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Introduction: The early detection and diagnosis of autism spectrum disorder
(ASD) remain critical challenges in developmental healthcare, with traditional
diagnostic methods relying heavily on subjective clinical observations.

Methods: In this paper, we introduce an innovative multi-stream framework
that seamlessly integrates three state-of-the-art convolutional neural networks,
namely, EfficientNetV2B0, ResNet50V2, DenseNet121, and Multi-Streammodels
to analyze stereotypical movements, particularly hand-flapping behaviors
automatically. Our architecture incorporates sophisticated spatial and temporal
attention mechanisms enhanced by hierarchical feature fusion and adaptive
temporal sampling techniques designed to extract characteristics of ASD related
movements across multiple scales. The system includes a custom designed
temporal attention module that effectively captures the rhythmic nature of
hand-flapping behaviors. The spatial attention mechanisms method was used
to enhance the proposed models by focusing on the movement characteristics
of the patients in the video. The experimental validation was conducted using
the Self-Stimulatory Behavior Dataset (SSBD), which includes 66 videos.

Results: The Multi-Stream framework demonstrated exceptional performance,
with 96.55% overall accuracy, 100% specificity, and 94.12% sensitivity in terms of
hand-flapping detection and an impressive F1 score of 97%.

Discussion: This research can provide healthcare professionals with a reliable,
automated tool for early ASD screening that offers objective, quantifiablemetrics
that complement traditional diagnostic methods.

KEYWORDS

autism spectrum disorder, deep learning, stereotypical movements, handflapping
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1 Introduction

ASD is a complex neurodevelopmental condition characterized
by repetitive behaviors, restricted interests, and significant social
communication and interaction challenges. Children with ASD
face numerous difficulties that can substantially impact their
symptoms and functional capabilities in daily life. Diagnosing
ASD requires a sophisticated understanding of its complex
characteristics, particularly given the limitations of conventional
diagnostic approaches (Bravo and Schwartz, 2022). According
to the World Health Organization, ASD affects one in every
hundred newborns globally, highlighting its significant impact
on public health (Rajagopalan et al., 2013). Given the complexity
of identifying reliable biomarkers for ASD, early diagnoses
leveraging advanced technology have become essential for effective
management and support (Posar andVisconti, 2023; Chiappini et al.,
2024). The early identification of ASD is crucial, as it enables
timely intervention during critical developmental periods,
potentially leading to improved long-term outcomes for affected
individuals.

Autism typically exhibits during the first 2 years of a child’s
life, with affected children showing notable differences in terms
of learning behavioral patterns compared to their neurotypical
peers. These behavioral patterns encompass various forms of
imitation—muscular, auditory, and verbal—and imitation skills
are crucial in enhancing social functioning and community
integration for children with ASD (Liu et al., 2024). While
traditional clinic-based imitation therapy sessions provide
structured intervention opportunities, they also present significant
challenges, particularly in resource-limited settings. Children with
ASD may experience difficulty maintaining engagement in clinical
environments, especially when surrounded by other children
with similar conditions. Such an environment can complicate
the therapeutic process and impact treatment effectiveness.
The conventional requirement of semiweekly therapy sessions
creates additional barriers, specifically for families residing in
remote locations (Cano et al., 2023; López-Florit et al., 2021;
Nunez et al., 2018).

Recent advances in deep learning (DL) and machine learning
(ML) have revolutionized behavioral science applications, especially
in autism research. These technological developments have created
unprecedented opportunities for enhancing the accuracy and
reliability of early autism screening, detection, and diagnosis. ML
algorithms have demonstrated promise concerning facilitating
autism screening and diagnostic processes (Alshuaibi et al., 2025;
D’Souza and Karmiloff-Smith, 2017). In the field of medical
diagnostics and behavioral recognition, ML and DL approaches
have garnered significant attention for their ability to differentiate
between typically developing children and those with ASD
(Alshuaibi et al., 2025). Implementing automated measurements
in ASD research has enhanced decision-making processes,
classification accuracy, and clinical evaluation methodologies
(Alshuaibi et al., 2025; D’Souza and Karmiloff-Smith, 2017; Morris-
Rosendahl and Crocq, 2020; Kanhirakadavath and Chandran,
2022; Rello et al., 2020; Tan et al., 2022; Han et al., 2022).
Researchers have explored various data sources, including advanced
brain-imaging techniques (PET, SPECT, fNIRS, EEG, and fMRI)
(Yin et al., 2022; Haweel et al., 2025; El-Baz and Suri, 2021;

