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Cardiovascular diseases (CVDs) remain a leading cause of global mortality,
underscoring the need for accurate and efficient diagnostic tools. This study
presents an enhanced heart sound classification framework based on a
Convolutional Neural Network (CNN) integrated with the Convolutional Block
Attention Module (CBAM). Heart sound recordings from the PhysioNet CinC
2016 dataset were segmented and transformed into spectrograms, and twelve
CNN models with varying CBAM configurations were systematically evaluated.
Experimental results demonstrate that selectively integrating CBAM into
early and mid-level convolutional blocks significantly improves classification
performance. The optimal model, with CBAM applied after Conv Blocks 1-1,
1-2, and 2-1, achieved an accuracy of 98.66%, outperforming existing state-
of-the-art methods. Additional validation using an independent test set from
the PhysioNet 2022 database confirmed the model’s generalization capability,
achieving an accuracy of 95.6% and an AUC of 96.29%. Furthermore, T-SNE
visualizations revealed clear class separation, highlighting the model’s ability
to extract highly discriminative features. These findings confirm the efficacy of
attention-based architectures in medical signal classification and support their
potential for real-world clinical applications.

KEYWORDS
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1 Introduction

Cardiovascular disease (CVD) remains a leading global health challenge,
accounting for one-third of all deaths worldwide, with 85% of these deaths
attributable to heart attacks and stroke (Cardiovascular diseases CVDs, 2025).
The global burden of CVD is exacerbated by two significant trends: the aging
population and the increasing prevalence of CVD among younger demographics
(Herrington et al., 2016). Particularly in low- and middle-income countries, CVD
not only contributes to high mortality rates but also imposes substantial economic
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FIGURE 1
Phonocardiogram (PCG) signals.

burdens on healthcare systems and families (Wurie and Cappuccio,
2012). These pressing concerns underscore the critical need for
effective early detection and diagnostic methods.

Cardiac auscultation, as a non-invasive diagnostic technique
with a history spanning over 180 years, continues to play a crucial
role in cardiovascular assessment (Abbas and Bassam, 2009). The
phonocardiogram (PCG), which captures the mechanical activity
of the heart including atrial and ventricular function as well as
major vessel status, provides valuable diagnostic information. The
fundamental heart sounds, S1 and S2, correspond to isovolumetric
ventricular systole and diastole respectively (Figure 1). However, the
clinical interpretation of PCG signals presents several challenges:
(1) it requires substantial clinical expertise, (2) human auditory
perception has limited sensitivity across different frequency ranges,
and (3) subjective interpretation may lead to diagnostic variability.
These limitations have driven significant research interest in
developing automated computer-aided analysis and classification
systems for heart sound signals.

Although state-of-the-art research has achieved significant
progress, there is still a need to improve detection accuracy
in order to enable earlier diagnosis and increase survival rates.
CBAM has demonstrated remarkable success in image classification
and detection tasks by enabling networks to focus on relevant
spatiotemporal features. Building on this strength, the present
study aims to maximize classification accuracy by combining
convolutional neural networks with attention mechanisms to enable
automated feature extraction. This paper makes three primary
contributions to the field of automated heart sound classification:

(1) We propose and validate a novel CNN + CBAM framework
for heart sound classification, demonstrating significant
improvements in classification accuracy compared to existing
approaches using the same dataset.

(2) We systematically investigate the optimal integration strategy
for CBAM within CNN architectures, revealing that selective
rather than comprehensive CBAM implementation yields
superior performance.

(3) We demonstrate the potential of attention mechanisms in
medical signal analysis, particularly in scenarios requiring
automated feature extraction and emphasis on critical signal
components.

The remainder of this paper is organized as follows: Section 2
summarizes the relevant works. Section 3 describes the datasets,
preprocessing procedures, proposed model architecture, and
evaluation methodology. Section 4 presents the experimental

results, including ablation studies and comparative analyses with
existing approaches. Section 5 discusses the key findings and their
implications. Finally, Section 6 concludes the paper and outlines
directions for future research.

2 Related work

Automated heart sound classification methods can be broadly
categorized into traditional machine learning approaches and more
recent deep learning-based techniques. A brief review of recent
advances in automated heart sound classification is provided in
this Section.

2.1 Traditional and early deep learning
approaches

Earlier approaches to heart sound classification relied heavily
on manual feature extraction and conventional classifiers.
Nogueira et al. (2019) combined temporal and Mel-frequency
cepstral coefficient (MFCC) features with Support Vector Machine
(SVM) classification, whileHamidi et al. (2018) proposed innovative
feature extraction methods combining curve fitting with MFCC
and fractal features. Homsi et al. (2016) applied SMOTE for class
imbalance handling and tested multiple ensemble classifiers on
handcrafted features. While these methods have demonstrated
potential, they are inherently limited by their dependence on
labor-intensive segmentation and expert-driven feature selection,
where any inaccuracies can substantially compromise classification
performance.

