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Introduction: Coronary artery disease (CAD) diagnosis currently relies on
invasive coronary angiography for stenosis severity assessment, carrying
inherent procedural risks. This study develops a transformer-based multimodal
prediction model to provide a clinically reliable non-invasive alternative.
By integrating heterogeneous biomarkers including facial morphometrics,
cardiovascular waveforms and biochemical indicators, we aim to establish an
interpretable framework for precision risk stratification.

Methods: The study utilized a transformer-based architecture integrated
with residual modules and adaptive weighting mechanisms. Multimodal data,
including facial features, lip and tongue images, pulse and pressure wave
amplitudes, and laboratory indicators, were collected from 488 CAD patients.
These data were processed and analyzed to predict the severity of coronary
artery stenosis. The model’s performance was evaluated using both internal and
external validation datasets.

Results: The proposedmodel demonstrated high predictive accuracy, achieving
over 90% accuracy in assessing coronary artery stenosis risk on the training
dataset. External validation on real-world data further confirmed the model’s
robustness, with an accuracy of 85% on the validation set. The integration
of multimodal data and advanced architectural components significantly
enhanced the model’s performance.

Conclusion: This study developed a non-invasive, transformer-based
multimodal prediction model for assessing coronary artery stenosis severity.
By combining diverse data sources and advanced machine learning techniques,
the model offers a clinically viable alternative to invasive diagnostic methods.
The results highlight the potential of multimodal data integration in improving
CAD diagnosis and patient care.
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1 Introduction

Coronary artery disease (CAD) is a prevalent chronic
cardiovascular condition worldwide, characterized by consistently
high incidence and mortality rates. Epidemiological studies across
different countries have identified CAD as a high-risk disease
(Roth et al., 2020; Duan et al., 2024a; SU Wei, 2024; Tian et al., 2024).
In recent years, advancements in coronary computed tomography
angiography (CTA) have established it as a critical diagnostic
tool for assessing coronary artery stenosis, becoming one of the
key diagnostic standards for CAD. However, due to the invasive
nature of CTA, it is not suitable for all patients. In clinical practice,
patients diagnosed with significant stenosis via CTA often undergo
percutaneous coronary intervention (PCI) to restore blood flow.
However, complications such as calcification, bifurcation issues,
and multivessel disease can arise postoperatively, causing additional
strain on the patient’s health (Iftikhar et al., 2024).Therefore, there is
a pressing need for a non-invasive diagnostic method for coronary
artery stenosis. Such a method could serve as an alternative to CTA
for patients who are unsuitable candidates and provide auxiliary
recommendations for stenosis severity. Furthermore, it could reduce
the need for exploratory PCI procedures, thereby minimizing
unnecessary vascular damage.

In recent years, advancements in deep learning and artificial
intelligence have accelerated the adoption of non-invasive diagnostic
techniques (Le et al., 2024; Liu et al., 2024a). In the domain of
CAD, AI has been successfully applied to areas such as depression

in CAD patients (Hou et al., 2024), atrial fibrillation prediction
(Jian et al., 2024), genetic risk estimation, and hemodynamic
modeling (Mishra et al., 2024; Rasmussen et al., 2024). Studies
incorporating imaging data for CAD prediction have also shown
promise. For instance, research has indicated that facial features of
patients are associated with an increased risk of coronary artery
disease. A deep learning algorithm developed for CAD prediction
based on facial photographs achieved a sensitivity of 0.80, specificity
of 0.54, and an area under the curve (AUC) of 0.730 (Lin et al.,
2020). This suggests that facial photographs can, to some extent,
predict CAD.

Additionally, other studies have demonstrated the predictive
value of pulse pressure wave velocity (PWV) for CAD, particularly
showing stronger associations in males compared to females
(Chiha et al., 2016; Park et al., 2019; Hametner et al., 2021).
Tongue features have also been employed in CAD diagnostics,
improving model performance when included (accuracy = 0.760,
precision = 0.773, AUC = 0.786), indicating the feasibility of
using tongue characteristics for CAD detection (Duan et al.,
2024b). In the context of non-invasive diagnostic techniques
incorporating facial, tongue, and pulse features, prediction models
for pulmonary diseases have also achieved promising results
(AUC = 0.825 for the best-performing comprehensive syndrome
diagnosis model) (Zhou et al., 2023).

Meanwhile, in recent years, there have been studies focusing
on the prognostic prediction of coronary heart disease (CHD)
using multimodal data, including the use of different types of

TABLE 1 Clinical significance of pulse acquisition equipment.

