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Background: High-risk chest pain is a critical presentation in emergency
departments, frequently indicative of life-threatening cardiopulmonary
conditions. Rapid and accurate diagnosis is pivotal for improving patient
survival rates.

Methods: We developed a machine learning prediction model using the
MIMIC-IV database (n = 14,716 patients, including 1,302 high-risk cases). To
address class imbalance, we implemented feature engineering with SMOTE and
under-sampling techniques. Model optimization was performed via Bayesian
hyperparameter tuning. Seven algorithms were evaluated: Logistic Regression,
Random Forest, SVM, XGBoost, LightGBM, TabTransformer, and TabNet.

Results: The LightGBM model demonstrated superior performance with
accuracy = 0.95, precision = 0.95, recall = 0.95, and F1-score = 0.94. SHAP
analysis revealed maximum troponin and creatine kinase-MB levels as the top
predictive features.

Conclusion: Our optimized LightGBM model provides clinically significant
predictive capability for high-risk chest pain, offering emergency physicians a
decision-support tool to enhance diagnostic accuracy and patient outcomes.

KEYWORDS

bayesian optimization,model interpretability, high-risk chest pain prediction,MIMIC-IV,
machine learning (ML)

Introduction

High-risk chest pain represents a subset of chest pain presentations that are
associated with a high probability of life-threatening conditions such as acute
coronary syndrome (ACS), pulmonary embolism (PE), or aortic dissection. Although
widely used in clinical practice, the term “high-risk chest pain” lacks a universally
accepted definition and may vary depending on institutional protocols or clinician
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judgment. In general, high-risk cases are identified based
on clinical features such as ongoing or recurrent chest pain,
dynamic electrocardiographic changes, hemodynamic instability,
a history of coronary artery disease, or elevated cardiac
biomarkers (Amsterdam et al., 2014; Backu et al., 2013). Risk
stratification tools—such as the HEART score, TIMI score,
and GRACE score—are often employed to aid in identifying
patients at elevated risk of adverse cardiac events (Six et al., 2008;
Antman et al., 2000; Granger et al., 2003).

In emergency settings, however, the diagnostic process is
frequently complicated by the heterogeneous and often nonspecific
nature of chest pain symptoms. Additionally, the absence of
definitive early indicators can make it challenging to differentiate
high-risk conditions from benign causes. Clinician experience and
subjective interpretation of symptoms, ECG findings, and clinical
history often play a significant role, which may inadvertently
contribute to misdiagnosis or delayed treatment (Rohacek et al.,
2012). Therefore, accurate and timely identification of high-risk
chest pain remains essential to reduce mortality and improve
clinical outcomes.

In recent years, machine learning (ML) has emerged as a
promising tool in clinical decision support systems, offering the
ability to uncover complex patterns from large-scale medical data.
Despite this progress, existing research on ML-based prediction
models for high-risk chest pain remains limited in several
key aspects. First, many studies have not fully addressed the
issue of class imbalance, which can severely degrade model
performance on rare but critical outcomes. Second, the comparative
performance of advanced ML models specifically tailored for
structured medical data, such as TabTransformer and TabNet, has
not been systematically evaluated in this context. Third, few studies
have leveraged interpretability techniques like SHAP to provide
clinically meaningful insights into model predictions.

To bridge these gaps, this study develops a robust ML-based
prediction model for high-risk chest pain using the publicly
available MIMIC-IV database. The main contributions of this paper
are as follows:

1. A comprehensive machine learning pipeline was developed,
incorporating feature engineering, Synthetic Minority Over-
sampling Technique (SMOTE), random under-sampling,
and Bayesian hyperparameter optimization to address class
imbalance and enhance model performance.

2. A comparative evaluation of multiple classical and state-
of-the-art machine learning algorithms, including Logistic
Regression, Random Forest, SVM, XGBoost, LightGBM,
TabTransformer, and TabNet, was conducted on a large
clinical dataset.

3. The LightGBM model was identified as the best-performing
model, achieving outstanding accuracy (0.95), precision (0.95),
recall (0.95), and F1 score (0.94).

4. SHAP interpretability analysis was used to uncover the most
influential clinical features, with maximum troponin and
creatine kinase MB emerging as key predictors of high-risk
chest pain.

The remainder of the paper is organized as follows: Section 2
provides a comprehensive review of background and related
literature, emphasizing the clinical importance of accurately

identifying high-risk chest pain and summarizing current machine
learning applications in emergency diagnosis. Section 3 outlines
the methodological framework of the study, covering the overall
experimental design, model development strategies, and techniques
for enhancing both predictive performance and interpretability.
Section 4 presents the experimental results, compares the
performance of various models, and discusses the clinical relevance
and implications of the findings. Section 5 concludes the study by
summarizing the main contributions, discussing its limitations,
and proposing future research directions to further enhance model
performance and support real-world clinical application.

Background and related literature

Chest pain is one of the most common complaints in the
emergency department and often indicates a potentially life-
threatening condition, such as acute coronary syndrome, pulmonary
embolism, and aortic dissection. These high-risk diseases have a
high mortality rate and can lead to serious consequences if not
diagnosed and treated in time. However, when dealing with patients
with chest pain, clinicians need to not only quickly identify risk
factors, but also avoid the waste of resources and burden on patients
caused by over-examination. How to balance the early identification
of high-risk chest pain and the reasonable allocation of medical
resources has become an urgent problem for medical science.

