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Introduction: Metabolic syndrome (MetS) is a clinical condition characterized
by multiple risk factors that significantly increase the likelihood of developing
cardiovascular diseases and type 2 diabetes. Traditional markers, such as body
mass index (BMI) and waist circumference, often fail to detect early metabolic
dysfunctions.

Methods: This study evaluated nonlinear characteristics of heart rate variability
(HRV) series, including sample entropy (SampEn), multifractal spectrum
parameters, and detrended fluctuation analysis (DFA). A total of 278 participants
were classified into three groups: no metabolic alterations, one or two
alterations, and MetS (defined as three or more alterations based on ATP
III criteria). HRV data were recorded at three time points: rest, exercise,
and recovery.

Results: Participants with MetS showed significantly lower SampEn and DFA
values at rest compared to those without alterations, indicating reduced signal
complexity. Moreover, a decrease in SampEn was observed in individuals with
one or two metabolic alterations, suggesting that autonomic dysfunction may
begin in the early stages of metabolic risk.

Discussion: These findings support the integration of nonlinear HRV analysis
with traditional methods to improve the early detection and management of
metabolic syndrome. The progressive reduction in heart rate signal complexity
may serve as a sensitive marker of early autonomic dysfunction in metabolic
deterioration.

KEYWORDS

heart rate variability time series, nonlinear dynamic techniques, sample entropy,
detrended fluctuation analysis, autonomic dysfunction

1 Introduction

Metabolic syndrome (MetS) is a complex clinical condition characterized by
the coexistence of multiple risk factors, including abdominal obesity, hypertension,
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dyslipidemia, and hyperglycemia. These factors significantly
increase the likelihood of developing cardiovascular diseases
and type 2 diabetes according to the Third Adult Treatment
Panel (ATP III) of the National Cholesterol Education Program
(NCEP) Over the past decades, its prevalence has risen alarmingly,
affecting not only adults but also younger populations, highlighting
the urgent need for more effective diagnostic and preventive
strategies (Fahed et al., 2022; US Department of Health and Human
Services et al., 2001; Murguía-Romero et al., 2015).

Traditional methods, such as body mass index (BMI)
and waist circumference, are widely used to assess metabolic
risk due to their simplicity and low cost. However, these
tools have important limitations, particularly in young
populations or individuals with metabolically healthy
obesity. These traditional markers often fail to detect
underlying metabolic alterations in seemingly healthy
individuals, potentially delaying diagnosis and increasing
the risk of severe long-term complications (Murguía-
Romero et al., 2013; 2012).

In this context, the analysis of heart rate variability time
series obtained from electrocardiographic (ECG) signals has
emerged as a promising approach to complement traditional
methods. Nonlinear parameters, obtained from the analysis of
heart rate variability time series such as sample entropy and
detrended fluctuation analysis (DFA), provide a detailed evaluation
of cardiovascular dynamics that cannot be captured through
conventional linear methods. These nonlinear analyses assess
the complexity and stability of heart rhythms, offering a more
precise insight into autonomic regulation and the adaptive capacity
of the organism (Aguilar-Molina et al., 2019; Asgharzadeh-
Bonab et al., 2020; Zhao et al., 2018).

Sample entropy quantifies the variability and irregularity
of heart rhythms, while DFA identifies long-term correlations
in time series. Previous studies have demonstrated that a
reduction in the complexity of these signals is associated with
a diminished ability of the cardiovascular system to adapt
to physiological changes. This reduction in complexity could
represent an early marker of autonomic dysfunction and an
indicator of incipient metabolic risk (Horie et al., 2018; Rojas-
Jiménez et al., 2021; Zhao et al., 2018). Several studies have
also demonstrated that autonomic function, assessed through
heart rate variability, is closely linked to metabolic processes
such as fat oxidation and metabolic flexibility, indicating that
reductions in signal complexity may reflect early impairments
in energy regulation and substrate utilization (La Rovere et al.,
2020; Monferrer-Marín et al., 2024; Porta et al., 2007). Moreover,
these tools not only complement traditional markers but also
have the potential to detect subtle metabolic alterations before
clinical symptoms become evident (Horie et al., 2018; Muñoz-
Diosdado et al., 2023).