Parameter Clinical significance

h1 Reflects the compliance of large arteries and the ejection function of the left ventricle

h3 Reflects arterial elasticity and the state of peripheral resistance

h4 Reflects peripheral arterial resistance and aortic valve function

h5 Related to the compliance of large arteries and aortic valve function

t1 Corresponds to the rapid ejection phase of the left ventricle

t4 Corresponds to the systolic period of the left ventricle

t5 Corresponds to the diastolic period of the left ventricle

t Corresponds to the cardiac cycle of the left ventricle

h3/h1 Reflects the state of peripheral resistance and vascular wall compliance

h1/t1 Reflects the strength of cardiovascular function

h4/h1 Reflects the level of peripheral vascular resistance

w1/t w1 represents the top one-third of the primary wave, reflecting the duration of elevated aortic pressure

w2/t w2 represents the top one-fifth of the primary wave, reflecting the duration of elevated aortic pressure

t1/t t1/t reflects the strength of cardiac ejection function

t4/t5 Reflects the speed of heart rate
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FIGURE 1
Data collection flow chart.

FIGURE 2
Tongue diagnosis and face-to-face diagnosis collection equipment.

clinical data to predict the prognosis of coronary artery disease
(Xu et al., 2024), the combination of cardiovascular imaging
techniques and biomarkers for the diagnosis of elderly patients
with CHD (Liu et al., 2024b), and the use of multimodal
laboratory indicators for the early prediction of cardiovascular and
cerebrovascular diseases (Wang et al., 2024). Although current
research demonstrates that multimodal data fusion is superior
to single data in the diagnosis of CHD, there is still room for
improvement in the research methods of multimodal data fusion.

Motivated by these findings, we aim to integrate clinical
indicators, CAD risk factors, andmultimodal data—including facial
images, tongue images, and pulse data—into a unified multimodal
representation learning framework (Zhang et al., 2019). This
approach allows us to construct amultimodal disease risk prediction
model (Zhou et al., 2023; Mishra et al., 2024), which combines
image features, numerical data, and pressure wave values to enable
non-invasive prediction of CAD risk. The model incorporates
well-established CAD risk factors, such as age, smoking status,
systolic blood pressure, diabetes history, and total cholesterol levels

(Khera et al., 2016; Di Angelantonio et al., 2019). By training
a machine learning model with these risk factors and clinical
indicators, we aim to develop a binary classification model that
predicts whether coronary artery stenosis exceeds 75%, Adaptive
Weighted Cardiovascular Occlusion Prediction Model (AWCOP_
Model). Patients with stenosis greater than 75% are generally
considered candidates for PCI(Boden et al., 2007; Amsterdam et al.,
2014). This model would thus assist in assessing high-risk cases
requiring surgical intervention. Through the construction of
multimodal data models, new avenues can be provided for the non-
invasive prediction of coronary artery occlusion in coronary heart
disease, offering additional value to clinicians when CTA diagnosis
is unavailable.

2 Materials and methods

2.1 Case collection

2.1.1 Study subjects
The study cohort consisted of patients hospitalized in the

Cardiology Department of Shanghai Baoshan District Integrated
Traditional Chinese and Western Medicine Hospital between
October 2023 and July 2024. Among the participants, 243
patients were diagnosed with coronary artery stenosis ≥75% via
coronary CTA, while 214 patients had stenosis <75%. External
validation data were collected in August 2024 from additional
patients hospitalized in the same department. Clinical data for the
patients are summarized in Table 1. The case screening process
is shown in Figure 1.

The study used the validation dataset (n = 97) to train the
parameters, which served as the model’s Internal Data results, while
the external test set (n = 100) was used as the results of the
external dataset.

This study has been reviewed and approved by the Ethics
Committee of Shuguang Hospital Affiliated to Shanghai University
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TABLE 2 Model module parameters.

Category Submodule Input dimensions Output dimensions Description

Tongue image

Conv2D (N, 3, H, W) (N, 64, H, W) Convolution operation (3 × 3
kernel)

BatchNorm2D (N, 64, H, W) (N, 64, H, W) Batch normalization

ReLU (N, 64, H, W) (N, 64, H, W) Activation function

MaxPool2D (N, 64, H, W) (N, 64, H/2, W/2) Max pooling (2 × 2 kernel)

Residual Block × 4 (N, 64, H/2, W/2) (N, 64, H/2, W/2) Four-layer residual block

AdaptiveAvgPool2D (N, 64, H/2, W/2) (N, 64, 1, 1) Adaptive average pooling

FC (Fully Connected) (N, 64) (N, 128) Fully connected layer

Self-Attention Mechanism (N, 128) (N, 128) Extracts key features and
enhances correlations

Face image

Conv2D (N, 3, H, W) (N, 64, H, W) Convolution operation (3 × 3
kernel)

BatchNorm2D (N, 64, H, W) (N, 64, H, W) Batch normalization

ReLU (N, 64, H, W) (N, 64, H, W) Activation function

MaxPool2D (N, 64, H, W) (N, 64, H/2, W/2) Max pooling (2 × 2 kernel)