The emergence of CNNs has significantly improved
performance by enabling end-to-end learning. Meintjes et al.
(2018) utilized continuous wavelet transforms and CNNs for heart
sound classification, while Potes et al. (2016) fused hand-crafted
features and CNN outputs in an ensemble framework. Chen et al.
(2020) and Li et al. (2020) enhanced CNN architectures with
improved time-frequency representations and poolingmechanisms,
respectively. These efforts marked a transition from manual feature
engineering to deep feature learning.

Despite these advancements, CNN-based approaches face
several challenges in heart sound classification: (1) high data
requirements, particularly problematic given the typically small and
imbalanced nature of medical datasets; (2) insufficient attention
mechanisms, leading to potential learning of irrelevant features; and
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(3) limited generalizability and interpretability, which are crucial for
clinical applications.

2.2 Recent advances in CNN-Based
methods

From 2020 to 2025, heart sound classification has undergone
significant methodological evolution, transitioning from basic
CNN-based pipelines to hybrid deep learning frameworks that
integrate attention mechanisms, temporal modeling, and signal
decomposition strategies.

CNN architectures initially dominated the field for their ability
to extract local time-frequency features from phonocardiograms
(PCG). Cheng et al. (2019) proposed a lightweight CNN optimized
for mobile use, achieving high performance on the PhysioNet
CinC 2016 dataset. Chen et al. (2019) used ensemble CNNs to
classify unsegmented PCG, demonstrating robustness under clinical
constraints.

Recent work has moved toward hybrid models that enhance
CNNs with attention mechanisms, such as Squeeze-and-Excitation
(SE), CBAM, and Transformer-based modules. While CBAM
focuses on spatial and channel refinement, SE blocks (Hu et al.,
2018) provide channel recalibration with minimal overhead, and
Transformer structures (Vaswani et al., 2017) offer superior
global context modeling. Marques & Oliveira (Marques and
Oliveira, 2025) showed that Transformer-based ECG classifiers
could outperform CNNs in capturing long-range dependencies,
and Rahman (Rahman, 2025) proposed a CNN-Transformer
fusion for ECG, demonstrating state-of-the-art accuracy. Recently,
hybrid frameworks combining convolutional architectures with
Transformer encoders have emerged as promising solutions for
heart sound classification. For example, Al-Tam et al. (2024)
proposed a hybrid model integrating a Transformer encoder with
residual convolutional blocks for cardiovascular disease recognition
using heart sounds. This approach leverages the Transformer’s
capability to model long-range dependencies alongside the local
feature extraction strengths of convolutional networks, achieving
superior classification performance. Such architectures highlight the
trend toward incorporating both global and local feature modeling
in medical signal analysis.

Another growing direction involves feature extraction
techniques beyond spectrograms. Inspired by ECG analysis,
methods such as wavelet packet decomposition (WPD),
empirical mode decomposition (EMD), and variational mode
decomposition (VMD) have been applied to biomedical signals
to isolate diagnostically relevant components. These techniques
are increasingly used as front-ends to deep models, enriching
feature space and improving performance in noisy or low-
resource settings (Vocaturo and Zumpano, 2021).

A critical issue raised in recent reviews is dataset diversity.
Models trained solely on the CinC 2016 dataset may suffer
from poor generalizability. Khalid et al. (2024) emphasized that
inter-patient variability, device differences, and class imbalance
can significantly affect performance. Approaches such as domain
adaptation, federated learning, and data augmentation (including
GAN-based synthetic signal generation) have emerged to address
these issues and enhance robustness across real-world scenarios.

TABLE 1 Database statistics.

Dataset Sample size

Normal Abnormal Total

training-a 117 292 409

training-b 386 104 490

training-c 7 24 31

training-d 27 28 55

training-e 1,958 183 2,141

training-f 80 34 114

Total 2,575 665 3,240

3 Materials and methods

This section briefly introduces the dataset and preprocessing
steps, describes the architecture of the Convolutional Neural Network
(CNN), and explains how the Convolutional Block Attention Module
(CBAM) is integrated.Thefinal part outlines the experimental design,
including model configurations and evaluation procedures.

3.1 Dataset and data preprocessing

Thedataset used in this study is derived from the 2016 PhysioNet
Computing in Cardiology Challenge on Classification of Heart
Sound Recordings (Liu et al., 2016). It comprises six sub-datasets
(training-a to training-f), containing a total of 3,240 heart sound
samples, including 2,575 normal and 665 abnormal recordings. Each
sample is a heart sound signal with a sampling rate of 2 kHz and a
duration ranging from 5 to 122 s. All samples are labeled by category
and stored in. wav format. The detailed distribution of samples
across sub-datasets is provided in Table 1.