Therefore, this study aims to evaluate whether the integration
of nonlinear parameters derived from ECG analysis can improve
the detection of MetS when combined with traditional markers.
This approach seeks to provide a more comprehensive assessment
of metabolic and autonomic health, enabling earlier and more
personalized interventions to prevent progression to severe chronic
conditions.

2 Materials and methods

2.1 Participant selection

Participants in the study were recruited voluntarily from three
key locations: the Immunology Laboratory at the Morphology and
Function Unit of the Faculty of Higher Studies Iztacala, UNAM;
the Exercise Physiology Laboratory at UICSE, Faculty of Higher
Studies Iztacala, UNAM; and the Laboratorio de Complejidad y
Análisis de Señales of the Unidad Profesional Interdisciplinaria de
Biotecnología del Instituto Politécnico Nacional. Individuals aged
between 18 and 65 years, regardless of gender, were included if
they met the following inclusion criteria: being in generally good
health, without prior diagnoses of cardiovascular, metabolic, or
neurological diseases, and not under treatment with medications
that could affect cardiovascular or metabolic function.

Exclusion criteria included the presence of any condition
that could affect the validity of the measurements, such as the
consumption of stimulants (caffeine, tobacco, etc.) in the 24 h
prior to the study, intense physical exercise in the 48 h before
the measurements, or the use of medications that could alter
autonomic or metabolic function. Individuals with a diagnosis of
type 1 diabetes, uncontrolled hypertension, or any other chronic
condition that could interfere with the interpretation of results were
also excluded.

All subjects were thoroughly informed about the study’s
objectives and procedures and signed an informed consent form
before participating. The project was approved by the Ethics
Committee of the Faculty of Higher Studies Iztacala, UNAM, with
approval number CE/FESI/022020/1348.

2.2 Sample collection procedure

Samples were collected in three distinct phases to ensure the
consistency and validity of the data. First, standard anthropometric
measurements were performed on the participants, including
weight, height, body mass index (BMI), and waist circumference.
These measurements were taken following protocols established by
theWorldHealth Organization (WHO), using calibrated equipment
and under controlled conditions to minimize variability between
measurements. Participants were weighedwithout shoes and in light
clothing, and waist circumference was measured at the level of the
navel at the end of a gentle exhalation.

The second phase involved recording ECG signals using Fukuda
Denshi FM-180 Holter monitor, which include built-in band-pass
filter ranging from 0.05 to 40 Hz, helping to maintain signal stability
even during physical activity. First, recordings were taken at rest
for 30 min, followed by 30 min of physical activity (3.5 mph for
young adults aged 18 to 30, and 3.0 mph for adults aged 30–65),
these speeds were selected because they did not pose any health
risks, considering that some participants were sedentary. No specific
dietary restrictions were imposed prior to this phase, as the aim
was to assess autonomic responses under habitual physiological
conditions. This was followed by a 15-min recovery phase.

Similarly, for the biochemical evaluation, no dietary
standardization was implemented prior to the fasting blood
draw. This decision was made to reflect each participant’s general
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health and metabolic status under real-life conditions, rather than
to assess the effect of a controlled intake. Therefore, no direct
correspondence was expected between biochemical values and
autonomic parameters recorded on a different day.

Finally, third phase consisted of the collection of blood samples
after a minimum of 8 h of fasting to assess levels of glucose, lipids
(total cholesterol, HDL, LDL, triglycerides), insulin, uric acid, and
other relevant metabolic markers. Blood samples were collected by
trained personnel using standardized venipuncture techniques. The
samples were centrifuged and stored at 4°C–6°C until they were
processed to prevent analyte degradation. Blood sample analysis was
conducted at Grupo Diagnóstico Médico Proa S. A. de C. V. using
automated equipment and certified reagents to ensure the accuracy
and reproducibility of the results.

2.3 Electrocardiographic monitoring

Electrocardiographic monitoring was performed using a Holter
Recorder Digital Walk FM-180 by Fukuda Denshi, which allowed
continuous recording of the heart’s electrical activity during the
different phases of the study. First, participants were fitted with the
Holter and allowed to rest for 30 min to obtain a baseline of cardiac
activity at rest. This initial rest period was crucial for establishing a
reference point before subjecting participants to physical activity.