Residual Block × 4 (N, 64, H/2, W/2) (N, 64, H/2, W/2) Four-layer residual block

AdaptiveAvgPool2D (N, 64, H/2, W/2) (N, 64, 1, 1) Adaptive average pooling

FC (Fully Connected) (N, 64) (N, 128) Fully connected layer

Self-Attention Mechanism (N, 128) (N, 128) Extracts key features and
enhances correlations

Pulse wave

LSTM (seq_len, N, 1) (seq_len, N, 64) Long Short-Term Memory
network (LSTM unit)

FC (Fully Connected) (N, 64) (N, 128) Fully connected layer from
LSTM output

Clinical data FC (Fully Connected) (N, 15) (N, 128) Fully connected layer for
clinical data input

Adaptive weight Weighted Summation
(Learnable Weights)

(N, 128) (per branch) (N, 512) Fusion of tongue, face, pulse,
and clinical data

FC (Fully Connected) (N, 512) (N, 2) Final classification output
(whether vascular blockage
>75%)

of Traditional Chinese Medicine, with Registration Number 2020-
916-125. It complies with the Helsinki Declaration of the World
Medical Association guidelines. All participants in this study
provided written informed consent prior to their inclusion. The
objectives, procedures, potential risks, and anticipated benefits of the
study were comprehensively communicated to each participant.The
research was conducted in full compliance with the principles of the
Declaration of Helsinki, ensuring that the rights, safety, and welfare
of all participants were safeguarded throughout the study. At the
same time, the obtained patient pulse pressure waveform data, facial

images, and tongue images were used with the patient’s consent, and
efforts were made to protect any privacy that may be involved.

2.1.2 Diagnostic criteria
The diagnostic criteria for CAD were based on the ninth edition

of Internal Medicine, published by People’s Medical Publishing
House, which defines acute and chronic CAD. The classification
includes chronic CAD—encompassing stable angina, ischemic
cardiomyopathy, and latent CAD—and acute coronary syndrome
(ACS), which includes unstable angina, non-ST-segment elevation
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FIGURE 3
PDA-1 pulse equipment.

FIGURE 4
Adaptive weighted cardiovascular occlusion prediction model (AWCOP_Model).
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FIGURE 5
Scale alignment and weight initialization for multi-modal data.

myocardial infarction, and ST-segment elevation myocardial
infarction (Ge et al., 2018).

2.1.3 Inclusion criteria
Patients were included in the study if they met the

following criteria:

1. Diagnosed with CAD according to the established
diagnostic criteria.

2. Exhibited typical chest pain symptoms, such as paroxysmal
angina or compressive pain.

3. Showed diminished heart sounds on auscultation.
4. Had electrocardiogram (ECG) findings of ST-segment

abnormalities.
5. Met the diagnostic criteria outlined in the 2019 ESC

Guidelines for the Diagnosis and Management of Chronic
Coronary Syndromes published by the European Society of
Cardiology (Knuuti et al., 2020).

2.1.4 Exclusion criteria
Patients were excluded if they met any of the following criteria:

1. Did not meet the CAD diagnostic criteria.
2. Were younger than 20 years or older than 85 years.
3. Suffered from malignant tumors or critical illnesses.
4. Were pregnant or breastfeeding women.
5. Had incomplete clinical or imaging data.

2.2 Data collection equipment

Tongue and facial images were collected using the TFDA-1
digital tongue and facial diagnostic instrument, developed by the
Shanghai University of Traditional Chinese Medicine. Data analysis
for tongue images was performed using the university’s proprietary
Traditional Chinese Medicine Tongue Diagnosis Analysis System
(TDAS)V2.0. Recent studies have summarized the classification and
typology of tongue features, demonstrating the reliability of such
diagnostic tools (Jiatuo et al., 2024).This device was specifically used
for stable and standardized collection of tongue and facial images.

The imaging parameters were set as follows: Shutter Speed:
1/125, seconds Aperture: F6.3, ISO Sensitivity: ISO 200,
Standardized tongue image analysis was conducted using the TDAS-
3.0 software, which quantifies tongue features based on predefined
parameters. This system ensures consistency and objectivity in the
analysis of tongue and facial images (Figure 2).

Pulse diagnostic indicators: including pulse intensity indicators,
time indicators, ratio indicators (h1, h3, h4, h5, t, t1, t4, t5,
h3/h1, h1/t1, h4/h1, t1/t, t4/t5, w1/t, w2/t). See Table 2 for the
significance of the actual parameters of the instrument. The
equipment parameters and acquisition process are shown in
Figure 3 and Table 1.

3 Model construction

3.1 Model framework

A fusion decision network model was constructed based on
clinical data, facial images, tongue images, and radial pulse wave
data (as illustrated in Figure 4, Table 2). Facial and tongue images
were processed using 3 × 3 convolutional kernels followed by
max-pooling operations before being passed through four residual
modules. Residual modules, a well-established component in
deep learning, have been proven to significantly enhance image
classification performance in neural networks, achieving optimal
results on public datasets such as ImageNet (He et al., 2016). Recent
studies have also highlighted the broad application prospects of
residual modules in various domains (Shafiq and Gu, 2022).