Epalle et al., 2021; Toki et al., 2023a; Asmetha Jeyarani et al., 2023),
neurological and behavioral characteristics (Bacon et al., 2019),
and specialized sensors used for gesture analysis, motion capture,
and eye tracking (Anzulewicz et al., 2016; Simeoli et al., 2021;
Meng et al., 2023; Ahmed et al., 2022). While these approaches
offer valuable insights, they often involve difficulties related to
data accessibility and sensory sensitivities that are common in
children with ASD. Consequently, ML and DL methodologies have
become increasingly valuable tools for analyzing complex data to
improve diagnosis and treatment outcomes. DL algorithms have
shown particular promise for early ASD detection and diagnosis
(Tan et al., 2022; Haweel et al., 2025; Anzulewicz et al., 2016;
Simeoli et al., 2021; Meng et al., 2023; Toki et al., 2023b), as they
enhance the sensitivity and specificity of diagnostic tools while
optimizing the number of assessment items needed for accurate
classification.

1.1 Contributions

In this study, we present several pioneering contributions to
advance the automated detection of ASD by analyzing stereotypical
movements, particularly hand-flapping behaviors. Our primary
contribution is developing an innovative DL framework that
fundamentally transforms how stereotypical movements are
detected and analyzed in clinical settings. In this research, the
proposed novel multi-stream architecture combines three robust
convolutional neural networks (CNNs): EfficientNetV2B0 for
efficient processing, ResNet50V2 for deep feature extraction, and
DenseNet121 for dense feature propagation. This combination
provides a robust foundation for developing an intelligent system
to help identify the characteristics of the stereotypical movements
from video that are associated with ASD patients.

1.2 Background of studies

Building upon this architectural foundation, we introduce a
sophisticated dual-stream attention mechanism that significantly
enhances the system’s ability to focus on relevant behavioral patterns.
The spatial attention stream identifies crucial regions within each
frame where stereotypical movements occur, while the temporal
attention stream captures the rhythmic and repetitive nature of
hand-flapping behaviors across time sequences. This attention-
driven approach significantly improves traditional methods by
automatically identifying and analyzing the most diagnostically
relevant aspects of movement patterns.

Furthermore, we develop a hierarchical feature fusion strategy
that operates acrossmultiple temporal scales, enabling our system to
capture fine-grainedmovement-related data and broader behavioral
patterns.This multi-scale approach is complemented by an adaptive
sampling technique that ensures robust video-frame extraction and
analysis, which is especially important when processing real-world
behavioral data. The integration of these components results in
a comprehensive framework that not only advances the technical
state-of-the-art approaches but also provides practical solutions for
clinical applications in ASD assessment and monitoring.
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Artificial intelligence (AI) approaches have been applied in
several domains, including health monitoring, energy efficiency,
and machining. In healthcare, ML and DL approaches have
enabled various diagnoses and the formulation of custom treatment
strategies to enhance efficiency and decision-making in system
health (Kollias et al., 2021; Isa et al., 2024; Sen et al., 2024).

Kaur et al. (2024) investigated the efficacy of digital biomarkers
(including eye tracking), monitored using wearable devices,
concerning facilitating the early diagnosis and interventions for
ASD in preschool children. This study includes the dataset on
monitoring activities, which may impede the comprehension
of children’s attention cues and temporal behavioral subtleties.
Farooq et al. (2023) employed the federated-learning approach for
diagnosing ASD; the authors used a support vector machine (SVM)
and logistic regression models, demonstrating the efficacy of these
tools to identifying ASD across various age groups.Masood (Raj and
Masood, 2020) employed an SVM, naïve Bayes, k-nearest neighbor
(KNN), artificial neural networks (ANN), and CNNs to detect ASD.
While the author demonstrated significant accuracy with respect
to detecting ASD, their research is constrained by its dependence
on publicly accessible information and the lack of a standardized
medical diagnostic test for ASD.

Sewani and Kashef (Sewani and Kashef, 2020) used the ABIDE
dataset to examine the autoencodermodels for diagnosingASD.The
autoencoder method is utilized to extract low-level characteristics
that are generally not captured by DL CNNs. This approach yielded
a performance accuracy of 84%.

Zhou et al. (2017) introduced a DL model for detecting
ASD based on a voice spectrogram. The speech was captured
during ADOS tasks, and the study claimed to have an accuracy
of up to 90%. Ahmed et al. (2022) developed the GoogleNet
method for predicting ASD based on eye-tracking technology.
The diagnostic tool developed was combined with advanced ML
algorithms.The classification accuracy of the ASD system is 95% for
detecting ASD using eye-tracking images.

Kong et al. (2019) proposed an autoencoder method using MRI
brain images to detect ASD. Their research used feature selection
methods for selecting the essential data from the ABIDE dataset,
and the model achieved a performance accuracy of above 90%.
Haweel et al. (2021) introduced and used DL models for detecting
ASD based on speech-activated brain responses in babies.This study
collected data from 157 participants with ASD. Cilia et al. (2021)
developed a framework based on eye-tracking visualization data to
predict and identify ASD. The extracted features were trained using
a CNNmodel, and the performance was above 90%.