To standardize input length and ensure comprehensive diagnostic
coverage, each heart sound recording was divided into fixed, non-
overlapping 5-second intervals (Figure 2). This duration, supported
by clinical consultation and prior studies (Cheng et al., 2019),
reliably captures at least one full cardiac cycle (typically 2–3 s),
which is sufficient to include pathological features such as murmurs
and arrhythmias. All available full-length segments were extracted
from each recording to maximize information retention, rather than
selecting a single portion. Recordings shorter than 5 s and incomplete
trailing segments were excluded to avoid boundary artifacts and
preserve signal integrity. Clinical experts confirmed that pathological
patterns generally recur across the signal, making them likely to
appear in at least one of the segments. This segmentation strategy
achieves a practical balance between input uniformity, diagnostic
completeness, and computational efficiency, making it well-suited for
CNN-based classification tasks.

Each valid segment was then converted into a grayscale
spectrogram of size 864 × 504 pixels using Python’s audio processing
libraries (e.g., wave, NumPy). Grayscale representation was adopted
to simplify color channels while preserving critical amplitude and
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FIGURE 2
Heart Sound segmentation.

FIGURE 3
Spectrogram of abnormal heart sounds.

FIGURE 4
Spectrogram of normal heart sounds.

frequency features. Examples of spectrograms for normal and
abnormal heart sounds are shown in Figures 3, 4, respectively.
This preprocessing resulted in a total of 12,378 spectrograms. The
spectrograms were used for 10-fold cross-validation, with the data
partitioned at a 9:1 ratio into training and validation sets for model
development and evaluation.

3.2 Convolutional neural network (CNN)

Convolutional Neural Networks (CNNs) are a class of deep
learning models particularly well-suited for image-like data due

to their ability to extract hierarchical spatial features through
convolutional operations (Browne and Ghidary, 2003). A typical
CNN architecture consists of multiple convolutional layers followed
by pooling layers and fully connected layers, enabling automatic
feature learning and classification (Mo et al., 2019).

In the context of heart sound classification, CNNs have
demonstrated remarkable performance. For instance, Wu et al.
(2019) proposed a CNN-based method for phonocardiogram
classification, achieving a sensitivity of 86.46% and specificity of
85.63% in holdout testing. Rubin et al. (2016) combined heart sound
segmentation with time-frequency heat maps and a CNN, attaining
an accuracy of 83.4%. Chen et al. (2019) employed a CNN to
classify unsegmented PCG signals, reporting a sensitivity of 92.73%,
specificity of 96.90%, and mean accuracy (MACC) of 94.81%.
Cheng et al. (2019) further optimizedCNNarchitectures formobile-
device deployment, achieving a recognition rate of 96.16%. Lee and
Kwak (2023) proposed amethod for feature extraction usingWavelet
Scattering Transform (WST) and Continuous Wavelet Transform
(CWT), followed by heart sound classification using 1D and
2D Convolutional Neural Networks (CNNs). Experimental results
showed that the 1D-CNN and 2D-CNN models achieved accuracy
rates of 96.1% and 95.29%, respectively, on the PhysioNet/CinC2016
dataset. These studies collectively highlight the robustness of CNNs
for heart sound classification tasks.

3.3 Convolutional block attention module
(CBAM)

TheConvolutional BlockAttentionModule (CBAM) (Woo et al.,
2018) is a lightweight, yet effective module designed to enhance
feature representations in CNNs by applying attention mechanisms
along both channel and spatial dimensions. As illustrated in
Figure 5, CBAM consists of two sequential submodules: channel
attention and spatial attention.

(1) ChannelAttention:The channel attention submodule (Figure 6)
generates an attention map by aggregating spatial information
through global average pooling and global max pooling.
The pooled features are processed by a shared multi-layer
perceptron (MLP), and their element-wise summation is
activated by a sigmoid function to produce the channel
attention map. This map is then multiplied elementwise with
the input feature map to emphasize important channels.

(2) Spatial Attention: The spatial attention submodule (Figure 7)
refines the feature map further by compressing channel
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FIGURE 5
The overview of CBAM.

FIGURE 6
Diagram of channel attention module.

FIGURE 7
Diagram of spatial attention module.

information through global average and max pooling.
The pooled features are concatenated and processed by
a convolutional layer followed by a sigmoid activation to
generate the spatial attention map. This map is multiplied
elementwise with the channel-refined feature map to highlight
relevant spatial regions.

CBAM’s lightweight design allows it to be seamlessly integrated
into various CNN architectures with minimal computational
overhead. Previous studies have demonstrated its effectiveness
in diverse applications. For example, Boyu et al. (Chen B. et al.,
2020) incorporated CBAM into a 3D CNN for micro-expression
recognition, outperforming state-of-the-art methods. Zhang et al.
(2021) enhanced COVID-19 diagnosis accuracy using a CBAM-
based attention network, while Zhang and Wang (2022) achieved
efficient finger vein recognition with a lightweight CNN + CBAM
architecture.