In recent years, the popularity of electronic health record
data has provided important support for risk assessment and
prediction of high-risk chest pain. EHR data not only contains
basic demographic information of patients, but also records a large
number of clinical examination results and treatment processes. By
mining these data, data-driven models can be built to assist doctors
in early diagnosis and risk prediction, thereby improving emergency
efficiency and diagnostic accuracy.

TIMI and HEART score are the traditional tools for chest
pain risk assessment, which have been widely validated, but these
experience-based scoring systems are still subject to subjectivity
and lack of sensitivity and specificity. With the advancement of
artificial intelligence technology, machine learning (ML) has shown
great potential in chest pain diagnosis and risk prediction due to
its ability to process complex non-linear data. Numerous studies
have applied ML to the risk assessment and diagnosis of emergency
chest pain, not only optimizing the performance of existing tools,
but also showing superior performance to traditional methods in
clinical practice. Zhang et al. (Wang et al., 2020) developed anANN-
based model that used patient clinical, demographic, and laboratory
data to predict AMI and 30-day mortality, with an AUC of 0.907
and 0.888, respectively, significantly better than traditionalmethods.
Wu et al. (2019) predicted MACE within 90 days through RF model
combined with invasive and non-invasive variables, and the AUC
reached 0.853, higher than the HEART score. The MI3 model
proposed by Than et al. (2019) combined with SVM algorithm to
predict AMI has an AUC of up to 0.963 and provides excellent
sensitivity and specificity at different risk thresholds.

In addition to traditional machine learning techniques, recent
research has shown increasing interest in combining deep learning
models such as convolutional neural networks (CNNs), recurrent
neural networks (RNNs), and long short-term memory (LSTM)
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FIGURE 1
General frame diagram.

networks with ensemble methods like XGBoost, optimized using
metaheuristic algorithms. These hybrid and optimization-enhanced
models are particularly effective for medical applications involving
high-dimensional, imbalanced, or noisy data. For instance, Kumar
and Hasija, (2023) developed a hybrid CNN-XGBoost model
optimized by amodified arithmetic optimization algorithm for early
COVID-19 diagnosis from chest X-rays, achieving high accuracy
under data imbalance. Gupta and Hasija, (2023) applied CNNs
with boosting algorithms tuned by metaheuristics for classifying
respiratory conditions using audio signals. In the neurological
domain, Sharma et al. (2023) used LSTM models optimized by
metaheuristics for detecting Parkinson’s disease from gait time
series. Similar frameworks have been proposed for respiratory
disease detection from audio (Hasija andKumar, 2023) and anomaly
detection in ECG signals (Ali and Hasija, 2023), demonstrating
the versatility and efficacy of such AI models in diverse clinical
scenarios.These advances highlight the potential for translating such
methods to high-risk chest pain assessment, where interpretability
and predictive reliability are critical.

To overcome potential algorithmic bias and lack of transparency
in healthcare, a large number of XAI approaches have recently
been investigated. These methods can be grouped into three
categories based on interpretation, implementation, and model
dependency levels. Interpretation of the model can be done both
locally and globally. The local level explains the model decisions
of a single instance, while the global level explains the model’s
entire decisions. The implementation level is further divided
into internal interpretability and post-interpretability. Intrinsic
explainability refers to a model that is considered explainable
due to its simple architecture (e.g., TabNet). Post-interpretability
refers to the application of interpretative methods (e.g., LIME

(Ribeiro et al., 2016) and SHAP) after model training. The model
dependency standard deals with both model-specific and model-
independent interpreters. Model-specific methods are limited to
explaining specific types of algorithms. Although the goal of model
transparency is established, these methods cannot be used for any
model without re-changing its interpretation mechanism (Alicioglu
and Sun, 2022).

Unlike model-specific interpreters, model-independent
methods receive more attention for their ability to be applied and
tested on any “white box or black box” model. The general idea is
to explain and explain the decisions behind the model’s output.
A useful and popular contribution to model-independent XAI
is SHAP. SHAP (Lundberg et al., 2020; Shapley and Roth, 1988)
is a Shapley value determination method based on cooperative
game theory, whose core goal is to calculate the impact of each
feature on instance prediction. Based on this, Gu et al. (2020)
used different feature weights of the variables (i.e., Shapley values)
to interpret the positive and negative results of the breast cancer
recurrence classification. This is an example of how SHAP provides
local interpretability. You can also aggregate the Shapley values
of all instances in the sample to calculate the global feature
importance score. Researchers use feature importance to help
explain features between features and the results generated by the
model. For example, Meena and Hasija, (2022) used feature weights
to sequence and identify important genes found to be associated
with the progression of squamous cell carcinoma. Thus, what makes
SHAP so reliable is that it takes into account all possible predictions
for the instances in the sample using all possible combinations of
inputs. This enables it to guarantee features such as consistency and
local accuracy. On the downside, Shapley values take a long time to
calculate and are therefore an exhaustive method.
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FIGURE 2
Flow chart of feature extraction.

Therefore, after comprehensive consideration, this study
proposed a machine learning-based prediction model for high-risk
chest pain based on a widely used clinical data set, MIMIIC-IV. We
will focus on exploring the process of feature engineering, missing
value processing, model training, and Bayesian optimization tuning,
while using model-independent SHAP for global interpretation to
help clinicians better understand and apply the predicted results,
and hopefully provide a reference for future data-based risk
assessment methods.

Materials and methods

The overall method of the experiment is shown in Figure 1,
and the process of database feature extraction is shown
in Figure 2.

