, P < 0.01. Significant differences in HFD-leptin
group were indicated by different lowercase letter. Data are presented as mean ± SEM.

TABLE 3 Group differences in organ masses of male striped field mice.

Organs mass Con HFD HFD-leptin Fvalue Pvalue

Stomach with food (g) 0.500 ± 0.086c 1.742 ± 0.159a 1.060 ± 0.139b 21.271 <0.01

Stomach (g) 0.276 ± 0.029 0.360 ± 0.079 0.250 ± 0.042 1.051 >0.05

Liver (g) 0.930 ± 0.215 1.480 ± 0.152 1.961 ± 0.375 3.257 >0.05

Heart (g) 0.172 ± 0.017 0.241 ± 0.017 0.232 ± 0.032 2.437 >0.05

Lungs (g) 0.192 ± 0.015 0.236 ± 0.033 0.241 ± 0.026 0.982 >0.05

Kidney (g) 0.236 ± 0.027b 0.350 ± 0.037a 0.357 ± 0.029a 4.772 <0.05

Caecum with food (g) 0.527 ± 0.065b 0.372 ± 0.038a 0.362 ± 0.035a 5.364 <0.05

Caecum (g) 0.215 ± 0.012 0.232 ± 0.037 0.209 ± 0.028 0.166 >0.05

Small intestine (g) 0.654 ± 0.081 0.556 ± 0.052 0.591 ± 0.085 0.131 >0.05

Large intestine (g) 0.202 ± 0.021 0.233 ± 0.032 0.179 ± 0.023 1.017 >0.05

BAT (g) 0.183 ± 0.020ab 0.100 ± 0.064b 0.317 ± 0.033a 5.961 <0.05

Data were analyzed by one-way ANOVA, followed by the LSD, post hoctest. Significant group differences were indicated by different alphabetic letters. Data are presented as mean ± SEM.

Measurement of hormone concentration in
serum

The levels of leptin, adiponection, T3, and T4 in the serum were
shown in Figure 4. The serum levels of leptin T3, and T4 in serum
exhibited similar fluctuated among three groups. First, the HFD-
leptin had a significant higher level of leptin in serum than the other
groups (F = 32.206, P < 0.01, Figure 3A). However, there was no
significant difference in WAT leptin levels among the three groups
(F = 0.617, P > 0.05). Additionally, HFD-leptin subjects exhibited
elevated levels of T3 and T4 compared to the control subjects (FT3 =

18.034,P < 0.01;FT4 =16.466,P < 0.01; Figure 3A). Furthermore, the
serum T3 and T4 levels in the HFD group were higher than those in
the Con group (P < 0.05). Adiponectin levels in the Con group were
noticeably higher than those of the other groups; the HFD-leptin
group had higher levels than theHFD group (Fadiponection = 20.390, P
< 0.01). Furthermore,WAT leptin level did not vary among the three
animal groups (F = 0.746, P > 0.05, Figure 3B). At last, the results
of the hormone correlation analysis revealed that serum leptin level
had a significant correlation with T3 in serum (R = 0.769, P < 0.01)
and T4 in serum (R = 0.833, P > 0.05), but not with adiponectin
in serum (R = 0.020, P > 0.05). WAT leptin level had not been
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FIGURE 2
Effect of leptin on food intake (A), daily fecal output (B), net food intake (C), and apparent digestibility (D). Significant differences within group were
indicated by different alphabetic letters. And significant between groups differences were indicated by∗, and∗as significant, P < 0.05,∗∗as extremely
significant, P < 0.01. Significant differences in HFD and HFD-Leptin group were indicated by different capital letter and lowercase letter, respectively.
Data are presented as mean ± SEM.

recorded (Radiponection = 0.296, RT3 = 0.209, RT4 = 0.400, P > 0.05,
Figure 3C).