3.4 Experimental design and evaluation

3.4.1 Network architecture
The base CNN used in this study (Figure 8A) is adapted from

previous work (Huai et al., 2021) and organized into five stages:
three convolutional stages, one fully connected stage, and a final
SoftMax classification stage. Each convolutional stage contains two
convolutional layers, yielding six in total (Conv Block 1-1, 1-2, 2-1,
2-2, 3-1, and 3-2). Specifically, first stage, 32 filters per convolutional
layer (kernel size 3 × 3, stride 1 × 1), followed by 2 × 2 max pooling
and RELU activation with a dropout rate of 0.2. Second stage,
64 filters, otherwise similar to the first. Third stage, 128 filters,
again following the same pooling, activation, and dropout settings.
A fully connected layer (output dimension = 500) with RELU
activation and a dropout rate of 0.3 is added before the SoftMax
layer, which classifies heart sounds into normal or abnormal. The
learning rate is controlled using the ReduceLROnPlateau function
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FIGURE 8
Convolutional neural network diagram (A) Model 1: Base convolutional neural network (B) Model 12.

(monitor = 'val_loss’, factor = 0.5, patience = 5, verbose = 1, min_
lr = 1e-7). The optimizer used is Adam with a learning rate of
0.001. The batch size for training is set to batch_size = 10. To
prevent overfitting during training, an early stopping strategy was
adopted. The training process was monitored using validation loss,
and training was terminated if no improvement was observed for 15
consecutive epochs.This ensured that themodelmaintained optimal
generalization capability without excessive training.

Regarding the choice of activation function, we employed the
SoftMax function for classification, despite sigmoid being a common
choice in binary classification tasks. SoftMax was selected primarily
for its compatibility with the categorical cross-entropy loss function,
which enhances numerical stability during training. Additionally,
SoftMax offers greater scalability formulticlass problems, should the
classification task be extended in the future. We also evaluated the
sigmoid function and found that its performance was very similar
to that of SoftMax. Specifically, when keeping all other parameters
unchanged, the two activation functions yielded nearly identical
accuracy, F1 score, and AUC. However, the convergence curve of
SoftMaxwas smoother, indicatingmore stable training convergence.

The parameters of the network architecture reflect the optimal
results after training and adjustment with the dataset used in this
study. The ReLU function was used as the activation function due
to its advantages in increasing network non-linearity, preventing
gradient vanishing, and promoting sparsity in the network.

3.4.2 CBAM integration
To investigate the impact of CBAM,we inserted CBAMmodules

after different convolutional layers of the base CNN, generating
12 distinct models (Table 2). Model 1 serves as the baseline (i.e.,
no CBAM), while Models 2–12 progressively incorporate CBAM
in various layers. For example, Model 2 adds CBAM only after
Conv Block 1-1, whereas Model 12 integrates CBAM into all
convolutional layers (Figure 8B). This systematic approach allows a

comprehensive assessment of how attention mechanisms influence
heart sound classification performance.

3.4.3 Evaluation metrics and setup
All models are trained and evaluated under identical conditions

to ensure a fair comparison.The accuracy (ACC), cross-entropy loss,
sensitivity (symbol: se), precision, F1_score, and other evaluation
metrics are recorded. Among them, abnormal heart sound signals
that are correctly classified are true positive (TP) (symbol: TP);
abnormal heart sound signals that are incorrectly classified are false
positive (FP) (symbol: FP); normal heart sound signals that are
correctly classified are true negative (TN) (symbol: TN); and normal
heart sound signals that are incorrectly classified are false negative
(FN) (symbol: FN). The calculations for se, acc, precision, and F1_
score are shown in Formulas 1–4. Training is conducted using deep
learning framework TensorFlow, with consistent batch size, learning
rate, and number of epochs across all models.

Accuracy = TP+TN
TP+TN+ FP+ FN

(1)

Precision = TP
TP+ FP

(2)

Recall = TP
TP+ FN

(3)

F1score =
2(Precision×Recall)
Precision+Recall

(4)

Additionally, t-Distributed Stochastic Neighbor Embedding (T-
SNE) is applied to project high-dimensional features into a lower-
dimensional space for visualization. In binary classification, T-
SNE assists in evaluating the model’s ability to distinguish between
classes. This study uses T-SNE to examine the clustering and
separability of normal and abnormal heart sounds, providing
insights into feature learning and highlighting areas prone to
misclassification.
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TABLE 2 Specific parameters of CBAM in 12 models.

Model Stage 1 Stage 2 Stage 3

Conv block
1-1 with
CBAM

Conv block
1-2 with
CBAM

Conv block
2-1with
CBAM

Conv block
2-2 with
CBAM

Conv block
3-1with
CBAM

Conv block
3-2 with
CBAM

1 ✕ ✕ ✕ ✕ ✕ ✕

2 ✓ ✕ ✕ ✕ ✕ ✕

3 ✕ ✓ ✕ ✕ ✕ ✕

4 ✓ ✓ ✕ ✕ ✕ ✕

5 ✕ ✕ ✓ ✕ ✕ ✕

6 ✕ ✕ ✕ ✓ ✕ ✕

7 ✓ ✓ ✓ ✕ ✕ ✕

8 ✓ ✓ ✓ ✓ ✕ ✕

9 ✕ ✕ ✕ ✕ ✓ ✕

10 ✕ ✕ ✕ ✕ ✕ ✓

11 ✓ ✓ ✓ ✓ ✓ ✕

12 ✓ ✓ ✓ ✓ ✓ ✓

4 Results

This section presents and discusses the outcomes of the twelve
experimental models (Models 1–12) for heart sound classification,
followed by a comparison with other related studies. The results
underscore the effect of integrating the Convolutional Block
Attention Module (CBAM) into different parts of a Convolutional
Neural Network (CNN).