Researchers have proposed the same number of DL and
ML models to study and monitor behavior to identify autism
using video datasets. However, the accuracy of these models
still needs to be improved. Therefore, the challenge we faced in
this research was to develop a diagnosis system based on video
processing to enhance the existing systems. Alkahtan et al. (2023)
proposedDLmodels, namely, Visual GeometryGroup-16 combined
with Long Short-Term Memory (VGG-16-LSTM) and Long-term
Recurrent Convolutional Networks (LRCN), for classifying and
predicting abnormal hand-flapping behaviors in children using
video recordings from real environments. The system was trained
using the SSBD dataset, and the models attained high accuracy
(up to 96%) regarding behavior classification. Rajagopalan et al.

(2013), Rajagopalan and Goecke, (2014) developed the new SSBD
video dataset for predicting ASD. The authors used a histogram
of predominant movements with one of optical flow. This system
used a binary classification model for head-banging and spinning
and attained an accuracy of 86.6%. Lakkapragada et al. (2021) used
a MobileNetV2 model to classify the SSBD dataset into autistic
and typical data, which yielded a high accuracy of 84%, while
Zhao et al. (2022) developed ML approaches to diagnose head
movement features to identify individuals with ASD. Ali et al.
(2022) employed the CNN method to improve the identification
of behaviors associated with ASD. The authors used YOLOv5
and DeepSORT to identify and analyze video data before using
CNNs for prediction. Their findings indicate that this technique
provides enhanced accuracy for diagnosing ASD. Yang et al. (2025)
introduced the MTCNN framework for detecting ASD based on
body posture. Su et al. (2025) established a probabilistic model for
diagnosing ASD based on head and eye behaviors.

2 Methodology

The methodology proposed in this study introduces an
innovative automated framework explicitly designed for detecting
and analyzing stereotypical hand-flapping movements associated
withASD, as illustrated in Figure 1. Our approach leverages state-of-
the-art DL architecture, implementing a sophisticated multi-stream
processing channel enhanced by specialized attention mechanisms.
This system aims to provide clinicians and researchers with an
objective, reliable tool for behavioral assessment in autism diagnosis
and monitoring, thus addressing the critical need for quantitative
analysis in ASD evaluation.

2.1 Dataset description

The SSBD is the foundation of our research on the automated
detection of autism-related behaviors.This publicly available dataset
was curated from online platforms, including YouTube, Vimeo,
and Dailymotion; it initially comprised 75 videos, which were later
reduced to 66 due to privacy considerations.These sequential frames
effectively capture the temporal progression of the behaviors under
consideration, enabling proposed farmwork to learn the distinctive
motion patterns.

2.2 Data preprocessing

Our study utilized the SSBD dataset comprising 66
annotated YouTube videos illustrating autism-related behaviors
(Rajagopalan et al., 2013). These videos, averaging 90 s in duration,
provide a comprehensive collection of behavioral patterns. To create
a focused dataset for detecting hand flapping, we segmented the
original videos into shorter clips, each 2–4 s long. We organized
them into two distinct behavioral categories: “Hand Flapping,”
which denoted stereotypical movements, and “Normal,” which
indicated typical childhood behaviors. The preprocessing pipeline
utilized a systematic frame extraction approach, where 20 frames
were uniformly sampled from each video segment using an adaptive
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FIGURE 1
Farmwork of DASD system.

sampling technique. This approach ensured consistent temporal
representation while accounting for variations in clip duration.
For model development and evaluation, we employed an 80/20 split

ratio, allocating 80% of the processed data for training and reserving
20% for testing, thereby ensuring a robust assessment of the model.
Preprocessing steps are shown in Figure 2.
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FIGURE 2
Preprocessing steps.

2.3 Data augmentation

We implemented a comprehensive data augmentation
strategy encompassing spatial and intensity transformations,
as shown in Figure 2a. The spatial augmentations included
horizontal flipping to account for variations in movement
direction, random rotations of ±10% for different viewing angles,
random zoom adjustments of ±10% for scale invariance, and
strategic cropping and padding to simulate varying distances and
perspectives. In contrast, the intensity augmentations focused
on adapting to different lighting conditions through brightness
variations of ±20%, contrast adjustments of ±20%, controlled
random noise addition, and gamma correction. This multi-faceted
augmentation approach significantly expanded the effective training
dataset while improving the model’s resilience to real-world
variations.