Next, participants engaged in a 30-min walk on a linear
treadmill at the speeds mentioned above, during which the Holter
continuously recorded the electrocardiographic signal (ECG),
enabling the capture of data during moderate physical exertion.
Once the walk was completed, participants were again placed at
rest for 15 min, during which the Holter monitoring continued
to assess cardiac recovery and heart rate dynamics following
physical exertion.

In addition to ECG monitoring, participants’ blood pressure
was measured at two key moments: during the initial rest period,
and at the end of the post-exercise recovery period. These blood
pressure measurements were taken using digital blood pressure
monitors (HEM-7120-LA, OMRON Healthcare, INC.). All stages of
electrocardiographic monitoring and blood pressure measurements
were conducted at the three study sites under controlled conditions
to minimize external variations that could affect the results.

2.4 Electrocardiographic signal analysis

The heart rate variability signal analysis was conducted using
a combination of advanced techniques to assess the complexity
and variability of the cardiac signal and to identify patterns
associated with autonomic regulation. The data obtained from the
Holter were processed and analyzed in several stages, focusing on
detecting irregularities that could indicate metabolic and autonomic
dysfunctions in the participants.

2.5 Data preprocessing

The ECG signal and heart rate variability (HRV) series were
extracted from Holter software SCM-510, which calculates the

positions of the R-peaks of the ECG to construct the RR interval
series. It is important to note that no additional digital filtering
was applied to the ECG signal since the built-in band-pass filter
(0.05–40 Hz) in the Holter monitor effectively reduces baseline
drift and high-frequency noise, ensuring signal quality even during
physical activity. On the other hand, artifacts from HRV series were
removed using a thresholding approach, since R-peak detection can
sometimes fail—either by missing actual peaks or by mistakenly
identifying noise as R-peaks. To address this, interbeat intervals
greater than 1.5 s and less than 0.2 s were excluded, as such values
typically result from the aforementioned detection errors. The
complete interbeat interval signal was divided into three subseries:
rest, exercise, and recovery. Each segment was defined based on the
time associated with its corresponding stage; hence, 4,096 samples
were taken during the resting period, and 2,048 samples during
exercise. For the recovery phase, the number of samples varied
depending on how long each subject took to return to their baseline
heart rate.

It is worth mentioning that both the initial transition periods
and the final stages of each test were excluded from all subseries, this
ensured that only stable physiological states were analyzed, allowing
the data to reflect consistent and reliable patterns. To further support
the temporal stability of the selected segments, the coefficient of
variation (CV) of the RR intervals was calculated. While CV is not
a fully robust metric for nonlinear and non-stationary time series,
it provides a useful reference when applied to short segments. The
results showed that CV remained below 13% in all analyzed stages:
during rest, CV was 9.44% ± 3.60%; during exercise, 4.14% ± 2.48%;
and during recovery, 12.29% ± 3.84%. In contrast, the CV of the
full-length series was 22.41% ± 6.36%, due to the high variability
in heart rate throughout the entire recording period. This analysis
also reveals a loss of heart rate variability during physical activity
compared to variability at rest.

2.6 Entropy calculation

The entropy of the ECG signals was calculated using the sample
entropy algorithm, which allows the assessment of signal complexity
at different time scales. This approach is particularly useful for
identifying irregularity and variability in cardiac signals, providing
a measure of the dynamic complexity of the cardiovascular system
(Aguilar-Molina et al., 2019). For its calculation it was used the
following algorithm (Richman and Moorman, 2000):

Let x be the dataset of length N and the vector xi a subset
of x with length m, from this it can be formed the vector xj =
{xi,xi+1,xi+2,⋯,xm}. The vectors xi and xj are similar if they comply
that |xi − xj| < r, where r = 0.2σ, and σ is the standard deviation of x.
Hence, the number of vectors that fulfil this fact is calculated using
Equations 1, 2:

nmi =
N−m

∑
j = 1
i ≠ j

δ(i, j,m, r) (1)

where:

δ(i, j,m, r) = { 1 i f |xi−xj| < r
0 otherwise

(2)
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The similarity Am
i of the vectors is obtained from:

Am
i =

1
N−m

nmi (3)

Then using Equation 3, the average similarity is calculated by:

Am = 1
N−m
·
N−m

∑
i=1

Am
i (4)

Using the same analysis, the average similarity (Equation 4)must
be calculated from xi and xj vectors of lengthm+ 1 i.e. Am+1. Finally,
the sample entropy (E) was obtained from:

E = − ln(A
m+1

Am ) (5)

The sample entropy (Equation 5) was evaluated at rest,
during exercise, and during recovery, allowing for comparison
of autonomic responses in different physiological states (Solís-
Montufar et al., 2020).