4.1 Comparison among the twelve models

According to the experimental design, twelve models were
developed for heart sound classification, each with varying
configurations of CBAM integration. The accuracy, loss,
Recall, Precision, F1_score, AUC and T-SNE values for each
model are summarized in Table 3, Intra_class_0 represents
the intra-class distance of normal heart sounds, intra_class_1
represents the intra-class distance of abnormal heart sounds,
and inter_class_center_distance refers to the inter-class distance
between the normal and abnormal heart sound classes. Also, a
comparative analysis of their classification performance is illustrated
in Figure 9.

The results demonstrate that models incorporating CBAM
(Models 2–11) generally outperform the baseline model (Model
1), which lacks CBAM. This improvement can be attributed to the
dual attention mechanisms of CBAM: (1) Spatial Attention, this
mechanism enables the network to focus on pixel regions in the
spectrogram that are most relevant to classification while ignoring

less informative areas; (2) Channel Attention, this mechanism
optimizes the allocation of feature map channels, ensuring that
the network prioritizes the most discriminative features. The
simultaneous application of spatial and channel attention enhances
the model’s ability to extract and utilize critical features, leading to
higher classification accuracy.

To investigate the effect of CBAM placement, Models 2–12
were designed with CBAM integrated into different convolutional
layers. Single-CBAM Models (Models 2, 3, 5, 6, 9, and 10), these
models incorporate CBAM in only one convolutional layer within
a specific stage. The accuracy differences among these models are
minimal, with Model 10 achieving the highest accuracy (0.9859).
This suggests that adding CBAM to deeper convolutional layers
may yield slightly better performance by emphasizing more abstract
feature representations. Multi-CBAM Models (Models 4, 7, 8, 11,
and 12), thesemodels incorporatemultiple CBAMmodules, ranging
from two to six. As shown in Figure 10, the accuracy initially
increases with the number of CBAM modules but declines after
reaching a peak. Model 7, which integrates CBAM in Conv Block 1-
1, 1-2, and 2-1, achieves the highest accuracy (0.9866). In contrast,
Model 12, which includes CBAM in all convolutional layers, exhibits
the lowest accuracy (0.9110). This indicates that while CBAM
enhances feature extraction, excessive use can lead to overfitting or
reduced generalization capability.

The results suggest that the strategic placement of CBAM in
early to mid-level convolutional layers (e.g., Conv Block 1-1, 1-2,
and 2-1) is optimal for improving classification performance. This
configuration allows the model to amplify relevant features without
introducing unnecessary complexity or overfitting.
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TABLE 3 Evaluation indicators of 12 models.

Model Accuracy Loss Sensitivity
(recall)

Precision F1_score AUC intra_
class_0

intra_
class_1

inter_
class_
center_
distance

1 0.9280 0.3565 0.8616 0.8646 0.8631 0.9535 34.4758 18.2857 51.6779

2 0.9802 0.0578 0.9685 0.9412 0.9594 0.9771 35.6107 14.2065 56.1283

3 0.9801 0.0562 0.9817 0.9472 0.9642 0.9835 35.2484 14.4696 61.6872

4 0.978 0.0564 0.9571 0.9470 0.9520 0.9781 34.0582 14.4032 70.3928

5 0.9838 0.0464 0.9826 0.9496 0.9658 0.9817 31.1970 15.4810 66.0397

6 0.9858 0.0444 0.9889 0.9572 0.9728 0.9849 35.4437 15.1191 38.4579

7 0.9866 0.0344 0.9748 0.9679 0.9713 0.9973 36.1278 14.4496 72.0167

8 0.9807 0.0490 0.9661 0.8962 0.9298 0.9697 36.4983 18.4495 41.2070

9 0.9842 0.0445 0.9833 0.9704 0.9768 0.9822 30.7837 14.5418 57.9523

10 0.9859 0.0457 0.9846 0.9772 0.9810 0.9856 33.1949 16.5026 45.3366

11 0.9300 0.1432 0.9182 0.9611 0.9392 0.9236 35.9540 20.9502 35.6403

12 0.9110 0.1915 0.7298 0.8927 0.8030 0.9272 36.3183 25.3992 41.1211

4.2 Training and validation curves of
selected models

To further assess the convergence and generalization capabilities
during model training, three representative models were selected:
Model 1 (baseline without CBAM), Model 7 (optimal model), and
Model 12 (model with CBAM integrated into all convolutional
layers). Their training and validation Accuracy and Loss curves are
plotted in Figures 11, 12.