Expression of leptin receptor, and AMPK
activity, and malonyl CoA activity in
hypothalamusm, and hypothalamus
neuropeptidesm

The expression of the leptin receptor in the hypothalamus
varied among animals from different groups (F = 4.253, P
< 0.05, Figure 4A). Compared to the HFD and Con animals,
the HFD-leptin animals demonstrated an increased quantity of
leptin receptors in the hypothalamus. The AMPK activity in
the HFD group significantly increased compared to the other
groups (F = 11.047, P < 0.01, Figure 4B). The HFD-leptin
group exhibited the lowest AMPK activity. Ultimately, a notable
disparity in malonyl CoA activity was observed among the
three groups (F = 14.345, P < 0.01, Figure 4C). The HFD-
leptin group exhibited the highest malonyl CoA activity, followed
by the HFD group, with the Con group exhibiting the lowest
activity.

The results of four hypothalamus neuropeptidesm mRNA in
hypoyhalamus, including NPY, AgRP, POMC, and CART were
shown in Figure 5E. There was significant difference between
three groups (Figure 5E). First, the expression of NPY mRNA of
HFD-leptin group significantly lower than the other groups (F =
9.984, P < 0.01). While there was no difference between Con and
HFD group (P > 0.05). Second, the expression of AgRP mRNA of
HFD group andHFD-leptin groupwas both significantly lower than
that of Con group (F = 8.327, P < 0.01). There was no difference
between HFD group and HFD-leptin group (P > 0.05). Moreover,
the expression of POMC mRNA of HFD-leptin group significantly
higher than that of the other groups (F = 9.289, P < 0.01). There
was no difference between HFD group and HFD-leptin group (P
> 0.05). Finally, the expression of CART mRNA of Con group was
significantly lower than that of the other groups, and there was no
difference between HFD group and HFD-leptin group (F = 10.478,
P < 0.01).

We further analyzed the correlation between leptin
content, leptin receptor with hypothalamic protein activity and
hypothalamus neuropeptides (Figure 4E). The findings indicated
that serum leptin levels exhibited a significant positive correlation
with leptin receptor (R = 0.491, P < 0.05), malonyl CoA activity (R =
0.636, P < 0.01), and the expression of POMCmRNA (R = 0.680, P <
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FIGURE 3
Effect of leptin on serum hormone levels in Apodemus agrarius fed high fat diet. The changes of serum hormone (A). The change of leptin on WAT (B),
and correlation analysis between leptin and serum hormone (C). Adiponectin Significant group differences were indicated by different alphabetic
letters, P < 0.05.

0.01) and CARTmRNA (R = 0.504, P < 0.05), while demonstrating a
negative correlation with the expression of NPY mRNA (R = 0.621,
P < 0.01). No correlation was observed between leptin content and
WAT leptin levels (R = 0.382, P > 0.05), AMPK activity (R = 0.435,
P > 0.05), as well as AgRP mRNA expression (R = 0.399, P > 0.05).
Furthermore, no correlation was observed between WAT leptin
levels and leptin receptor, AMPK activity, malonyl CoA activity
in the hypothalamus, or hypothalamic neuropeptides (Rleptin receptor
= 0.317, RAMPK activity = 0.229, Rmalonyl CoA = 0.127, RNPY = 0.352,
RAgRP = 0.136,RPOMC = 0.042,RCART = 0.012, P > 0.05). Additionally,
a negative correlation was observed between leptin receptor levels
in the hypothalamus and AMPK activity (R = 0.680, P < 0.01),
as well as the expression of NPY mRNA (R = 516, P < 0.05).
There was no correlation between leptin receptor activity in the
hypothalamus and malonyl CoA activity, as well as the expression
levels of AgRP, POMC, and CART mRNA (Rmalonyl CoA activity =
0.458, RAgRP = 0.111, RPOMC = 0.210, RCART = 0.225, P > 0.05).
AMPK activity exhibits no correlation with malonyl CoA activity
or hypothalamic neuropeptides (Rmalonyl CoA activity = 0.218, RNPY
= 0.456, RAgRP = 0.242, RPOMC = 0.310, RCART = 0.125, P > 0.05).
The results indicated a significant correlation between malonyl
CoA activity and hypothalamic neuropeptides, exhibiting a positive
correlation with POMC mRNA (R = 0.628, P < 0.01) and CART
mRNA (R = 0.639, P < 0.01), and a negative correlation with NPY
mRNA (R = 0.633, P < 0.01) and AgRP mRNA (R = 0.527, P < 0.05).