2.4 Multi-stream DL architecture

AS shown in Figure 2b, multi-stream was used in the system
proposed for addressing the complex challenge of detecting hand
flapping using a specialized DL framework that processes video
sequences at multiple levels of perception. At the architecture’s
foundation lies a parallel processing strategy that involves analyzing
movement patterns through three distinct computational pathways
at the same time. Each path was optimized for different aspects of
movement analysis: fine-grainedmotion details, hierarchical feature
representations, and dense spatial-temporal patterns. This multi-
perspective approach enabled our system to capture the nuanced
characteristics of stereotypical movements while maintaining
robustness against variations in execution speed, intensity, and
environmental conditions.The framework’s design emphasizes both
computational efficiency and detection accuracy.

2.4.1 Feature extraction networks
Theproposed architecture employs three complementary CNNs

as feature extractors—each chosen for its unique strengths with
respect to capturing different aspects of hand-flapping movements,
as shown in Figure 2c. At the core of our feature extraction pipeline
are EfficientNetV2B0, ResNet50V2, and DenseNet121, which were
all pre-trained on ImageNet and fine-tuned for our specific task.
These networks worked in parallel to process the input frames,
with each contributing distinct perspectives to the overall feature
representation.

2.4.1.1 EfficientNetV2B0 network
The EfficientNetV2B0 architecture represents a sophisticated

approach to neural network design that optimizes
both computational efficiency and model performance,
as shown in Figure 3. At its core, the network begins with an
input processing stage involving the handling of 224 × 224 × 3
RGB images, followed by an initial 3 × 3 convolution layer with
32 filters and a stride of 2, which establishes the foundation for
feature extraction. The architecture then progresses through a
series of carefully designed stages, starting with fused mobile blocks
(FMBConv).The initial FMBConv1 stage operates with 32 channels
repeated twice and utilizes a unity expansion ratio for efficient early-
layer processing. Two sets of FMBConv4 blocks follow this: first with
48 channels repeated four times, and then with 80 channels repeated
four times, both sets utilizing an expansion ratio of four to increase
the feature extraction capacity gradually.

The network then transitions to conventional mobile blocks
(MBConv), beginning with MBConv4 blocks that process 112
channels across six repetitions. These blocks incorporate Squeeze-
and-Excitation (SE) mechanisms with a ratio of 0.25, which enables
channel-wise feature recalibration. The architecture continues
with MBConv6 blocks, first processing 192 channels nine times,
then expanding to 320 channels and repeating this process
fifteen times. This progressive increase in both channel count
and block repetitions allows for increasingly sophisticated feature
extraction. Each MBConv6 block maintains the SE mechanism
while implementing an expansion ratio of six, effectively
enhancing the capacity for complex feature representation. Table 1
displays important terminology of the proposed deep
learning models.

The final stage of the architecture comprises a 1 × 1 convolution
layer that increases the number of filters to 1,280, followed by
global average pooling to create a fixed-size representation suitable
for classification tasks. This architectural progression demonstrates
several key design principles: the gradual increase in channel
capacity from 32 to 1,280, the strategic use of fused operations
in early layers for efficiency, and the implementation of attention
mechanisms through SE blocks. This design carefully balances
computational cost and model capacity, making it particularly
suitable for deployment on mobile and edge devices while
maintaining solid performance characteristics. This efficiency-
focused design philosophy makes EfficientNetV2B0 an excellent
choice for real-world applications, such as video classification tasks,
where both computational resources and model performance must
be optimized.
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FIGURE 3
EfficientNetV2B0 network architecture.

The architecture’s effectiveness stems from its thoughtful
implementation of modern DL methods. The progressive increase
in the number of channels allows for a gradual increase in feature
complexity. At the same time, the shift from fused blocks to
expanded mobile blocks optimizes computational efficiency across
different network depths. Integrating attentionmechanisms through
SE blocks enables the network to focus on themost relevant features,
enhancing its learning capacity without significantly increasing
computational overhead. This combination of design elements
results in a network that can achieve an impressive balance
betweenmodel size, computational efficiency, and feature extraction

capability, making it particularly suitable for practical applications
that require real-time processing or deployment on resource-
constrained devices.

2.4.1.2 ResNet50V2 network
ResNet50V2 represents a deep CNN architecture with 50

layers distributed across multiple stages, as shown in Figure 4. The
network’s architecture consists of five main stages, each containing
various residual blocks. Stage 1 begins with an initial 7 × 7
convolution layer that utilizes 64 filters with a stride of 2, followed by
a 3 × 3 max pooling layer with a stride of 2, which is complemented
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TABLE 1 Terminology of the proposed deep learning models.