2.7 Detrended fluctuation analysis (DFA)

Detrended Fluctuation Analysis (DFA) was used to investigate
the presence of long-term correlations in heart rate time series. This
method is useful for detecting stability and fractal relationships in
the cardiac signal, which can reflect the integrity of the autonomic
system and its ability to respond to different stimuli (Asgharzadeh-
Bonab et al., 2020). The algorithm used for the DFA is
described below:

First, the trend of the x series of length N
is removed (Peng et al., 1995):

y(k) =
N

∑
i=1
(xi − x) (6)

Then, the detrended series obtained in Equation 6 is segmented
into subseries of length n, for these subseries the linear fit was
obtained by using least squares and the resulting equation yn(k) is
subtracted to y(k) as follows:

F(n) = √ 1
N
·

N

∑
i=1
(y(k) − yn(k))

2  (7)

F(n) in Equation 7 measures the fluctuation of the series. This
process is repeated for each substring length with 10 ≤ n ≤ N

10
.

Finally, the slope of the linear fit (γ) of the log10(F(n)) vs. log10(n)
graph is obtained.

The γ values were calculated for signals at rest, during exercise,
and in the recovery phase, providing a comprehensive view of
autonomic regulation under normal and stress conditions.

2.8 Multifractal spectrum

It was used a method for direct calculation of the multifractal
spectrum proposed by Chhabra and Jensen (Chhabra et al., 1989).
The method normalized the time series P(x) and then it was divided

into subseries of length L = 2n, after that, the family of normalized
measures μi(q,L) was calculated as indicated in Equation 8:

μi(q,L) =
[Pi(L)]

q

∑
j
[Pj(L)]

q (8)

Then, the fractal dimension f(q) was calculated by:

f(q) = lim
L→∞

∑N
i
(μi(q,L) ln(μi(q,L)))

ln (L)
(9)

Finally, the Hölder exponent α(q) is obtained from:

α(q) = lim
L→∞

∑N
i
(μi(q,L) ln(Pi(L)))

ln (L)
(10)

Equations 9, 10 were follow for each q-value from −30 to 30.The
plot formed by f(q) vs. α(q) is known as the multifractal spectrum
(see Figure 1), and one interesting feature of this graph that can be
obtained is the spectrum’s width, which measures the complexity
of the series it is known as the multifractality degree, and it is
obtained from:

Δα = αmax − αmin (11)

where αmax and αmin in Equation 11 represents the roots of the
spectrum (see Figure 1).

It has been shown that the width of the multifractal
spectrum (Δα) is larger for healthy and young individuals,
and this width decreases with age and even more significantly
with disease (Aguilar-Molina et al., 2024).

2.9 Principal component analysis (PCA)

APrincipal ComponentAnalysis was performedusingR software
and the FactoMineR and Factoextra packages. This analytical
approach allowed for the summarization and visualization of the
data sets, describing multiple inter-correlated quantitative variables.
Additionally, a concentration ellipse was added around the three
study groups present any metabolic alterations (NMS0), had one or
two metabolic alterations (NMS2), and with metabolic syndrome by
meeting three ormore of theATP III criteria (WSM) (USDepartment
of Health and Human Services, Public Health Service, National
Institutes of Health, National Heart, Lung and Blood Institute, and
National Cholesterol Education Program, 2001), based on a mean
point, using a default confidence level of 0.95 for the underlying
Gaussian distribution. The PCA identified the main components
(mean variables) that contribute the most to explaining the variance
in response patterns among the groups. This analysis was crucial in
determiningthemostrelevantparametersthatdifferentiate individuals
according to their metabolic profiles.