Protein content and enzyme activity in BAT

The results of protein content and enzyme activity in BAT were
shown in Figure 5.The content of UCP1 and COX activity in BAT of

the HFD-leptin group was significantly higher than in other groups
(FUCP1 = 57.168, P < 0.01; FCOX = 27.571, P < 0.01, Figures 5A,B).
Moreover, the T45′-DII activity of the HFD-leptin group and the
HFD group was significantly higher than the Con group (FT45'-DII
= 48.301, P < 0.01, Figure 2B). In addition, the content of UCP1 and
COX activity of the HFD group was significantly higher than that of
the Con group.

Moreover, the result showed that there were significant
correlations between serum leptin and UCP1(R = 0.773, P < 0.01),
as well as the activity of COX (R = 0.773, P < 0.01) and T45′-DII
(R = 0.773, P < 0.01) in BAT, and there were significant correlations
between serum T3 and T4 as well as UCP1 (RT3 = 0.760, RT4 =
0.710, P < 0.01), as well as the activity of COX (RT3 = 0.635, RT4
= 0.622, P < 0.01) and T45′-DII (RT3 = 0.721, RT4 = 0.723, P <
0.01) in BAT (Figure 5D).

Discussion

The adaptation of animals to their external environment will be
directly reflected in their bodymass (Li andWang, 2005). Preserving
a consistent body mass is essential for the survival and reproduction
of small mammals. Various factors affect animal body mass, with
food quality serving as a crucial determinant. For instance, the
body mass and adipose tissue levels of experimental rats and
mice consuming buffet-style or high-fat diets increased markedly
(Rothwell and Stock, 1998). Nevertheless, high-fat diets did not
result in bodymass increase in certainwild rodent species, including
P. sungorus prairie vole (Microtus pennsylvanicus) (El-Bakry et al.,
1999), L. brandtii (Zhao et al., 2008), Chevrier’s field mouse
(Apodemus chevrieri) (Gao et al., 2013a), striped hamster (Cricetulus
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FIGURE 4
Leptin receptor (A), activity of AMPK (B), malonyl CoA (C), as well as expression of hypothalamus neuropeptidesm mRNA (D) in Apodemus agrarius, and
correlation heat map (E). Significant group differences were indicated by different alphabetic letters, P < 0.05.

FIGURE 5
Effect of leptin on protein content and enzyme activity in BAT. Leptin affects UCP1 content (A), T45

′-DII activity (B) and COX activity (C) in BAT of
Apodemus agrarius. And correlation analysis between serum hormone and protein content as well as enzyme activity in BAT (D). Significant group
differences were indicated by different alphabetic letters, P < 0.05.

barabensis) (Bi et al., 2018), and red-backed vole (Eothenomys
miletus) (Geng et al., 2024). In this study, following 28 days of high-
fat diet administration, the body mass of A. agrarius exhibited no
significant change, paralleling observations in other rodent species.
The quality of food is the primary determinant influencing the

energy intake and digestibility of animals, subsequently impacting
the equilibrium of energy metabolism. Research indicates that
high-fat diets can diminish food intake, energy intake, and
digestible energy in Apodemus chevrieri (Gao et al., 2013a), L.
brandtii (Zhao et al., 2008), and Cricetulus barabensis (Bi et al.,
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2018), while markedly enhancing their digestibility. In the current
study, analogous results were noted. Consumption of high-fat
food diminished the food intake of A. agrarius, consequently
decreasing its fecal output and enhancing its apparent digestibility.
In contrast to the findings of acclimation with high-fiber diets
in Ryukyu mice (Mus Caroli, Bonhote, 1902), high-fiber diets
markedly elevated the daily food consumption and fecal output
of the mice, while the apparent digestibility significantly declined
(Yin et al., 2019). Voltura and Wunder (1998) posited that when
confronted with varying food quality, rodents typically augmented
their food consumption to adjust to low-quality foods and offset
low digestibility. Enhancing the digestibility and optimizing the
utilization efficiency of food enables adaptation to high-quality
nutrition (Voltura and Wunder, 1998).