In the proposed model, we incorporated a transformer-
based self-attention mechanism after the residual modules to
further improve performance. The self-attention mechanism
has been demonstrated to effectively capture multi-angle
information and combine semantic features, thereby enhancing
the model’s representational power and accuracy. Additionally,
the residual modules improve gradient propagation when
combined with the self-attention mechanism, mitigating issues
such as vanishing or exploding gradients during training
(Vaswani et al., 2017; Dosovitskiy et al., 2020).

Radial artery pulse wave data were collected using a PDA-
1 pressure sensor-based pulse diagnosis instrument. During data
acquisition, participants maintained a sitting or supine position,
with their wrist resting on a pulse pillow. The sensor probe was
placed on the radial artery of either the left or right hand. Once
a stable pulse waveform was observed, data were collected for 30 s
and saved. The raw data underwent preprocessing steps, including
smoothing and noise removal, to eliminate artifacts and data drift.
The pressure waveform data points were sampled at a frequency
of 1/50 s, and a stable waveform segment of 6 s in duration was
extracted.

For processing the pulse wave signal, we employed the
long short-term memory (LSTM) mechanism (Hochreiter and
Schmidhuber, 1997), which is particularly effective for sequential
data processing. LSTM has been validated for use in disease
diagnosis applications, demonstrating its robustness and reliability
in similar tasks (Saif et al., 2024).

By integrating these components—convolutional layers, residual
modules, self-attention mechanisms, and LSTM processing—we
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FIGURE 6
Dynamic weight adjustment and fusion for multi-modal data.

FIGURE 7
Grad-CAM heatmap generation for image and pulse pressure wave.
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TABLE 3 Analysis of the difference in the degree of coronary artery occlusion.

Classification Vascular obstruction
<75% (n = 214)

Vascular obstruction
≥75% (n = 243)

U/χ2 p

Hypertension 96/48 (male/female) 219/94 (male/female) 0.360 0.549

Diabetes mellitus 220/86 (male/female) 95/56 (male/female) 3.400 0.065

Alcohol consumption history 245/107 (male/female) 70/35 (male/female) 0.203 0.653

Family medical history 224/106 (male/female) 91/36 (male/female) 0.447 0.504

Age 66.00 (61.00, 76.00) 68.00 (61.25, 74.75) 914.500 0.787

Body mass index (BMI) 24.98 (23.44, 27.13) 24.67 (23.22, 26.65) 1,051.000 0.420

Clotting time (min) 5.00 (4.30, 6.00) 5.05 (4.25, 6.17) 932.500 0.899

Blood clot formation rate (min) 1.70 (1.40, 2.10) 1.50 (1.20, 2.08) 1,067.500 0.347

Blood clot aggregation rate (deg) 66.70 (63.60, 69.90) 68.95 (62.12, 71.83) 824.500 0.324

Blood clot dissolution rate (%) 0.00 (0.00, 0.10) 0.00 (0.00, 0.10) 902.000 0.667

Blood clot lysis percentage (%) 0.00 (0.00, 0.10) 0.00 (0.00, 0.10) 847.000 0.338

Coagulation comprehensive index 1.30 (−0.50, 2.40) 1.65 (−1.20, 3.40) 830.000 0.346

Platelet aggregation (AA) (mm) 13.00 (9.10, 22.10) 12.35 (9.57, 31.18) 898.500 0.691

Inhibition rate AA (%) 89.60 (75.80, 99.30) 93.10 (72.38, 98.65) 912.500 0.774

Platelet aggregation (ADP) (mm) 32.70 (22.20, 46.20) 33.10 (21.62, 45.25) 940.500 0.949

Inhibition rate (%) 53.00 (37.60, 75.40) 64.55 (48.58, 71.93) 877.000 0.570

Whole blood reduction rate 200 (1/s) mPa·s 3.99 (3.45, 4.72) 4.08 (3.65, 4.82) 851.000 0.438

Whole blood reduction rate 30 (1/s) mPa·s 4.94 (4.32, 5.78) 4.86 (4.38, 6.08) 888.000 0.631

Whole blood reduction rate 5 (1/s) mPa·s 7.42 (6.38, 8.61) 7.27 (6.51, 9.43) 840.000 0.388

Whole blood reduction rate 1 (1/s) mPa·s 14.02 (11.91, 17.78) 13.93 (12.06, 19.40) 876.500 0.567

Plasma viscosity (mPa·s) 1.55 (1.45, 1.65) 1.60 (1.45, 1.66) 856.500 0.462

Whole blood high shear relative index 2.67 (2.28, 2.98) 2.77 (2.40, 3.08) 801.000 0.241