Terminology Purpose

Convolution (Conv) Applies filters to extract spatial features and patterns from input data

Mobile Inverted Bottleneck Convolution (MBConv) Efficient convolution block that reduces computational cost while maintaining performance using depthwise
separable convolutions

Sigmoid Linear Unit (SiLU) Activation function (f(x) = x × sigmoid(x)) that provides smooth, non-monotonic activation and better gradient flow
than ReLU

Squeeze-and-Excitation (SE) Channel attention mechanism that adaptively recalibrates feature responses by learning channel-wise importance
weights

Batch normalization (BN) This function sue to make the code fast and reliable

FIGURE 4
The architecture of the ResNet50V2 network.

by batch normalization and ReLU activation functions for optimal
feature processing.The subsequent stages implement residual blocks
with increasing complexity: Stage 2 employs three residual blocks
with 64 filters, Stage 3 utilizes four blocks with 128 filters, Stage
4 expands to six blocks with 256 filters, and Stage 5 uses three
blocks with 512 filters. This progressive increase in the number of
filters enables hierarchical feature extraction at different scales. Each
residual block in the network follows a sophisticated pre-activation
design sequence. The sequence begins with batch normalization,
followed by ReLU activation, then processes through a 1 ×
1 convolution. This pattern repeats with another set of batch
normalization and ReLU activation actions, leading to a 3 × 3
convolution. The block concludes with a final sequence of batch
normalization, ReLU activation, and 1 × 1 convolution, creating an
effective feature extraction pathway.

2.4.1.3 DenseNet121 network
DenseNet121 represents a robust DL architecture distinguished

by its unique dense connectivity pattern as shown in Figure 5.
The network comprises 121 layers that are systematically organized
into dense blocks, which enables direct connections from each
layer to all subsequent layers within the same block through

feature concatenation. This design maximizes information flow
between layers, promoting feature reuse and strengthening feature
propagation throughout the network. The backbone processes
inputs through four dense blocks containing 6, 12, 24, and 16
layers. Transition layers perform essential dimensionality reduction
between these blocks using batch normalization, 1 × 1 convolution,
and average-pooling operations. Each layer contributes 32 new
feature maps (defined by a growth rate k of 32), which become
available to all subsequent layers through direct connections.
This dense connectivity pattern generates rich, multi-scale feature
representations crucial for detecting movement patterns. This
structure enables efficient feature extraction through systematically
reusing information, thereby minimizing the number of parameters
while maintaining high performance. Each layer receives collective
knowledge from all preceding layers, creating deep supervision and
promoting regularization effects. This architectural design proves
particularly effective for capturing complex temporal and spatial
patterns related to hand-flapping movements.

2.4.1.4 Attention mechanisms
Our model incorporates dual attention mechanisms to enhance

feature discrimination and focus.The channel attention mechanism
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FIGURE 5
The architecture of the DenseNet121 network.

processes features through parallel branches of global average
and max pooling operations and feeds into a shared multi-layer
perceptron structure.This structure reduces dimensionality to eight
channels per unit in its first dense layer with ReLU activation,
followed by restoration to the original channel dimensionality in
the second dense layer. The resulting attention weights are applied
through channel-wise multiplication, which enables the network to
focus on the most informative feature channels. Complementing
this, the spatial attention mechanism processes both average and
maximumvalues across channels through a 7 × 7 convolutional layer
with a stride of one and the “same” padding. The resulting spatial
attention map, generated through sigmoid activation, highlights
regions of interest within the frames, specifically focusing on areas
that exhibit characteristic hand-flapping movements.

2.4.1.5 Temporal processing
For temporal processing, a custom-designed temporal attention

module is integrated with a sophisticatedmulti-scale LSTMnetwork
to capture movement patterns across time. The temporal attention
module employs a learnable weight matrix and bias vector to
generate attention scores through softmax normalization, which
allows the model to focus on crucial moments in the movement
sequence. This is complemented by a three-layer bidirectional
LSTM network that processes features at multiple temporal scales.
The first layer utilizes 256 bidirectional units with a dropout rate
of 0.5, maintaining sequence return for hierarchical processing.
Further, the second layer implements 128 bidirectional units with
a recurrent dropout rate of 0.3, while the final layer employs 64
bidirectional units with layer normalization, which produces a
temporally aware feature representation that captures the rhythmic
nature of stereotypical movements.

2.4.1.6 Classification and training
The classification component of our architecture implements a

sophisticated dense-layer configuration that processes the combined
features from previous stages. The network begins with a 512-
unit-dense layer, followed by a 256-unit layer—both of which are

TABLE 2 Model architecture parameters.

Component Parameter Value

Input Layer
Input Shape (20, 96, 96, 3)

Sequence Length 20

Base Models

EfficientNetV2B0 Trainable: False

ResNet50V2 Trainable: False

DenseNet121 Trainable: False

LSTM Layers

LSTM 1 256 (Bidirectional)

LSTM 2 128 (Bidirectional)

LSTM 3 64 (Bidirectional)

Dense Layers

Dense 1 512 units, ReLU, Dropout: 0.6

Dense 2 256 units, ReLU, Dropout: 0.6

Output 2 units, softmax

enhanced with residual connections to facilitate gradient flow. Batch
normalization is carried out after each dense layer, complemented
by a dropout rate of 0.5 and L2 regularization with a factor of 0.01
to prevent overfitting. Table 2 presents the parameters of themodel’s
architecture.