Model selection

In the high-risk chest pain prediction task, choosing the
right machine learning model is crucial. The task involves
extracting effective information from clinical data to help physicians
quickly identify high-risk patients. To comprehensively evaluate
the performance of different models, we chose a variety of
classical and modern machine learning methods to compare. These
models include traditional machine learning algorithms (such as
logistic regression, random forest, support vector Machine SVM),
ensemble learning algorithms (such as XGBoost and LightGBM),
and deep learning models (such as TabTransformer and TabNet).
Some popular models such as AdaBoost, CatBoost, and Extreme
Learning Machine (ELM) were not included in this study, and
this decision was made based on both methodological and
practical considerations. AdaBoost, although historically important,
is sensitive to noise and outliers, which are common in real-
world clinical data. Its performance tends to lag behind more

advanced boosting methods such as XGBoost and LightGBM,
particularly in large-scale or imbalanced settings [4]. CatBoost is
highly effective for high-cardinality categorical features, but given
that our dataset contained mostly preprocessed or low-cardinality
categorical variables, its advantages would not be fully utilized.
Moreover, CatBoost can be computationally more demanding when
extensively tuned. As for ELM, despite its extremely fast training,
it lacks robustness and generalization capability for complex, high-
dimensional data like EHRs and does not support interpretability
tools or native handling of missing values, limiting its applicability
in clinical settings (Huang et al., 2006).

Logistic regression. Logistic regression is a basic linear
model, which is widely used in binary classification problems. It
makes predictions by weighted summing features and converting
the results into probabilities via the Sigmoid function. In the
medical field, logistic regression has a good interpretable ability
and can intuitively reveal the influence of various features
on the predicted results (Kim et al., 2020). However, logistic
regression is mainly suitable for situations where there is a linear
relationship between features, so it may not perform as well as
other more complex models when faced with complex nonlinear
relationships.

Random Forest. A random forest is an ensemble learning
method that makes predictions by training multiple decision trees
and voting on the results. Its advantages lie in its ability to process
high-dimensional data without easy overfitting, automatic feature
selection, and certain robustness to missing data (Breiman, 2001).
In chest pain prediction tasks, random forest can better capture the
nonlinear relationship between features, but its “black box” nature
makes it less interpretable, which may be a limitation for medical
scenarios (Li et al., 2021; Wang et al., 2023).

SVM. SVM is a powerful classification model that separates
different classes of data by finding an optimal hyperplane. SVM
performs well in high-dimensional data and can effectively handle
complex nonlinear classification problems (Zhou et al., 2022).
However, the disadvantage of SVM is that the training time is
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TABLE 1 Comparison of baseline characteristics in the Low Risk and High Risk groups.

Variables Total (n = 14,716) Low risk High risk P-value

gender (No units) - - - <0.001

Male (No units) 7864 (53.5%) 7119 (53.1%) 745 (42.7%) -

Female (No units) 6852 (46.5%) 6215 (46.9%) 557 (57.3%) -

age ( years) 61.03 (50.00, 73.00) 60.86 (50.00, 73.00) 62.78 (52.00, 75.00) <0.001

avg_temperature (°F) 98.07 (97.84, 98.30) 98.07 (97.85, 98.30) 98.02 (97.83, 98.20) <0.001

avg_heartrate (bpm) 78.95 (68.00, 88.33) 78.25 (67.67, 87.67) 86.19 (71.00, 99.91) <0.001

avg_resprate (bpm) 17.73 (16.56, 18.67) 17.64 (16.50, 18.50) 18.68 (17.00, 19.89) <0.001

avg_O2sat (%) 97.68 (96.67, 99.00) 97.69 (96.67, 99.00) 97.58 (96.60, 99.00) 0.015

avg_sbp (mmHg) 130.05 (117.00, 141.50) 130.64 (117.56, 142.00) 123.93 (111.38, 134.26) <0.001

avg_dbp (mmHg) 72.21 (64.50, 79.67) 72.32 (64.62, 79.75) 71.10 (62.88, 78.63) <0.001

temperature_range (°F) 0.54 (0.10, 0.89) 0.54 (0.10, 0.90) 0.53 (0.00, 0.89) 0.611

heartrate_range (bpm) 15.00 (7.00, 21.00) 14.66 (7.00, 20.00) 18.50 (9.00, 23.51) <0.001

resprate_range (bpm) 4.69 (2.00, 7.00) 4.55 (2.00, 6.00) 6.18 (4.00, 8.00) <0.001

O2sat_range (%) 2.82 (1.00, 4.00) 2.77 (1.00, 4.00) 3.32 (1.00, 5.00) <0.001

sbp_range (mmHg) 27.62 (15.00, 38.00) 27.49 (15.00, 38.00) 28.97 (17.00, 39.00) 0.002

dbp_range (mmHg) 21.53 (12.00, 30.00) 21.33 (12.00, 30.00) 23.62 (14.00, 31.00) <0.001

max_troponin (ng/mL) 0.39 (0.27, 0.40) 0.34 (0.27, 0.39) 0.89 (0.30, 1.23) <0.001

max_ckmb (ng/mL) 6.12 (3.97, 6.23) 5.55 (3.00, 6.09) 12.09 (4.00, 13.00) <0.001

max_sodium (mmol/L) 140.78 (139.00, 143.00) 140.76 (139.00, 143.00) 140.94 (139.24, 142.00) 0.043

max_potassium (mmol/L) 4.43 (4.10, 4.70) 4.42 (4.10, 4.70) 4.53 (4.20, 4.80) <0.001

max_wbc (109/L) 8.64 (6.40, 10.20) 8.49 (6.30, 10.00) 10.24 (7.40, 12.20) <0.001

max_lactate (mmol/L) 2.20 (2.04, 2.31) 2.18 (2.04, 2.30) 2.38 (2.10, 2.41) <0.001

The table compares the baseline characteristics between the Low Risk and High Risk groups. In each group, continuous variables are described using the median and the first and third
quantiles, formatted as M(Q1,Q3), and categorical variables are described using counts and proportions, formatted as n (%).

long, especially when the data volume is large, and the selection
of parameters is more sensitive, which may affect the stability and
generalization ability of the model.