As shown in the figure, Model 7 exhibits steadily increasing
Accuracy and decreasing Loss on both the training and validation
sets, with consistent trends between them, indicating good
convergence and generalization. In contrast, Model 1 converges
more slowly, and its validation Accuracy remains consistently lower
than that of Model 7. Model 12, although achieving high training
Accuracy rapidly, shows a significant decline in validation Accuracy
and an increase in validation Loss, suggesting overfitting due to
excessive CBAM integration.

These results confirm that moderately and strategically
incorporating CBAM modules (as in Model 7) can significantly
enhance classification performance while mitigating the risk of
overfitting.

4.3 T-SNE visualization analysis of different
models

To gain deeper insight into the feature distribution learned by
each model, t-distributed stochastic neighbor embedding (T-SNE)
was employed to project the high-dimensional features extracted

from the last convolutional layer into a two-dimensional space. This
visualization allows for an intuitive assessment of the separability
between normal and abnormal heart sound classes.

Figure 13 presents the T-SNE visualizations of four
representative models: Model 1 (baseline without CBAM), Model
6 (single CBAM applied to Conv Block 2-2), Model 7 (optimal
configuration with CBAM after Conv Blocks 1-1, 1-2, and 2-1), and
Model 12 (CBAM applied to all convolutional layers). The results
reveal distinct clustering patterns across the models.

Model 1 shows considerable overlap between the two classes,
indicating poor feature separability.Model 6 demonstrates improved
clustering, with partial separation between normal and abnormal
samples. Model 7 exhibits the most distinct separation, with two
clearly defined clusters and minimal intra-class dispersion, aligning
with its superior inter-class center distance of 72.0167. In contrast,
Model 12 presents an irregular and overlapping distribution,
suggesting that excessive CBAM usage may lead to overfitting and
less discriminative feature learning.

These observations corroborate the quantitative findings and
further confirm that Model 7 not only achieves the highest
classification accuracy but also learns the most separable feature
space. The use of T-SNE provides compelling visual evidence that
supports the effectiveness of selectively integrating CBAM into early
and mid-level convolutional layers.

4.4 Optimal model analysis

Among the twelve experimental models, Model 7 demonstrated
the optimal performance for heart sound classification. First,
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FIGURE 9
Classification models comparison.

FIGURE 10
Comparison of model 4/7/8/11/12.

Model 7 achieved the highest accuracy (98.66%) among all
configurations, significantly outperforming both single-CBAM
and multi-CBAM models. Second, it exhibited the lowest loss
value (0.0344), indicating superior prediction consistency during
both training and validation phases. Additionally, in the T-SNE
visualization results (Figure 11), Model 7 achieved the largest
inter-class center distance (72.0167), suggesting excellent feature
separability between normal and abnormal heart sounds.

Further analysis reveals that by strategically integrating CBAM
modules after Conv Block 1-1, 1-2, and 2-1, Model 7 effectively
enhances mid- and low-level feature representations while avoiding
the overfitting issue observed inModel 12, whereCBAMwas applied
to all convolutional layers. The ablation study further validates this

configuration: compared to no CBAM (Model 1), CBAM only at
deeper layers (Model 9), and CBAM applied to all layers (Model 12),
Model 7 consistently achieved superior results across accuracy, loss,
and feature separability.

In summary, Model 7 establishes itself as the best-performing
heart sound classification model in this study, excelling across
accuracy, loss minimization, feature distribution, and architectural
optimization.

4.5 Ablation study

To further validate the effectiveness of the selected CNN
+ CBAM configuration, an ablation study was conducted by
modifying key architectural components and comparing their
classification performance. The following variants were evaluated:

• Variant A (No CBAM): The baseline CNN without any
CBAM modules.

• Variant B (CBAM at deeper layers only): CBAM integrated only
into the last convolutional stage (Conv Block 3-1 and 3-2).

• Variant C (All layers with CBAM): CBAM inserted into every
convolutional block (equivalent to Model 12).

• Variant D (Proposed configuration): CBAM inserted into Conv
Block 1-1, 1-2, and 2-1 (Model 7).

As shown in Table 4, the proposed configuration (Variant D)
achieved the highest accuracy (98.66%) and the lowest loss (0.0344),
outperforming other variants. Variant C, which applied CBAM
to all convolutional blocks, suffered from overfitting, leading to
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FIGURE 11
Accuracy curves of Model 1 (a), Model 7 (b), and Model 12 (c).

FIGURE 12
Loss curves of Model 1 (a), Model 7 (b), and Model 12 (c).

reduced performance. These findings demonstrate that selective
integration of CBAM into early and mid-level convolutional stages
strikes a better balance between feature enhancement and model
generalization.

4.6 Comparison of different classification
algorithms

To contextualize the performance of the proposed CNN +
CBAM framework, a comparison with related studies using the
same PhysioNet CinC 2016 dataset is presented in Table 5. The
proposed CNN + CBAM framework achieves the highest accuracy
(0.9866) among the compared methods, outperforming traditional
CNN-based approaches. This improvement can be attributed to the
following factors:

(1) Adaptive Attention Mechanisms: CBAM’s dual attention
mechanisms enable the model to focus on critical spectral
features while suppressing irrelevant regions.