Whole blood low shear relative index 9.21 (7.73, 11.08) 10.19 (7.66, 11.49) 833.000 0.358

Red blood cell Aggregation index 3.58 (3.03, 4.23) 3.56 (3.20, 4.10) 949.000 0.913

Casson viscosity (mPa·s) 3.33 (2.93, 3.76) 3.35 (3.12, 3.76) 850.000 0.434

Prothrombin time (s) 11.40 (11.00, 12.10) 11.35 (10.88, 12.00) 961.000 0.927

International normalized ratio (INR) 0.99 (0.95, 1.06) 0.98 (0.94, 1.05) 958.500 0.943

Partial thromboplastin time (PTT) 27.10 (23.50, 29.60) 26.35 (22.60, 27.40) 1,110.000 0.202

Fibrinogen (g/L) 2.69 (2.38, 3.08) 3.21 (2.74, 3.99)∗∗ 570.000 0.003

Thrombin time (s) 16.50 (16.00, 17.50) 16.95 (15.50, 18.18) 910.000 0.759

D-Dimer measurement (μg/mL) 0.29 (0.16, 0.48) 0.43 (0.27, 0.64)∗ 676.000 0.030

Fibrin (ogen) degradation products (μg/mL) 2.50 (1.70, 2.50) 2.50 (2.50, 3.18)∗ 694.500 0.040

(Continued on the following page)
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TABLE 3 (Continued) Analysis of the difference in the degree of coronary artery occlusion.

Classification Vascular obstruction
<75% (n = 214)

Vascular obstruction
≥75% (n = 243)

U/χ2 p

Antithrombin III activity measurement (%) 89.10 (81.30, 97.10) 91.20 (84.83, 99.80) 796.500 0.227

Total cholesterol (mmol/L) 3.94 (3.12, 5.06) 4.06 (3.56, 4.88) 903.000 0.718

Triglycerides (mmol/L) 1.19 (0.84, 1.72) 1.38 (1.04, 1.70) 834.000 0.363

High-density lipoprotein (mmol/L) 1.11 (0.93, 1.28) 1.03 (0.88, 1.30) 963.500 0.911

Low-density lipoprotein (mmol/L) 2.29 (1.73, 3.00) 2.42 (2.04, 2.93) 828.500 0.340

Glycated hemoglobin (%) 6.10 (5.70, 6.80) 5.95 (5.62, 7.25) 951.000 0.991

Creatine kinase (U/L) 71.00 (61.00, 96.00) 86.00 (68.50, 98.50) 771.500 0.159

Creatine kinase Isoenzyme (U/L) 1.11 (0.84, 1.52) 1.30 (0.91, 1.88) 754.500 0.123

Myoglobin (ng/mL) 38.14 (31.46, 48.52) 48.34 (40.38, 62.29)∗∗ 570.000 0.003

∗p < 0.05,∗∗p < 0.01.

FIGURE 8
Top 15 clinical data importance.
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TABLE 4 Comparison of evaluation parameters of different models
(Internal date).

Model AUC ACC F1 Recall

AWCOP 0.940 0.964 0.884 0.905

Logistic regression 0.772 0.778 0.778 0.778

Random forest 0.760 0.811 0.811 0.811

SVM 0.822 0.811 0.811 0.811

KNN 0.662 0.659 0.659 0.659

XGBoost 0.729 0.724 0.724 0.724

constructed a multimodal fusion model capable of leveraging
diverse data sources to predict the severity of coronary
artery stenosis.

3.2 Adaptive weight algorithm

To enhance themodel’s performance, we introduced an adaptive
weight (adaptive_weight)mechanism into the final output layer.This
algorithm dynamically adjusts the contribution of each modality
(tongue, face, pulse, and laboratory data) to the final prediction by
automatically allocating weights based on their individual output
significance. The concept of fusing multimodal data at the backend
through adaptiveweighting has been explored in recent studies (Huq
and Pervin, 2022; Wang et al., 2023). Additionally, we compared
the performance of our adaptive weight module with other weight
allocation methods to evaluate its effectiveness.

The adaptive weight algorithm addresses discrepancies in
evaluation caused by differences in data dimensions during
multimodal fusion at the backend. Through weight initialization
and spatial alignment mapping, the algorithm ensures consistent
weighting across modalities, mitigating biases resulting from
dimensional variations. Specifically, the process aligns data from
multiple modalities onto a shared temporal or feature space, which
is critical when combining or comparing data from heterogeneous
sources.This alignment step enhances classification consistency and
improves the accuracy of the model’s predictions.

By leveraging this adaptive weight mechanism, the model can
autonomously learn the relative importance of each modality and
assign appropriateweights during the final decision-making process.
This approach not only improves multimodal integration but also
optimizes the model’s ability to utilize complementary information
across modalities (as shown in Figures 5, 6). The R in Figure 6
represents the regularization term.