XGBoost. XGBoost (ExtremeGradient Boosting) is an ensemble
learning method based on gradient lifting trees that minimizes the
loss function by gradually adjusting the weights of weak classifiers.
It has high efficiency in processing large-scale data, and can
automatically process categorical features and missing data (Chen
and Guestrin, 2016). In medical datasets, especially those with
complex feature interactions, XGBoost can capture these complex
non-linear relationships and make accurate predictions (Li et al.,
2022). This ability makes XGBoost particularly effective in high-
risk chest pain prediction tasks, extracting critical information from
patients’ clinical characteristics to support rapid diagnosis.

LightGBM. LightGBM (Light Gradient Boosting Machine)
is a machine learning algorithm based on gradient boosting
that shows significant computational efficiency advantages when
dealing with large-scale data sets. Compared with the traditional
gradient lifting algorithm, LightGBM adopts a leaf-based splitting
strategy and uses histogram algorithm to speed up the calculation
process, which makes it effective in reducing memory consumption
and speeding up the training speed when processing high-
dimensional data (Ke et al., 2017). LightGBM has demonstrated
its capabilities in the task of classifying medical data, especially
in situations where data is imbalanced. Data imbalance problems
are more common in medical classification tasks, for example,
the proportion of patients with high-risk chest pain tends to be
low, which makes it more difficult for the model to correctly
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FIGURE 3
Box plot of avg_sbp raw data.

FIGURE 4
Box diagram of avg_sbp cleaned data.

predict a small number of classes. Traditional machine learning
models tend to perform poorly in such situations, tending to
be biased toward predicting most classes, resulting in lower
recall rates for a few classes. However, LightGBM, through its
built-in sample weight adjustment mechanism and the ability to
support custom loss functions, has shown significant advantages
in dealing with unbalanced data (Xu et al., 2021; He et al., 2020;
Zhang et al., 2021).

TabTransformer. TabTransformer is a deep learning
model applicable to tabular data. It uses self-attention
mechanism to capture complex interactive relationships among
category features (Huang et al., 2020). Compared to traditional
models, TabTransformer has a strong capability in feature
interaction modeling, especially suitable for high-dimensional
data containing categorical features. The model uses deep neural
networks combined with attention mechanisms to automatically
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TABLE 2 MSE for different models on various targets.

Target XGBoost Random forest Ridge regression LightGBM

max_troponin (ng/mL) 0.46 0.44 0.49 0.43

max_ckmb (ng/mL) 44.41 44.93 52.17 44.47

max_sodium (mmol/L) 8.91 8.93 8.93 8.91

max_potassium (mmol/L) 0.23 0.23 0.23 0.23

max_wbc (109/L) 9.29 9.33 9.37 9.29

max_lactate (mmol/L) 1.41 1.42 1.37 1.38

learn complex patterns in the data. However, TabTransformer
typically requires large computing resources and takes a long
time to train.

TabNet. TabNet is a tabular data processing model based
on deep learning, which combines the advantages of neural
network and decision tree to improve the prediction accuracy of
themodel (Arik and Pfister, 2021). TabNet shows good performance
when dealing with large scale and sparse data, and can provide
certain interpretability. Nevertheless, TabNet’s training time and
computing resource consumption are large and may not be the best
choice for resource-limited environments.

Bayesian optimization (BO)

Trial-and-error hyperparameter tuning is tedious and often
leads to unsatisfactory results (Massaoudi et al., 2021). Therefore,
robust tuning methods are essential, especially when the goal of
optimization is to find the maximum value of an unknown function
at the sampling point (Equation 1), as in (Shi et al., 2021):

p+ = argmax
p∈⊘

ϑ (p) (1)

Where p represents the sampling point, ⊘ represents the search
space of the sampling point p,ϑ represents the unknown objective
function, and p+ represents the location where the unknown
objective function is largest.

Compared with commonly used GS and RS technologies, BO
is an efficient hyperparameter optimization algorithm (Mockus
and Marchuk, 1975). In GS and RS, each evaluation in its
iteration is independent of the previous evaluation, which increases
the waste of time in evaluating poorly performing areas of the
hyperparameter search space. This problem is solved by BO,
which combines the prior information of ϑ with the sampling
points, approximates the posterior distribution of the objective
function through Bayes’ theorem (Eggensperger et al., 2013),
and then uses the posterior information to evaluate the global
optimal value.

The two main steps involved in executing BO are as follows
(Kulshrestha et al., 2020):

(1) BO algorithm tries to fit the proxy function by randomly
selecting several data points on ϑ. Due to the high flexibility,

robustness, accuracy, and analysis traceability of Gaussian
processes (GP) (Martinez-Cantin, 2017), this study uses GP to
update the proxy function to form a posterior distribution of
ϑ.

(2) The posterior distribution formed in step 1 is used to
create a collection function that explores new regions in
the search space and uses the known regions to get the
best results (Injadat et al., 2018). The exploration and
development process continues, and the agent model is
updated with new results until predefined stop criteria are
met. The criterion for locating the next sampling point is
to maximize the collection function. In this paper, expected
improvement (EI) (Cheng et al., 2019) is used as the collection
function.