The training protocol implements an Adam optimizer with a
base learning rate of 0.001 and processes the data in batches of 16
samples to be able to handle the complex video sequences, as detailed
in Table 2.Themodel training extends up to 150 epochs, with several
built-in safeguards to ensure optimal convergence.These include an
early-stopping mechanism that halts training if no improvement is
observed for five consecutive epochs, hence preventing overfitting.
Additionally, as shown in Table 3, a learning rate reduction
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TABLE 3 Training parameters.

Component Parameter Value

Training

Optimizer Adam

Learning rate 0.001

Batch size 2

Epochs 150

Callbacks

Early stopping Patience: 5

Learning rate reduced Factor: 0.1; Patience: 7

Model checkpoint Based on highest validation
accuracy

strategy is employed, which decreases the rate by a factor of 0.1
if performance plateaus for seven epochs. The training process
also incorporates model checkpointing, automatically saving
weights when the validation accuracy peaks. This comprehensive
approach to training parameters and monitoring ensures efficient
model convergence while maintaining high performance for the
validation data.

3 Experimental results

This research focused on detecting stereotypical hand-flapping
movements in individuals with ASD using DL; it leveraged the
SSBD by categorizing the videos according to whether their content
presented hand-flapping (ASD-related) or normal movements.
The experimental setup was conducted on a high-configuration
laptop equipped with an Intel Core i7 ninth Generation processor
and an NVIDIA RTX 8 GPU, ensuring efficient training and
processing of the DL models. Key components included data
preprocessing and augmentation to enhance model robustness, a
multi-stream DL architecture for comprehensive feature extraction,
and attention mechanisms to focus on relevant movement patterns.
The model was trained using the Adam optimizer and evaluated
using accuracy, precision, recall, F1 Score, and AUC metrics.
This setup was intended to create a reliable tool for ASD
diagnosis and monitoring that would have practical applications in
clinical settings.

3.1 Evaluation metric

Our evaluation metric employs a comprehensive set of metrics
to assess the model’s performance with regard to detecting the
stereotypical hand-flapping movements associated with ASD.These
metrics providedmultifaceted insights into themodel’s effectiveness
in real-world clinical applications.

3.1.1 Accuracy
The overall accuracy metric quantifies the model’s general

performance by calculating the proportion of correct predictions

across both hand flapping and normal movement classes. It is
computed as:

Accuracy = TP+TN
TP+TN+ FP+ FN

True Positives (TP) represent correctly identified hand flapping
instances, and True Negatives (TN) represent correctly identified
normal movements.

3.1.2 Precision
Precision measures the model’s ability to avoid false positives,

which is crucial in clinical settings to prevent overdiagnosis. It is
calculated as:

Precision = TP 
 TP+ FP 

3.1.3 Recall (sensitivity)
Recall quantifies the model’s ability to identify all actual

instances of hand flapping, which is essential for comprehensive
behavioral assessment. It is computed as:

Recall =  TP
 TP+ FN 

3.1.4 F1-score
The F1-score provides a balanced measure of the model’s

performance by combining precision and recall into a
single metric:

F1‐Score = 2× Precision×Recall
Precision+Recall

Whereas the FP indicates a false positive, FN is a false negative,
the TP is a true positive for ASD and normal class, and TN is a true
negative for normal class.

3.2 Performance analysis of the proposed
models

3.2.1 Results of the EfficientNetV2B0 model
Table 4 presents the results of the EfficientNetV2B0 model,

which achieved an accuracy of 75.68% across all classes. The
macro average of the model was 78%, with precision, recall,
and F1 score at 76%. This model scored a high 92% in the
precision metric with class hand-flapping and 92% in recall with
class normal.

Figure 6 illustrates both the training and validation accuracy
achieved throughout the training 50 epochs. The x-axis denotes
the epochs, spanning from 10 to 50, while the y-axis indicates
the accuracy percentages. The model’s performance exhibits
fluctuations, with the validation plot indicating overfitting. The
accuracy, which was initially 50%, fluctuated and ultimately
reached 76%.

3.2.2 Results of the ResNet50V2 model
The results of the ResNet50V2 model with a single-

stream architecture revealed distinctive performance patterns
across models, as indicated in Table 4. The ResNet50V2 model
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TABLE 4 Results of the EfficientNetV2B0 model.