Leptin is a crucial protein hormone that regulates body mass
in animals (Friedman and Halaas, 1998; Ahrén et al., 1997;
Abelenda et al., 2003; Tang et al., 2009; Chen et al., 2022;
Picó et al., 2022). This study demonstrated that exogenous leptin
injection diminished the body mass of animals on a high-fat diet,
corroborating findings from other studies involving leptin-injected
animals (Li et al., 2020). Leptin primarily functions in various
regions of the central nervous system and peripheral tissues to
modulate body mass, encompassing two facets: diminishing food
consumption and enhancing energy expenditure (Halaas et al.,
1995; Pelleymounter et al., 1995; Levin et al., 1996; Friedman
and Halaas, 1998; Concannon et al., 2001; Johnson et al., 2004;
Teixeira et al., 2021). Leptin administration can diminish food
consumption and enhance energy expenditure in ob/ob mice,
ultimately resulting in substantial weight reduction (Halaas et al.,
1995; Pelleymounter et al., 1995; Levin et al., 1996). Additional
small mammals, including the black field mouse (Micratus agrestis)
(Król and Speakman, 2006), P. sungorus (Klingenspor et al.,
2000), E. miletus (Chen et al., 2022; Chen et al., 2023), and
rats (Abelenda et al., 2003), exhibited analogous outcomes when
administered exogenous leptin. The findings of this study indicated
that the exogenous administration of leptin diminished the food
consumption of A. agrarius, paralleling results from other rodent
studies. The daily fecal output of animals administered leptin
increased, while its apparent digestibility significantly decreased,
potentially elucidating leptin’s role in body weight regulation.
Leptin decreases food consumption in animals while simultaneously
increasing fecal output, diminishing digestibility, lowering food
utilization efficiency, and consequently reducing animal weight.
The mechanism by which leptin regulates digestibility requires
further investigation. The gut microbiota is a crucial element in
the regulation of food digestion in animals (Clarke et al., 2014).
The exogenous administration of leptin may influence the digestive
function of animals by altering the composition and structure of gut
microbiota (Li et al., 2020), which will be further investigated by our
research team subsequently.

Modifications to the morphology of the digestive tract are
intricately associated with the energy requirements of an organism.
Enabling animals to regulate the weight and shape of their digestive
tracts is essential for animal empowerment (Wang et al., 1995;
Wang et al., 2009; Gao et al., 2013b).When the external environment
alters, numerous small mammals can acclimate to variations in food
quality by modifying their digestive systems, including increasing
the food turnover rate and altering the digestive tract volume