Interpretability

In order to improve the interpretability of the model, this
study used SHAP to determine the influence, dependence, and
interaction of global features on the classification of high-risk chest
pain from sugar (Lundberg et al., 2020; Shapley and Roth, 1988).
SHAP uses the principles of cooperative game theory to assign
each input feature an importance score for a given prediction.
Game theory has a set of rules, players in the game have a set
of strategies and some kind of reward, and the Shapley value is
used to reveal each player’s contribution to the game. To explain
this model, the policy represents the outcome of the program, the
actor represents the feature, and the reward is the quality of the
outcome obtained. Here, the Shapley value reveals the contribution
of a given feature to the overall prediction, and the sampling process
can be repeated to improve the approximation of the marginal
contribution. The SHAP value can then be defined as the weighted
average of the marginal contributions of all possible alliances—F—
! expressed as (Lundberg et al., 2020):

ψi ( f) = ∑
{S⊆F}\{i}

|S|! (|F| − |S| − 1)!
|F|!

⋅ [ f (xS∪{i}) − f (xS)] (2)

In the above formula, is the weighted average of the Shapley
values provided by feature i in the above federation of all excluded
functions, F is the total number of features, and S is a subset of F,
predicting for models using feature i and predicting for models not
using feature i.
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FIGURE 5
Feature correlation heat map.

Compared with lime, this calculation (Equation 2) increases the
time complexity of SHAP. However, SHAP uses all subsets of the
input data, which provides better local accuracy and consistency
compared to lime.

DataSet

The MIMIC-IV database collects detailed clinical data on
ICU patients in the Boston area from 2008 to 2019, including
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TABLE 3 Experimental environment.

Name Configuration information

Processor i7-13620H

Graphics card RTX 4060Ti (24G)

Programming language Python 3.9

Archive Postgres 13

Operating system Windows 10

Programming platform Pycharm 2020 Community

patient demographic and hospitalization information, physiological
monitoring, laboratory tests, medication, diagnostic codes, and
other information, which can be used for clinical analysis of
high-risk chest pain. The author obtained permission to use the
database (record ID: 1,3992078) after completing the CIT1 project
training. Use structured query language (SQL) and PostgreSQL13 to
extract data.

Data preprocessing

Feature selection. To construct a clinically meaningful and
interpretable predictive model for high-risk chest pain, we extracted
four categories of variables from the MIMIC-IV database. The
selection of these variables was informed by clinical guidelines, prior
literature on acute coronary syndrome (ACS) risk stratification, and
expert consultation with emergency physicians and cardiologists.
This approach ensured that the features used were both data-
available and clinically relevant for identifying patients at elevated
risk of adverse cardiovascular outcomes.

The first category includes demographic and hospitalization
information, such as patient ID, age, gender, length of stay, and type
of admission. Age and gender are well-established risk factors in
cardiovascular disease prognosis, and admission type often reflects
the acuity of the patient’s condition at presentation.

The second category comprises emergency-related variables,
including emergency department (ED) length of stay, chief
complaint, triage acuity level (Triage_acuity), and medications
administered during the ED visit. These features provide contextual
insight into the severity of the presenting symptoms, early clinical
impressions, and initial treatment decisions, all of which are
associated with short-term outcomes in chest pain patients.

The third category includes vital signs, such as body
temperature, heart rate, respiratory rate, oxygen saturation, and
blood pressure (systolic, diastolic, and mean arterial pressure),
recorded as maximum, minimum, and average values. These are
critical indicators of hemodynamic stability and are routinely used
in early warning systems and risk scores such as the HEART and
TIMI scores (Backu et al., 2013; Antman et al., 2000).

The fourth category encompasses laboratory biomarkers,
including the maximum recorded values of troponin, creatine
kinase-MB (CK-MB), sodium, potassium, white blood cell (WBC)

count, C-reactive protein (CRP), and lactic acid. Among these,
troponin and CK-MB are of particular importance. According
to the Fourth Universal Definition of Myocardial Infarction,
cardiac troponins are the gold-standard biomarkers for detecting
myocardial injury and diagnosing acute coronary syndromes
(Thygesen et al., 2018). CK-MB, though less specific than troponin,
remains clinically valuable in certain settings, especially where
high-sensitivity troponin assays are not available or for assessing
reinfarction (Thygesen et al., 2018; Newby and Granger, 2012).
Additionally, CRP, WBC, and lactate provide insights into
systemic inflammation and tissue hypoperfusion, both of which
are prognostically important in acute cardiovascular and septic
conditions (Tang et al., 2020).

In total, 38 clinically and statistically relevant features were
constructed from 40,438 clinical records. After applying inclusion
criteria and data cleaning, a final cohort of 14,716 patients was
included in the study, of whom 1,302 (8.84%) were identified as
having high-risk chest pain. This feature selection process ensures
the model’s alignment with clinical practice and enhances its
potential utility for real-time risk prediction in emergency care
settings. Table 1 shows baseline information for all patients in the
MIME-IV database.

Data cleaning and missing value processing. Firstly, a key step
of data preprocessing is the detection and processing of outliers. In
order to detect outliers in the data, we adopted the boxplot method.
Boxplots identify outliers by five generalizations of the visualized
data (minimum, lower quartile Q1, median Q2, upper quartile Q3,
andmaximum). Specifically, an outlier is defined as a value 1.5 times
less than the lower quartile (Q1) quartile (IQR) or 1.5 times more
than the upper quartile (Q3). After detecting outliers, we choose to
exclude outliers that are obvious in some features (such as clinical
measurement errors or extreme data points) to avoid having a
negative impact on the training and prediction of the model. For the
sake of brevity, only box plots of mean body temperature and mean
systolic pressure data are shown below, as shown in Figures 3, 4.