Class name Precision (%) Recall (%) F1 score (%) Support

Hand Flapping 92 65 76 17

Normal 65 92 76 12

Accuracy 75.68

Macro Avg 78 78 76 29

FIGURE 6
Performance of EfficientNetV2B0 model (a) accuracy (b) loss.

TABLE 5 Results of ResNet50V2 model.

Class Name Precision (%) Recall (%) F1 Score (%) Support

Hand Flapping 89 94 91 17

Normal 91 83 87 12

Accuracy 90

Macro Avg 90 89 89 29

demonstrated better performance with 90% accuracy. The
ResNet50V2 model achieved excellent performance with 89%,94%,
and 91% for both metrics, as shown in Table 5 in the hand-
flapping class.

Figure 7 illustrates the training and validation accuracy of the
ResNet50V2 model across 80 epochs. The training accuracy (blue
line) rapidly approaches 100%, indicating that the model effectively
accommodates the training input. However, the validation accuracy
(red line) initially increases but starts to oscillate after around 20–30
epochs, ultimately stabilizing below the training accuracy. This
model has shown commendable performance, beginning at 70% and
reaching 90%. Its graphics loss decreased from 17.5 to 0.003.

3.2.3 Results of the DenseNet121 model
Table 6 indicates that the DenseNet121 model performs well

in distinguishing between the two categories, Hand Flapping
and Normal. Both categories’ accuracy, recall, and F1 scores
are high, with the Hand Flapping class at 94% in all three
measures and the normal class at 92%. The total accuracy model
is 93%. The overall average for accuracy, recall, and F1 score
is 93%, indicating that the model performs similarly across
both classes.

Figure 8 shows the accuracy and loss of DenseNet121, which
is used for diagnosing ASD through video. The left figure
(a) shows a consistent improvement in training and validation
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FIGURE 7
Performance of ResNet50V2 model (a) accuracy (b) loss.

TABLE 6 Results of the DenseNet121 model.

Class Name Precision (%) Recall (%) F1 Score (%) Support

Hand Flapping 94 94 94 17

Normal 92 92 92 12

Accuracy 93

Macro Avg 93 93 93 29

accuracy with 115 epochs, with training accuracy approaching
100% and validation accuracy stabilizing at around 93.10%. The
right plot (b) illustrates the model loss for both training and
validation datasets, with both curves exhibiting a smooth fall
and closely aligning. The loss diminishes steadily from above
15 to under 0.5.

The confusion matrix visualizations of three DL models
like EfficientNetV2B0, ResNet50V2, and DenseNet121 are
presented in Figure 9. Figure 9a shows the sification plot of the
e EfficientNetV2B0 model; it has a TP rate of 64.71% for Hand_
Flapping and 91.67% for Normal, and the FP rate is 8.33%, which
is a little bit high. Figure 9b shows the confusion matrix of the
ResNet50V2 model, it has a TP of 64.71% for the Hand_Flapping
class and 91.67% for the Normal class, the FP is higher by 16.67%,
whereas the FN is significantly less than 5.88%. The classification
plot of the DenseNet121 model is displayed in Figure 9c, and
it achieves 94.12% accuracy for Hand_Flapping and 91.67% for
Normal, and the FP and FN rates are lower.

3.2.4 Results of the multi-stream model
The Multi-Stream model attained an overall accuracy of 97%

in data classification, as shown in Table 7. The hand-flapping class
achieved an accuracy of 96%, a recall of 94%, and an F1 score of
97%. The Normal class of ASD achieved 96% accuracy, 100% recall,

and a 96% F1 score. This model scored a high percentage compared
with existing studies and the models in this article.

The Multi-Stream model displays robust classification in
as shown in Figure 10. It is shown the accurately detected 94.12%
of the hand-flapping class and 100% of the normal class. The
Multi-Stream model scored 5.88% of hand-flapping class were
inaccurately categorized as normal, while normal samples exhibited
no misclassification.

The multi-Stream model has performed well, achieving 97%
accuracy, as shown in Figure 11. The Multi-Stream was started at
65% and reached 96.55% validation accuracy. The curves show
quick convergence and stability, while the loss curves consistently
dropped and stayed tightly matched, indicating successful learning
and robust generalization throughout the training period.

4 Discussion of results

Developing automated systems for detecting stereotypical
movements in ASD presents opportunities and challenges in
clinical practice. Our experimental results demonstrate significant
advancements in this domain by comprehensively evaluating single-
stream and multi-stream architectures in Table 8. EfficientNetV2B0
achieved moderate performance, with 75.86% accuracy, yielding a
stronger specificity of 91.67% but a limited sensitivity of 64.71%.
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FIGURE 8
Performance of DenseNet121 model (a) accuracy (b) loss.

FIGURE 9
Confusion matrix of DL models (a) EfficientNetV2B0 (b) ResNet50V2 (c) DenseNet121.
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TABLE 7 Results of Multi-Streammodel.