(2) Effective Layer Selection: The strategic placement of CBAM
in early and mid-level convolutional layers optimizes feature
extraction without overfitting.

(3) Minimal Manual Feature Engineering: The proposed method
relies on spectrograms as input, reducing the need for manual
feature extraction and segmentation.

These results underscore the potential of attention-based
architectures for heart sound classification and highlight
the importance of optimizing CBAM placement for specific
datasets and tasks.

4.7 Evaluation results of model 7 on the
independent test set

To further evaluate the generalization capability of Model
7 in real-world scenarios, we assessed its performance on an
independent test dataset. A total of 12,378 samples were used for
training and validation, while the test set was constructed from the
PhysioNet 2022 database, ensuring full separation from the training
data. Based on a 9:1 ratio between the training (including validation)
and test sets, 1,294 heart sound samples were randomly selected to
form the test set.

The evaluation results are presented in Table 6 and Figure 14.
On the test set, Model 7 achieved an accuracy of 95.6%, sensitivity
of 95.09%, precision of 95.85%, F1-score of 95.47%, and an area
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FIGURE 13
T-SNE visualization results of Model 1 (a), Model 6 (b), Model 7 (c), Model 12 (d).

TABLE 4 Ablation study results for CBAM Configurations.

Model variant CBAM
placement

Accuracy (%) Loss

A Model 1 (None) 92.80 0.3565

B Model 9 (Only last
stage)

98.42 0.0445

C Model12 (All stages) 91.10 0.1915

D Model7 (1-1, 1-2, 2-1) 98.66 0.0344

under the ROC curve (AUC) of 96.29%. Figure 15 shows the
confusionmatrix, providing a clear visualization of the classification
outcomes for normal and abnormal heart sounds. Among the 1,294
test samples, the model accurately identified the majority of both
classes, with a low misclassification rate, reflecting strong feature
discrimination and classification balance.

In summary, Model 7 maintained excellent performance on the
independent test set, with high scores across all evaluation metrics.
These findings confirm the model’s robustness and generalization
ability, highlighting its potential for application in real-world clinical
decision support systems.

In addition, the total inference time for 1,294 heart sound
samples was measured to be 0.47 s, corresponding to an average
of approximately 0.36 milliseconds per sample. This demonstrates
the model’s high efficiency and suitability for real-time clinical
applications.

4.8 Computational efficiency and
practicality

To evaluate the practical deployment potential of our proposed
Model 7, we conducted a detailed analysis of its computational
efficiency in comparison with two commonly used deep learning
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TABLE 5 Comparison of different classification algorithms.

No. References Method Performance of macc

1 Wu et al. (2019) CNN 0.8981

2 Rubin et al. (2016) CNN 0.8340

3 Chen et al. (2019) CNN 0.9481

4 Cheng et al. (2019) CNN 0.9616

5 Browne and Ghidary (2003) 1D-CNN and 2D-CNN 0.9610/0.9529

6 Katal et al. (2025) VGG-16/LSTM 0.9644/0.92

7 Our study CNN + CBAM 0.9866

TABLE 6 Test performance of Model 7 on the independent dataset.

Metric Value

Accuracy 0.956

Sensitivity (Recall) 0.9509

Precision 0.9585

F1_score 0.9547

AUC 0.9629

FIGURE 14
ROC curve of Model 7 on the independent test set.

baselines—VGG16 and ResNet50. Specifically, we report four key
metrics: number of trainable parameters, training time per epoch,
average inference time per heart sound sample and frames per
second (FPS) (Table 7).

All experiments were conducted on an Apple M4 Mac mini
(16 GB RAM, macOS 15.4 Sequoia). The development environment
included Python 3.12, TensorFlow 2.17. The datasets used for

FIGURE 15
Confusion matrix of Model 7 on the independent test set.

training and testing times were consistent with those used in this
study, ensuring the accuracy and stability of the evaluation results.

Compared to VGG16 and ResNet50, Model 7 demonstrates
significant computational efficiency. Specifically, Model 7 reduces
the number of parameters by over 97%, leading to a substantial
decrease in computational complexity compared to VGG16 and
ResNet50. Additionally, Model 7 achieves an inference speed
of 1114 FPS, significantly outperforming the other two models,
which highlights its promising potential for real-time heart sound
analysis tasks.

Despite its compact structure, Model 7 maintains competitive
classification accuracy, as shown in Section 4.4. This balance
between speed and performance is attributed to the use of a
lightweight CNN backbone enhanced with CBAM attention, which
selectively emphasizes informative features without incurring high
computational costs.

While larger models like ResNet50 may offer marginal gains
in feature representation, their significantly higher training and
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TABLE 7 Comparison of computational efficiency across models.