Secondly, the handling of missing values can significantly
influence the outcomes of subsequent experiments. For features
with relatively low proportions of missing data, missing values
were imputed using the mean. For features with higher rates of
missingness—such as max_troponin, max_ckmb, max_sodium,
max_potassium, max_wbc, and max_lactate—four machine
learning models were employed for imputation: XGBoost, Random
Forest, Ridge Regression, and LightGBM. To determine the most
effective imputation method, Bayesian optimization was conducted
for hyperparameter tuning of each model, with Mean Squared Error
(MSE) used as the evaluation metric. The experimental results are
summarized in Table 2.

Experimental results indicated that different models exhibited
varying performance across different features. For example,
XGBoost yielded the lowest Mean Squared Error (MSE) for
imputing max_sodium and max_ckmb, whereas LightGBM
demonstrated superior performance for imputing max_potassium,
max_troponin, and max_wbc. Consequently, the imputation of
each feature was carried out using the model that achieved the
lowest MSE.

Correlation analysis between feature and target variable. In
this study, the input features included multiple physiological and
clinical data, and we used the Pearson Correlation Coefficient to
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TABLE 4 Summary of model performance on test and cross-validation sets.

Models AUC 95% CI Accuracy Precision Recall F1 score PPV NPV AUC (5-CV ± SD)

Random Forest 0.85 [0.837–0.863] 0.91 0.92 0.91 0.92 0.91 0.90 0.848 ± 0.012

LightGBM 0.89 [0.878–0.902] 0.95 0.95 0.95 0.94 0.95 0.94 0.885 ± 0.010

XGBoost 0.87 [0.860–0.880] 0.94 0.94 0.95 0.94 0.94 0.93 0.872 ± 0.011

SVM 0.77 [0.759–0.783] 0.80 0.89 0.80 0.84 0.82 0.78 0.768 ± 0.015

Logistic Regression 0.73 [0.718–0.743] 0.72 0.88 0.72 0.78 0.76 0.70 0.725 ± 0.017

TabTransformer 0.80 [0.788–0.813] 0.85 0.84 0.88 0.85 0.85 0.83 0.801 ± 0.013

TabNet 0.77 [0.759–0.785] 0.87 0.90 0.87 0.88 0.88 0.85 0.775 ± 0.012

TABLE 5 DeLong test p-values between model pairs. Bold p-values below 0.05 indicate statistically significant differences.

Models Random forest LightGBM XGBoost SVM Logistic regression TabTransformer TabNet

Random Forest 1.0000 0.0412 0.2173 0.0305 0.0008 0.0894 0.0527

LightGBM 0.0412 1.0000 0.3841 0.0189 <0.0001 0.1465 0.1202

XGBoost 0.2173 0.3841 1.0000 0.0628 0.0023 0.2081 0.1806

SVM 0.0305 0.0189 0.0628 1.0000 0.0712 0.0369 0.0235

Logistic Regression 0.0008 <0.0001 0.0023 0.0712 1.0000 0.0084 0.0041

TabTransformer 0.0894 0.1465 0.2081 0.0369 0.0084 1.0000 0.3012

TabNet 0.0527 0.1202 0.1806 0.0235 0.0041 0.3012 1.0000

quantify the linear relationship between each feature and the target
variable (“high risk” or “low risk”) for predicting chest pain risk.
The heatmap of the correlation matrix was used for visualization,
as shown in Figure 5.

The correlation matrix calculated using the Pearson correlation
coefficient shows that there is a significant linear relationship
between multiple features and the target variable of chest pain risk.
Specifically, the following features showed strong correlations:

• max_troponin (troponin concentration) and max_ckmb (CK-
MB level): The Pearson correlation coefficient between these
two features and the target variable was 0.69, indicating a strong
positive correlation with the occurrence of high-risk chest pain.
This is consistent with existing clinical studies that troponin is
often used as amarker of heart injury and can effectively predict
high-risk patients (Michael et al., 2022).

• max_bun and max_creatinine: The correlation coefficient
between them and the target variable is 0.67, indicating a strong
positive correlation with the high-risk flag.

In addition, certain features—such as hadm_id and avg_
O2sat—were observed to have low correlation with the target
variable, suggesting limited contribution to the prediction

task. As a result, these features were considered for removal
to simplify the model structure and enhance computational
efficiency.

Data normalization and standardization. After the
aforementioned preprocessing steps, a total of 14 features
were selected as input variables, and one feature (high_
risk_flag) was designated as the target variable, comprising
14,717 data points. Prior to model training, two scaling
methods—standardization and normalization—were applied to
different types of features (Ramadhan et al., 2024). For features
exhibiting Gaussian or near-Gaussian distributions (e.g., max_
troponin, max_ckmb, max_sodium), standardization was employed
to improvemodel convergence andminimize inter-feature influence
due to large numerical ranges. In contrast, normalization was
applied to features with known bounded ranges and relatively
small variation (e.g., age, heart_rate), scaling them to the [0,
one] interval to ensure consistency in scale and reduce feature
disparities.

Experimental environment

The experimental environment of this paper is shown in Table 3.
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FIGURE 6
Decision curve analysis of all models.