3.3 Heatmap algorithm

The heatmap visualization in our model utilizes the Grad-
CAM (Gradient-weighted Class Activation Mapping) approach
(Selvaraju et al., 2020; Li et al., 2024). Grad-CAM is well-
suited for multimodal tasks and does not require retraining of

the model, making it an efficient tool for understanding the
learning process of convolutional neural networks (CNNs) in image
classification tasks. By combining gradient information with feature
maps, Grad-CAM highlights the key regions of input data that
contribute most significantly to the model’s predictions, thereby
providing interpretability for the internal mechanisms of the deep
learning model (Figure 7).

For the visualization of pulse wave data heatmaps, we marked
the top 20% of points contributing to the prediction using black
dots. This approach helps identify the primary regions of focus
within the pulse waveform that the model considers critical for its
decision-making process.

By employing Grad-CAM across the different modalities (e.g.,
tongue and facial images, pulse wave data), the algorithm enables a
clearer understanding of how the model integrates and prioritizes
information from each input source. This interpretability is crucial
for validating the model’s behavior and gaining insights into its
decision-making logic, particularly in clinical applications where
trust in AI predictions is paramount.

3.4 Clinical feature importance screening

The clinical dataset in this study consisted of 50
dimensions, including patients’ basic physiological indicators,
thromboelastography results, and coagulation parameters. To
prevent overfitting and reduce the complexity of clinical data
dimensions, random forest importance analysis was employed to
evaluate the significance of each feature. The top 15 most important
clinical features were selected and incorporated into the model
training process to optimize its performance.

3.5 Machine learning

To compare the performance of the proposed model with
traditional machine learning algorithms, we tested five classical
methods: Logistic Regression (LR), Random Forest (RF), Support
Vector Machine (SVM), K-Nearest Neighbors (KNN), and Extreme
Gradient Boosting (XGBoost). Radial pulse wave parameters were
extracted using the PDA-1 pulse pressure wave analysis system,
while tongue and facial image parameters were collected using
the TFDA-1 tongue and facial diagnostic instrument. These
extracted parameters, combined with clinical data, formed four
input dimensions—pulse, tongue, face, and clinical data—which
were used for training and testing the machine learning models.

The performance of the models was evaluated using four
standard metrics: AUC (Area Under the Curve): Reflects the overall
performance of the model across different classification thresholds.
ACC (Accuracy): Indicates the overall classification accuracy. F1-
Score: Balances Precision and Recall to provide a comprehensive
performance metric. Recall: Measures the ability of the model
to correctly identify positive cases. This evaluation framework
allowed for a systematic comparison of the proposed model with
traditional machine learning approaches, ensuring the robustness
and reliability of the multimodal prediction framework for clinical
applications.
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FIGURE 9
(A) Different models of AUC; (B) Different models of ACC; (C) Different models of F1; (D) Different models of Recall.

TABLE 5 Ablation results of AWCOP model module (Internal date).

Model Internal date External date

AUC ACC F1 Recall AUC ACC F1 Recall

LSTM + RESNET + ATTENTION 0.940 0.964 0.884 0.905 0.811 0.863 0.799 0.803

RESNET + ATTENTION 0.908 0.934 0.912 0.912 0.864 0.834 0.723 0.823

LSTM + ATTENTION 0.876 0.887 0.783 0.873 0.809 0.783 0.698 0.871

LSTM + RESNET 0.923 0.943 0.817 0.956 0.829 0.834 0.814 0.815

ATTENTION 0.798 0.673 0.623 0.718 0.716 0.689 0.672 0.711

RESNET 0.798 0.709 0.734 0.723 0.801 0.798 0.754 0.661

LSTM 0.803 0.801 0.798 0.739 0.795 0.756 0.871 0.856
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FIGURE 10
Comparison of the training parameters for the different learning rates.

TABLE 6 Results of the ablation experiments for the model data.

Date type Internal date External date

AUC ACC F1 Recall AUC ACC F1 Recall

Lab + tongue 0.799 0.925 0.712 0.619 0.698 0.657 0.709 0.594

Lab + face 0.737 0.885 0.579 0.524 0.611 0.709 0.689 0.734

Lab + pulse 0.863 0.950 0.816 0.738 0.861 0.825 0.635 0.881

Lab + tongue + face 0.930 0.964 0.881 0.881 0.855 0.856 0.829 0.714

Lab + tongue + pulse 0.888 0.942 0.810 0.810 0.815 0.809 0.652 0.714

Lab + face + pulse 0.845 0.953 0.817 0.691 0.720 0.765 0.678 0.645

Lab + tongue + face + pulse 0.940 0.964 0.884 0.905 0.811 0.863 0.799 0.803
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TABLE 7 Fusion results of the different decision layers of the model.