(Gross et al., 1985; Bozinovic et al., 1990; Sassi et al., 2007).
Numerous studies have examined the digestive tracts of small
mammals, revealing that the trends in digestive tract variation
differ among species and under varying conditions (Wang and
Wang, 2000). The morphology of the digestive tract in animals is
influenced by variations in food quality, which subsequently affects
their digestive capacity and efficiency (Karasov, 1996). The total
digestive tract contents ofApodemus alpine, when fed a high-fat diet,
exhibited a significant reduction (Gao et al., 2013b).Nonetheless, the
mass of the stomach and large intestine of A. alpine subjected to a
diet rich in sugar and fat exhibited a significant increase (Yang et al.,
2024). This study identified phenotypic alterations in the mass of
certain internal organs.Thesemorphological alterationsmay signify
modified functions (Wang et al., 2003). The results indicate that
the stomach weight of A. agrarius, when fed a high-fat diet, is
significantly lower than that of the control group, potentially due to
an increase in stomach volume in response to varying food quality
(Chediack et al., 2012; Gao et al., 2013b). Nonetheless, the gastric
weight of A. agrarius administered exogenous leptin and fed a high-
fat diet was markedly reduced compared to both the high-fat group
and the control group, potentially attributable to diminished food
consumption, as the stomach serves as the organ for temporary
food storage and initial digestion and absorption. Nonetheless, there
was no variation in the weight of gastric contents among the three
groups. Secondly, the findings of this study indicate that the cecal
content in the standard food group is markedly greater than that in
the other two groups, and the reactions of various small rodents to
high-fat diets resemble those of A. agrarius; for instance, the cecum
of A. alpine subjected to a high-fat diet was significantly smaller
than that of the low-fat food group (Gao et al., 2013b). The cecum
serves as the locus for cellulose fermentation, primarily indicating
alterations in food quality. Elevated cellulose content in food leads
to an increase in the cecum, as high-fiber foods are primarily
fermented and digested there (Liu and Wang, 2007). Theoretically,
if the volume of the digestive tract remains constant, the turnover
rate of high-fat foods should decrease, resulting in prolonged
food retention time and enhanced digestibility. A. agrarius can
enhance absorption efficiency by decreasing the turnover rate
of food to adapt to high-quality sustenance and sustain energy
equilibrium. The kidneys of animals have experienced substantial
alterations. These findings collectively provide further evidence
that animals can demonstrate phenotypic plasticity in response to
environmental changes by preserving essential traits and discarding
non-essential ones (Caumul and Polly, 2005).

Leptin inhibits AMPK activity in the hypothalamic arcuate
and paraventricular nuclei by influencing the hypothalamic
receptor (obR), thereby suppressing feeding behavior in animals
(Schwartz et al., 2000). Leptin simultaneously influences
downstream substances of the AMPK pathway to elevate malonyl
coenzyme A, diminish the secretion of orexigenic neuropeptides
and enhance the release of anorexigenic neuropeptides, thereby
suppressing food intake (Flier, 2004; Morton et al., 2006;
Wolfgang et al., 2007). Our data indicate that plasma leptin can
suppress AMPK activity in the hypothalamus and reduce food
consumption (Stark et al., 2013; Liu et al., 2022). The present
results indicate that the levels of leptin and leptin receptors in the
hypothalamus of the HFD-leptin group are the highest, followed
by the HFD group, while AMPK activity in the hypothalamus
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of the HFD-leptin group is significantly lower than in the other
two groups. Furthermore, our data indicate that leptin can directly
elevate malonyl-CoA to suppress food consumption (Stark et al.,
2013; Wolfgang et al., 2007). Previous research on A. agrarius
indicated that malonyl-CoA activity was maximal in the HFD-
leptin group, and significantly elevated in the HFD group compared
to the Con group, potentially elucidating the reduced food intake
observed in the HFD group. The findings of this study indicated
that the expression of NPY mRNA and AgRP mRNA in the
hypothalamus of the HFD group was diminished compared to
the control group, whereas the expression of POMC mRNA and
CART mRNA was elevated relative to the control group. This may
result in reduced food consumption in the HFD group compared
to the Con group (Flier, 2004; Morton et al., 2006). Administering
exogenous leptin to animals consuming a high-fat diet augmented
the suppression of NPY mRNA and AgRP mRNA expression while
enhancing POMC mRNA and CART mRNA expression in the
hypothalamus, resulting in a further decrease in food intake and
ultimately facilitating weight loss in these animals. Collectively,
these data provide more evidence suggesting that an increase in
leptin levels not only inhibits the AMPK pathway but also increases
the content of malonyl-CoA, thereby reducing the expression
of orexigenic neuropeptides and increasing the expression of
anorexigenic neuropeptide, which in turn leads to reduced food
intake in animals and ultimately lowers their body mass (Flier, 2004;
Morton et al., 2006; Wolfgang et al., 2007).