Evaluation index

The ROC curve is a relationship graph of TPR (Sensitivity) and
FPR (1-Specificity) for diagnostic specificity, and AUC summarizes
the accuracy of the model (Mandrekar, 2010). The ROC AUC
indicator is in the range [0,1], where 0 indicates completely
inaccurate results, 0.5 indicates that the classifier cannot distinguish
between positive and negative category results, 0.7–0.8 is acceptable,
0.8–0.9 is considered excellent, and >0.9 is considered outstanding
(Hosmer et al., 2013).

These indicators are calculated by the following formula
(Equations 3–8):

Acc = TP+TN
TP+TN+ FP+ FN

(3)

Precision = TP
TP+ FP

(4)

Recall = TP
TP+ FN

(5)

F1 Score = 2× Precision×Recall
Precision+Recall

(6)

FPR = FP
FP+TN

(7)

AUC = ∫
1

0
Recall (FPR) dFPR (8)

Cohen’s Kappa (κ) is a measure that compares the accuracy of an
observation to the expected accuracy (Equation 9). The systematic
interpretation of κ is as follows (Viera et al., 2005):

• If κ < 0, the performance is poor.
• κ = 0.01− 0.20, the consistency was slightly better.
• κ = 0.21− 0.40, fair and consistent.
• κ = 0.61− 0.80, sustainable.
• κ = 0.81− 0.99, almost identical.

κ =
P0 − Pe
1− Pe

(9)

Results and discussion

Experimental result

Accuracy, precision, recall, specificity, and F1 score are
commonly used metrics for classification problems (Ozkok and
Celik, 2022). In addition, alternative metrics such as NPV and
PPV are added. The higher the value of these indicators, the more
preferred the model. Table 4 summarizes the performance of all
models on both the independent test set and via 5-fold stratified
cross-validation. As shown in Table 4, LightGBM achieved the
highest test AUC (0.89, 95% CI [0.878–0.902]), Accuracy (0.95) and
macro-F1 (0.94), followed closely by XGBoost and TabTransformer.
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FIGURE 7
Radar map of ROC AUC assessment indicators.

In terms of generalization, LightGBM maintained the best 5-fold
CV AUC (0.885 ± 0.010), suggesting robust discriminative ability
across partitions. SVM and Logistic Regression showed relatively
lower performance with wider AUC confidence intervals and
larger variance in cross-validation. These results demonstrate the
advantage of modern boosting and attention-based models in
high-risk chest pain prediction.

Pairwise DeLong tests were performed to evaluate the
statistical significance of differences in AUC between models, as
presented in Table 5. The results indicate that LightGBM achieved
significantly better discriminative performance compared to
Logistic Regression (p < 0.0001) and SVM (p = 0.0189). However, no
statistically significant difference was observed between LightGBM
and XGBoost (p = 0.3841) or TabNet (p = 0.1202), suggesting
comparable AUC values among top-performing models.

Decision curve analysis (DCA) was conducted to assess the
net clinical benefit of each model across a range of threshold
probabilities. As shown in Figure 6, LightGBM and XGBoost
demonstrated the highest net benefits, indicating superior clinical
utility over both traditional and deep learning-based classifiers in
high-risk chest pain prediction scenarios.

The last two metrics used for model comparison are κ and ROC
AUC scores (shown in Figure 7). Originally, κ was used to measure
the level of agreement between two observers about a particular
phenomenon, compensating for any agreement thatmight be caused
by chance (Cohen, 1960). This ideology can also be applied to

evaluate classification results.The results presented in Figure 7 show
that both the LightGBM and XGBoost models belong to the better
conformance category, with κ values of 0.64 and 0.61, respectively.
In addition, the ROC AUC index is another evaluation metric for
binary classification problems. The area under the curve (AUC)
is used as a summary of the ROC curve, where larger areas are
preferred (Ben-David, 2008). The results presented in Figure 8 show
that both the LightGBMandXGBoostmodels belong to the superior
category, with ROC AUC values of 0.89 and 0.87, respectively.
Therefore, both κ and ROC AUC measurements are useful for
validating the ability of each model to predict high-risk chest pain.

Interpretability analysis

Global interpretability is essential for understanding the
contribution of individual predictor properties to overall model
performance. Accordingly, SHAP was employed to achieve global
interpretation, with Shapley values used to assess feature importance
in predictive outcomes. SHAP is a unified approach for explaining
the output of any machine learning model, grounded in cooperative
game theory. Specifically, it quantifies the marginal contribution of
each feature to the prediction outcome of a given instance (Lundberg
and Lee, 2017).

The SHAP feature importance bar chart is plotted using the
average absolute Shapley value for each feature, where features
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FIGURE 8
Radar map of Cohen’s Kappa (κ) assessment indicators.

with larger absolute Shapley values have higher priority. While this
graph is useful, it does not provide any information other than
a ranking of features based on importance (Joseph et al., 2022).
Instead, the SHAP summary graph integrates feature importance
with feature effects, where each point on the graph represents the
Shapley value for each feature under that instance. The position
on the y-axis determines the importance of the feature, while
the Shapley value is located on the x-axis. The color of each
instance represents the value of the feature, ranging from low
(light blue) to high (pink). The scatterplot of SHAP values and the
feature importance diagram for the LightGBM model are shown in
Figures 9, 10.

As can be seen in Figures 9, 10, maximum troponin and
maximum creatine kinase enzyme MB (CK-MB) are among the
most influential features, with wide SHAP distributions. These
biomarkers are medically validated indicators of cardiac injury and
play a crucial role in the diagnosis of acute myocardial infarction
(AMI). In fact, the 2023 European Society of Cardiology (ESC)
guidelines emphasize high-sensitivity cardiac troponin as a key
diagnostic tool for acute coronary syndromes (Collet, 2023), while
CK-MB remains an established component of diagnostic criteria
in many institutions (Alhusseini et al., 2024). The identification of
these characteristics by themodel as high impact supports its clinical
relevance and interpretability.