Model name Number of parameters Training time/Epoch(s) Testing time/A heart
sample (msec)

Frames per second
(FPS)

VGG16 19,440,450 146.13 14.67 76.25

ResNet 50 61,771,778 508.34 13.63 21.92

Model 7(Ours) 588,644 10 0.363 1,114.0

inference costs make them less practical for real-world deployment,
particularly in resource-constrained environments such as wearable
medical devices or embedded systems. Our results highlight that
Model 7 offers the best trade-off between computational complexity
and classification accuracy, confirming its suitability for efficient and
scalable deployment in intelligent auscultation applications.

5 Discussion

This study explores the application of the Convolutional Block
Attention Module (CBAM) within a CNN-based framework for
heart sound classification, aiming to optimize the number and
placement of CBAM modules. Several key findings emerged from
the experiments:

First, the selective use of CBAM significantly improved
the model’s ability to extract meaningful features from
spectrogram representations of heart sounds. The dual attention
mechanisms—channel and spatial—enable the model to focus on
diagnostically relevant regions while suppressing irrelevant or noisy
information.

Second, the ablation experiments confirmed that the
effectiveness of CBAM is highly dependent on its placement.
While strategic placement improved performance, indiscriminate
integration of CBAM into all layers (as in Model 12) resulted in
overfitting and reduced generalization. In contrast, Model 7, which
applied CBAM after Conv Blocks 1-1, 1-2, and 2-1, achieved the
best overall performance, with an accuracy of 98.66% in cross-
validation and 95.6% on an independent test set. Furthermore, to
mitigate overfitting, an early stopping mechanism was incorporated
during model training. This approach halted training when
performance on the validation set plateaued, thereby enhancing the
model’s generalizability. This supports the hypothesis that attention
mechanisms are most effective when integrated into early and
mid-level layers.

Third, the T-SNE visualizations clearly illustrated differences in
feature space across models. Model 7 achieved the most distinct
clustering, with minimal intra-class overlap and a high inter-class
center distance, further validating its discriminative power. In
contrast, Model 1 and Model 12 showed less effective separation,
indicating insufficient feature learning or overfitting.

Compared to other CNN-based approaches, the proposed
method achieved superior results, largely due to the synergy between
attention-driven feature refinement and well-designed architecture.
However, limitations remain. The evaluation primarily relied on
the PhysioNet 2016 dataset, and while the test set from PhysioNet

2022 improved robustness, broader clinical validation is still needed.
Additionally, although CBAM is lightweight, its use increases
computational cost, which may affect deployment in resource-
constrained environments.

To evaluate the impact of window length onmodel performance,
we conducted preliminary experiments comparing 5-second
and 10-second segmentation windows. The results showed that
longer windows introduced additional noise, increased memory
consumption, and slightly degraded model performance, with
a decrease of approximately 15% in F1 score. Moreover, when
using overlapping windows, there is a potential risk of data
leakage between the training and validation sets. Based on these
findings, we adopted a 5-second non-overlapping window, which
achieves a better trade-off between signal completeness, diagnostic
sufficiency, and model generalization. While segmenting heart
sound recordings into 5-second intervals may raise concerns about
missing features beyond this window, we designed the segmentation
strategy to balance diagnostic coverage with computational
efficiency. Clinical consultations and prior research indicate that
pathological features such as murmurs and arrhythmias typically
recur acrossmultiple cardiac cycles and are thus likely to be captured
within a 5-second interval. To further ensure signal quality, we
excluded incomplete tail segments and those shorter than 5 s
to avoid introducing boundary artifacts, which could mislead
the model during training. Overall, this segmentation approach
enhances both model robustness and classification accuracy by
ensuring the integrity and diagnostic relevance of the input data.

In addition to its high classification performance, the proposed
model shows strong potential for real-world clinical applications.
Its fast inference speed (<0.5 s per case) enables near real-time
feedback, making it suitable for deployment in digital stethoscopes
or mobile diagnostic tools to assist physicians during auscultation,
especially in primary care or resource-limited settings. Moreover,
the model’s reliance on spectrogram inputs simplifies integration
into existing digital health workflows. Future work will focus on
validating the model across multiple datasets and clinical scenarios,
exploring lightweight attention variants, and developing model
compression and acceleration techniques to further support real-
time deployment on embedded or portable devices.

6 Conclusion

This study successfully demonstrates the potential of integrating
the Convolutional Block Attention Module (CBAM) into a
convolutional neural network (CNN) for improving heart sound
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classification accuracy. By leveraging spatial and channel attention
mechanisms, the proposed CNN + CBAM framework achieved
a classification accuracy of 98.66%, outperforming traditional
CNN-based methods on the same dataset. The results highlight
the importance of strategic CBAM placement, with early to
mid-level convolutional layers proving optimal for enhancing
feature extraction without overfitting. However, the study also
identifies key limitations, including dataset size constraints and
increased computational complexity due to CBAM integration.
These challenges underscore the need for further research to
enhance the generalizability and practicality of the proposed
approach. Future work should focus on expanding the dataset
to include diverse heart sound samples, developing lightweight
attention mechanisms, and validating the framework in real-world
clinical applications. By addressing these limitations, the CNN
+ CBAM framework has the potential to significantly advance
automated heart sound analysis and contribute to improved clinical
diagnostics.
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