Types Internal date External date

AUC ACC F1 Recall AUC ACC F1 Recall

Concat 0.923 0.828 0.773 0.897 0.796 0.831 0.773 0.803

MAX 0.938 0.961 0.915 0.909 0.798 0.750 0.745 0.903

Mean 0.903 0.942 0.898 0.896 0.834 0.821 0.898 0.803

SUM 0.893 0.942 0.892 0.923 0.887 0.821 0.817 0.6122

Attention 0.905 0.957 0.901 0.835 0.809 0.851 0.802 0.897

Adaptive 0.940 0.964 0.884 0.905 0.811 0.863 0.799 0.803

FIGURE 11
Pulse pressure-wave heat map.

FIGURE 12
Model of the complexion heat map.
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FIGURE 13
Model tongue thermal map.

4 Results

4.1 Laboratory index screening

As shown in Table 3, the significantly different indicators
between the two groups include Fibrinogen, D-Dimer, Fibrin (ogen)
Degradation Products, and Myoglobin, suggesting that vascular
obstruction is associated with increased fibrinogen levels, which
may impact the vasculature.

4.2 Laboratory index screening based on
machine learning

As shown in Figure 8, the top 15 important features
screened by random forest factors are: Inhibition rate (AA%),
Coagulation index, D-Dimer (ug/mL), Hypertension, Clot lysis
percentage (%), Fibrinogen degradation products (ug/mL),
BMI, Platelet ADP (mm), Diabetes, Triglycerides (mmol/L),
Inhibition rate (ADP%), Antithrombin III activity (%),Alcohol
consumption, Clot acceleration time (deg), Whole blood low
shear index.

4.3 AWCOP and machine learning
assessment

As shown in Table 4 and Figure 9, the evaluation performance
of AWCOP is better than that of machine learning models. The
AWCOP model performed best (AUC = 0.940, ACC = 0.964,
F1 = 0.884, recall = 0.905). In the machine learning model,
SVM performs best (AUC = 0.822, ACC = 0.811, F1 = 0.811,
recall = 0.811).

4.4 Ablation experiment of model module

Table 5 compares the performance of various models on both
the internal dataset and the external dataset, evaluated using five
metrics: AUC, ACC, F1, Recall, and Accuracy. Among the models,
the LSTM + RESNET + ATTENTION model performed better on
the internal dataset, achieving an AUC of 0.940, ACC of 0.964, F1
of 0.884, Recall of 0.905, and Accuracy of 0.863. On the external
dataset, this model also demonstrated superior performance, with
an AUC of 0.811, F1 of 0.799, and Recall of 0.803. In comparison,
the RESNET +ATTENTIONmodel ranked second in performance,
achieving an AUC of 0.908, ACC of 0.934, and F1 and Recall
values of 0.912 on the internal dataset. On the external dataset, it
achieved an AUC of 0.864, F1 of 0.723, and Recall of 0.823. Single-
component models, such as Attention, RESNET, and LSTM, showed
relatively lower performance, with AUC values of 0.798, 0.798, and
0.803, respectively. This indicates that the multimodal integration
of LSTM, RESNET, and Attention mechanisms effectively enhances
the model’s performance, particularly in handling both internal and
external datasets.

4.5 Parameter comparison of the different
learning rates of the model

As shown in Figure 10, the learning rate LR = 0.001 is the best,
while LR = 0.05 is poor.

4.6 Data ablation experiment

As shown in Table 6, in the model data ablation analysis, the
AUC, ACC, F1, and Recall values for the internal data outperform
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those of the external data. The training accuracy of laboratory and
tongue images is the lowest, and the laboratory performance of
tongue, surface and pulse data is the best. Internal training data
(ACC= 0.964, AUC= 0.940, F1 = 0.884, Recall = 0.905) and external
data training results were (ACC = 0.863, AUC = 0.811, F1 = 0.799,
Recall = 0.803).

4.7 Fusion results of different
decision-making layers

As shown in Table 7, the Adaptive method performed the best
on the internal dataset with AUC of 0.940, ACC of 0.964, F1 0.884,
and Recall 0.905; on the external dataset, AUC of 0.811, ACC 0.863,
F1 0.799 and Recall 0.803 performed relatively stable. In contrast,
the MAXmethod achieved an AUC of 0.938 on the internal dataset,
ACC of 0.961 and F1 of 0.915, but its AUC and F1 values decreased
to 0.798 and 0.745, respectively. The AUC of the method was 0.905
andACC 0.957, while the AUC and F1 values on the external dataset
were 0.809 and 0.802.TheConcatmethod has anAUCof 0.923 in the
internal dataset, but theAUCof its external dataset is 0.796.Adaptive
method showed good comprehensive performance on both internal
and external data sets.