In addition to cardiac biomarkers, features such as average
respiratory rate, average body temperature, maximum sodium
concentration, and maximum white blood cell count also exhibit

FIGURE 9
Shap analysis of the LightGBM model.

strong SHAP values. These variables are frequently associated
with systemic inflammation, infection, or metabolic imbalance,
which are important secondary indicators of cardiovascular risk

Frontiers in Physiology 13 frontiersin.org

https://doi.org/10.3389/fphys.2025.1594277
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Chen et al. 10.3389/fphys.2025.1594277

FIGURE 10
Global importance of LightGBM.

or severity of illness. In contrast, features such as sex and
average diastolic blood pressure were assigned relatively low SHAP
values, suggesting a limited impact on model predictions in
this data set. Although gender is a known risk factor in the
epidemiology of cardiovascular disease, its predictive value can
vary depending on population balance, comorbidities, or feature
interactions.

Overall, the SHAP analysis highlights that our model not
only performs well but also aligns with established medical
understanding. This reinforces trust in the model’s predictions
and provides valuable insights for clinical interpretation, risk
stratification, and future feature selection.

Conclusions and future work

Major contribution

Based on the MIMIC-IV database, this study proposed a feature
engineering constructionmethod for predicting high-risk chest pain
and verified it by combining machine learning and deep learning
models. Specific contributions include the following aspects:

1. Innovative construction of feature engineering. Through in-
depth analysis of the MIMIC-IV data, a series of effective
clinical features were designed and constructed, including
physiological parameters, laboratory test results, basic patient
information, etc. Efforts were made to uncover key factors
that have a significant impact on the prediction of chest
pain risk.

2. Experiment combined with BO algorithm. The Bayesian
optimization algorithm was applied to optimize the
hyperparameters of the model. Various machine learning
models (such as Random Forest, XGBoost) and deep

learning models (such as TabNet) were employed to conduct
comparative experiments, demonstrating the performance
of different models in predicting high-risk chest pain. The
results showed that LightGBM achieved the best predictive
performance, with an accuracy of 0.95, precision of 0.95, recall
of 0.95, and F1 score of 0.94.

3. SHAP to achieve global interpretability. To improve model
transparency and interpretability, the SHAP method
was used to analyze the global interpretability of the
prediction results. Analysis of SHAP values revealed
the key factors influencing the model’s prediction of
high-risk chest pain, thereby enhancing clinicians’ trust
in the model.

Limitations

Despite the promising results, this study has several limitations
that warrant consideration:

1. Single-center data and lack of external validation. This study
utilized retrospective data exclusively from the MIMIC-IV
database, which may limit the generalizability of the model
to other patient populations and clinical settings. External
validation on independent cohorts, such as the eICU database
or data from other institutions, is essential to assess robustness
and broader applicability.

2. Simplified feature construction and imputation strategy.
Clinical variables were summarized using static statistics (e.g.,
maximum,mean), potentially overlooking important temporal
patterns. Additionally, missing values—including sensitive
biomarkers like troponin—were imputed using regression-
based methods, which may not preserve clinical plausibility
and could introduce bias. Future work should incorporate
time-aware modeling and clinically guided, distribution-
preserving imputation techniques.

3. Limited interpretability and outcome label granularity. While
global interpretability was addressed using SHAP, individual-
level explanations were not explored, which limits clinical
transparency. Moreover, the outcome definition of “high-
risk chest pain” was based on retrospective labeling and
may not capture the full clinical nuance of diagnostic
decision-making. Prospective validation and expert-
adjudicated labels are needed to enhance clinical relevance
and trust.

Future research direction

Although this study has achieved preliminary results in
the task of predicting high-risk chest pain, there are still
some limitations, which can be improved and expanded in the
future from the following directions:

1. In-depth feature analysis and feature interaction exploration.
Basic feature selection and construction were carried out
on the MIMIC-IV dataset in this study, but the complex
interactive relationship between features was not deeply
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explored. In the future, more advanced feature engineering
methods, such as graph model-based feature interaction
analysis or automated feature selection algorithms, can be
used to explore nonlinear interactions between features
and further improve the predictive power of the model.
For example, Xie et al. (2023) proposed a multi-dimensional
feature interaction modeling method based on deep neural
networks, which provides a new idea for further feature
interaction exploration.

2. Improving missing value processing methods. Missing
value processing in clinical data has always been a major
challenge in data preprocessing. In the future, more accurate
missing value interpolation techniques can be explored,
especially for complex clinical data, such as generating
missing values through deep learning techniques such as
generative adversarial networks (GAN), or using multiple
interpolation methods (MICE) and Bayesian networks to
improve the processing of missing data and reduce the
prediction bias caused by missing data. Recent studies have
shown that generative adversarial networks (GANs) have
achieved good results in missing value interpolation of
medical data (Lee et al., 2022).

3. Expansion to other tabular data models. In addition to existing
machine learning models and TabNet, other deep learning
models for tabular data can be explored in the future. For
example, models such as disjunctive Normal Formula (DNF-
Net) and Neuro-agnostic Decision Integration (NODE) (Puri
and Sahoo, 2020), which have the potential to capture complex
patterns in tabular data, can provide new ideas for high-risk
chest pain prediction. Related studies, such as Zhang et al.
(2024), proposed a clinical data analysis model based
on NODE, and the experimental verification of this
method on multiple datasets shows its powerful
modeling ability.
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