Leptin can not only affect body mass by inhibiting food intake
but also regulate body mass by increasing energy consumption
(Stark et al., 2013; Asgari et al., 2025). Leptin can enhance
the uncoupling protein 1 (UCP1) levels in BAT to modulate
thermogenic capacity, subsequently elevating the body’s energy
expenditure (Scarpace et al., 1997; Scarpace and Matheny, 1998;
Commins et al., 2001). Our data support the conclusion that leptin
enhances the thermogenic activity of BAT. The findings indicated
that the UCP1 levels in the BAT of the HFD-leptin group were
the highest, succeeded by the HFD group, while the Con group
exhibited the lowest UCP1 content. A high concentration of leptin
enhances the thermogenic capacity of melatonin in BAT (Li and
Wang, 2005; Chen et al., 2022; Chen et al., 2023). The elevated
mass of BAT in the HFD-leptin group may suggest that elevated
leptin levels can enhance BAT thermogenesis (Pelleymounter et al.,
1995; Levin et al., 1996; Commins et al., 1999; Scarpace et al.,
1997; Chen et al., 2022; Chen et al., 2023). Leptin deficiency
results in reduced UCP1 expression and diminished thermogenic
capacity in animals. Exogenous leptin supplementation can rectify
this deficiency (Commins et al., 1999). In addition, compared with
the Con group, the UCP1 of HFD group also increased significantly,
which may be due to the fact that animals consume excess energy by
increasing heat production when they consume too much energy,
thus maintaining a constant body mass.

In addition to UCP1, the activities of T45′-DII and COX
are significant contributors to the enhanced thermogenesis in
small mammals. T45′-DII can locally convert T4 into active T3,
which is the principal mechanism by which thyroid hormones
regulate metabolism (Mullur et al., 2014). The research indicates
that elevated serum T3 levels may account for the heightened
deiodinase activity in animals administered leptin over an extended
period (Cettour-Rose et al., 2002). Leptin can enhance the activity

of T45′-DII (Cettour-Rose et al., 2002; Lisboa et al., 2003). The
capacity of the T45′-DII gene to eliminate heat production in
mouse BAT diminished (de Git et al., 2019). The application of
T45′-DII inhibitors may result in reduced UCP1 expression in
BAT (Branco et al., 1999). In this study, serum leptin levels
exhibit a positive correlation with T45

′-DII activity and sreum
T3 and T4 levels, while T45′-DII activity also shows a positive
correlation with serum T3 and T4 levels. The data suggest that
leptin enhances the activity of T45′-DII, thereby facilitating the
conversion of more T4 into T3, ultimately augmenting heat
production and energy expenditure in animals (Chen et al., 2022).
Ultimately, we discovered that COX activity in the BAT of the
HFD-Leptin group increased significantly, suggesting that elevated
leptin levels enhanced the overall respiratory capacity of BAT
(Chen et al., 2022).

The experimental results in this study support the notion that
exogenous leptin reduces the body mass of animals through two
pathways: one is by reducing the animals’ food intake, and the other
is by increasing their heat production. Similar results were also
obtained in other small rodents. However, due to species differences
and some objective factors, our experimental results differ slightly
from those of other experiments. Nevertheless, the overall trend is
consistent.

Conclusion

In this study, we investigated the effect of exogenous leptin
injection on body mass regulation of high-fat-fed A. agrarius. First,
it is interesting to note that the high-fat diet did not cause weight
gain in A. agrarius, and the animals on the high-fat diet ate less
and increased their apparent digestibility. Moreover, compared to
high-fat diet animals, peripheral injection of leptin in A. agrarius
further limited their food intake, increased fecal content, and
decreased their apparent digestibility. However, the reasons why
leptin increases the amount of animal feces and the mechanism
of its action on animal digestibility are still unclear. In addition,
peripheral leptin injection inhibits the activity of AMPK in the
hypothalamus, increases the activity of malonyl-CoA, and then
inhibits the expression of orexigenic neuropeptidemRNA, promotes
the expression of anorexigenic neuropeptide mRNA, and then
reduces food intake and reduces body weight. Last but not least,
exogenous leptin injection increased UCP1 protein content, T45′-
DII activity, and COX activity in BAT, increased serum T3, and
increased animal energy consumption. In conclusion, our data
illustrate that leptin affects body mass in animals on a high-fat diet
in two ways, including inhibiting food intake and increasing energy
expenditure.
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