4.8 Model heat map is presented

4.8.1 Pulse thermal map
As shown in Figure 11, the top 20% regions of the model focus

are marked with black dots. In the data extraction of pulse pressure
waves, themodel focuses on the region of themainwave h1, focusing
on the peak region of the h1 main wave.

4.8.2 Face image heat map
As shown in Figure 12, in the deep learning face image Grad_

CAM thermal map, themodel focus area was focused on the frontal,
nasal and zygomatic regions of the patient.

4.8.3 Thermal map of the tongue image
As shown in Figure 13, in the deep learning tongue Grad_CAM

thermal map, the model focuses on the tongue coating area of
the tongue.

5 Discussion

An artificial intelligence-based non-invasive predictive
approach can serve as an alternative to angiographic results in
the diagnosis of coronary artery disease and assist in determining
the degree of vascular blockage. This not only reduces the risks
associated with exploratory PCI procedures but also minimizes
vascular damage to patients, enhancing the safety of diagnosis and
treatment. This study predicted the severity of coronary artery
stenosis through the fusion of multimodal data. Compared to
previous machine learning studies conducted by the team—which
used parameter extraction from tongue and facial images in different
color spaces and time-domain and value-domain data extraction
from pulse wave signals-this model demonstrated superior training

accuracy. This indicates that deeper convolutional neural networks
can extract richer features from image data (Ling et al., 2019).
Additionally, the use of the LSTMmodel based on time series proved
effective in fully capturing the characteristics of pulse wave signals.
Unlike existing approaches that focus on time-domain or value-
domain features, LSTM allows for amore comprehensive learning of
the pulse wave signal, enabling the model to focus on finer details of
the waveform over a complete cardiac cycle. Compared to existing
non-invasive coronary artery disease risk prediction models, the
prediction accuracy of this model showed significant improvement
(Park et al., 2019; Lin et al., 2020).

In the data ablation and module ablation experiments, the
combination of tongue, face, pulse, and laboratory data yielded
the best performance. When analyzing individual data inputs, the
combination of laboratory data and pulse wave signals showed the
highest predictive capability. Pulse wave data, which reflect the
vascular pressure of the radial artery, provide a direct indication of
cardiovascular function. The model’s heatmap for pulse wave data
revealed that it primarily focused on the peak region of the primary
wave, which corresponds to the endpoint of cardiac contraction and
the beginning of relaxation. This region may be highly correlated
with the degree of vascular stenosis. In the data ablation analysis, the
importance of pulsewave datawas greater than that of facial features,
which in turn was greater than tongue features.

In the module ablation experiments, standalone residual
modules or self-attention modules performed suboptimally;
however, their combination significantly improved model accuracy.
Residual modules enhance the extraction of fine details from deep
layers of image data, and the extracted features can then be amplified
by the self-attention mechanism (Liu et al., 2020a).

Themodel’s heatmaps highlight its focus on differentmodalities.
For pulse wave data, the model emphasized arterial compliance
and left ventricular ejection function—functions that are directly
affected by coronary artery stenosis. The model’s attention to these
key features demonstrates its ability to capture the physiological
impact of vascular obstruction. For tongue features, the focus was
mainly on the tongue coating. Previous studies have suggested
a relationship between tongue coating and gut microbiota, with
different gut microbiota compositions leading to variations in
tongue coating. Gut microbiota is also a major risk factor for
coronary artery disease (Liu et al., 2020b; Guo et al., 2022). For
facial image data, the model primarily focused on the forehead,
cheekbones, and nose areas. These regions are richly supplied with
blood, and coronary artery stenosis can impair the microcirculation
in capillary networks. The rich capillary supply in these regions
may explain why the model focuses on them (Sanchez-Garcia et al.,
2018). Studies have also shown a certain correlation between
facial microcirculation and coronary heart disease (Khedkar et al.,
2024). The model in this study specifically focused on learning the
facial microcirculation region. This suggests that the multimodal
transformer model can effectively distinguish different modalities
of data through visualization, providing valuable insights into the
obstruction of coronary vessels.

This study also addresses the issue of unbalanced patient
group sizes. In the experiment, we controlled the sample size of
Vascular Obstruction ≥75% to be the same as that of Vascular
Obstruction <75% and found that the results were similar to
existing findings. Based on considerations regarding sample size, we
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decided to proceed with the experiment using the current sample
size. However, this study has certain limitations. The sample size
was relatively small, and larger datasets from multi-center and
multi-regional studies would improve the model’s robustness and
bring its predictive accuracy closer to real-world performance.
Additionally, although uniform equipment was used to collect
data in this study—minimizing variability caused by different
devices—developing more portable data collection devices would
facilitate the clinical application of this model as a diagnostic aid.

6 Conclusion

This study develops a multimodal AWCOP model integrating
clinical data, tongue images, facial images, and pulse wave data,
using adaptive weights for decision-making. The model effectively
distinguishes coronary artery blockage.
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