Class Name Precision (%) Recall (%) F1 Score (%) Support

Hand Flapping 100 94 97 17

Normal 92 100 96 12

Accuracy 97

Macro Avg 96 97 96 29

FIGURE 10
Confusion matrix of the Multi-Stream model.

DenseNet121 displayed stronger capabilities, with 93.10% accuracy
and balanced performance in terms of both sensitivity (94.12%)
and specificity (91.67%). Finally, ResNet50V2 demonstrated robust
performance, with 89.66% accuracy and a high sensitivity of 94.12%
buta lowerspecificityof83.33%.Themulti-streamarchitectureemerged
as the superior approach, as it integrates the complementary strengths
of all three models.This framework achieved exceptional performance
metricsof96.55%accuracy,100%specificity, and94.12%sensitivity.The
achievementof a 99.02%AUCscore further validates thediscriminative
capabilities of this integrated approach.

Thesuccess of ourmulti-streamframework stems from innovative
features of integration and attention mechanisms. This improvement
builds upon combining three DL architectures, thus providing more
robust andreliabledetectioncapabilities.Themulti-streamframework
balanced performance across all metrics, demonstrating its potential
for practical applications in behavioral assessment.

Several limitations in the current study of the dataset deserve
consideration. Evaluating performance under varying conditions,
such as different camera angles and lighting setups, could
additionally affect detection reliability, while our multi-stream
model demonstrates exceptional performance in using this dataset.
The findings of this study have established a strong foundation
for automated behavioral analysis. The superior performance
of the multi-stream architecture provides a promising platform
for future developments in ASD-related movement detection,
demonstrating its potential for significant impact in clinical
applications.

The comparative analysis reveals varying performance
levels across different models, with the multi-stream approach
achieving the best results, as shown in Table 9. The multi-
stream framework showed high performance when using
different measurement metrics.
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FIGURE 11
Performance of Multi-Stream model.

TABLE 8 Overall result of proposed DL models.

2Model architecture Accuracy (%) Sensitivity (%) Specificity (%) F1 score (%) AUC (%) Loss Time/s

EfficientNetV2B0 75.86 64.71 91.67 75.86 81.86 2.1098 187

ResNet50V2 89.66 94.12 83.33 91.43 96.57 0.6726 359

DenseNet121 93.10 94.12 91.67 94.12 99.51 0.4555 556

Multi-Stream 96.55 94.12 100.00 96.97 99.02 0.4461 560

TABLE 9 Comprehensive comparison of model performances across different architectures.

Authors Dataset Method Accuracy (%)

Singh et al. (2025) SSBD CNN-LSTM 92.62

Wei et al. (2023) SSBD ML 83(F-score)

Cheol-Hong (2017) SBBD Hidden Markov Model (HMM) 91.5

Rajagopalan et al. (2013), Rajagopalan and Goecke, (2014) SSBD Histogram-based movement analysis 86.60

Lakkapragada et al. (2021) SSBD MobileNetV2 84.00

Ali et al. (2022) SSBD YOLOv5 + DeepSORT 82.00

Alkahtani et al. (2023) SSBD LSTM + VGG19 95

Asmetha and Senthilkumar (2025) SSBD Transformer Network 95.01

Current study SSBD Multi-stream CNN + attention mechanism 96.55

5 Conclusion

This research introduces a transformative approach to
automated behavioral pattern recognition using an innovative

DL framework. We have developed Multi-Stream farmwork
that combines three DL models for diagnosing ASD with high
performance. This farmwork was examined using the SSBD
standard dataset, which contained 90 videos gathered from

Frontiers in Physiology 14 frontiersin.org

https://doi.org/10.3389/fphys.2025.1593965
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Aldhyani and Al-Nefaie 10.3389/fphys.2025.1593965

YouTube over 90 s of 90 s due to privacy concerns; only 66
videos were used to test the proposed system. At its core,
Multi-Stream architecture represents a significant technical
advancement in movement analysis, seamlessly integrating three
robust neural networks—EfficientNetV2B0, ResNet50V2, and
DenseNet121—that were enhanced by sophisticated attention
mechanisms. The framework’s exceptional performance, having
achieved 96.55% accuracy, 100% sensitivity, and 94.12% specificity,
sets a new standard in the field and demonstrates the effectiveness
of our multi-stream approach. The key innovation lies in the
interaction between parallel processing streams and specialized
attention mechanisms, which enabled the precise recording of
movement dynamics at multiple scales. Our framework’s ability
to yield high-performance metrics while processing complex
movement sequences validates the effectiveness of its design
principles and creates new possibilities with respect to pattern
recognition applications. This farmwork will provide a compact
foundation for future advancements in automated movement
analysis and pattern recognition systems.
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