2.10 Comparative statistical analysis

Tocompareall themost relevantvariables that explain thevariance
and form clusters between the three groups (NMS0, NMS2, WMS)
identifiedbythePCA,astatisticalanalysiswasperformedusingWelch’s
t-test (95% confidence interval) within the R software environment,
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FIGURE 1
Schematic representation of the workflow for obtaining ECG-derived parameters during rest, exercise, and recovery. The figure illustrates the process
from ECG signal acquisition to the extraction of key parameters such as heart rate, entropy, Δα, DFA, recovery time, and post-recovery slope, based on
established methodologies.

employing the ggstatplot and ggplot2 packages. Results with a p-value
less than 0.05 were considered statistically significant. This analysis
allowed for the identification of key differences between the groups,
providing a deeper understanding of the variations in metabolic and
autonomic responses related to the evaluated parameters.

3 Results

3.1 Population of study

This study included a total of 278 participants, of which 172
were women and 106 were men. The average age of the population
was 28.12 ± 12.5 years, with an age range between 18 and 65 years.
In terms of anthropometric characteristics, the average weight of
the participants was 66.39 kg, with a minimum weight of 41 kg and
a maximum weight of 114.5 kg. The average height was 1.62 m,
with a minimum height of 1.4 m and a maximum of 1.85 m.
Participants were classified into three groups based on the presence
of metabolic alterations, using the ATP III criteria for identifying
metabolic syndrome. A total of 93 individuals did not present
any metabolic alterations (NMS0), 141 had one or two metabolic
alterations (NMS2), and the remaining 44 were diagnosed with
metabolic syndromebymeeting three ormore of theATP III criteria.

3.2 Detailed analysis of the
electrocardiographic signal and autonomic
response

The continuous electrocardiogram (ECG) was recorded during
the stages of rest, exercise, and recovery, and processed to obtain

a series of key parameters reflecting both basic cardiac function
and signal variability. Heart rate at rest, during exercise, and in
recovery was calculated from the RR intervals in the different phases
of the protocol. Resting heart rate was measured during the last
15 min of the initial rest period, heart rate during exercise was
recorded over the 30 min of physical activity, and heart rate during
recovery was determined during the 15 min following the cessation
of exercise.

The sample entropy was calculated over the complete RR time
series (it was labeled as E-total), while resting entropy and exercise
entropy were specifically calculated for those phases. In addition,
Δα and γ values were calculated for complete series (Da-total and
g-total, respectively) as long as for resting and exercise series. Δα is a
measure of signal complexity, and its decrease reflects a reduction
in the range of responses that the heart can provide to stress or
external stimuli. On the other hand, γ-values were used to assess
long-term correlations in the ECG signal, providing information
on the stability of autonomic control. Sample entropy quantifies
the complexity and irregularity of heart rate variability time series.
Lower sample entropy values indicate more regular and predictable
patterns, often associated with aging or pathological conditions,
while higher values suggest greater complexity and adaptability of
the autonomic nervous system.

Finally, recovery time and post-recovery slope were calculated
from the evolution of heart rate after exercise. The recovery time
was calculated by truncating the series after exercise until the
interbeat interval returned approximately to its original value, and
the sum of these RR intervals was computed. On the other hand, the
recovery slope was determined using a linear least-squares fitting
of the previously truncated series. The recovery slope is smaller
in sedentary individuals since they take longer to return to their
normal heart rate. In contrast, in healthy individuals who exercise
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regularly, the slope is steeper, as their heart rate recovers within a
few minutes.

3.3 Principal component analysis and
group representation

The objective of the PCA was to determine whether could
exist a clear separation along the principal components based on
the evaluated parameters, which would suggest effective variance
between the three groups defined in the study. The analysis revealed
that the first two dimensions together explained 37.6% of the total
data variance, with 22.1% of the variance explained by the first
component and 15.5% by the second (Figure 2).

The first component is strongly influenced by variables related
to height-weight and blood pressure, such as body mass index,
waist circumference, and systolic blood pressure all of which were
recorded at baseline, prior to the exercise protocol (Figure 2). Age
was included in the PCA but showed a low contribution to the
main components, suggesting that it was not a relevant factor in
the separation of groups in this particular sample, which consists
predominantly of young adults. Although the influence of age on
autonomic function has been well documented in the literature,
it did not emerge here as a principal source of variance in our
population. Complementary analyses support this decision: the age
distribution was centered around young adults, with a mean of
was 28.12 ± 12.5 years (Supplementary Figure S1); age also showed
only weak correlations with nonlinear ECG-derived variables such
as sample entropy and DFA (Supplementary Table S1). Together,
these findings indicate that age was not a determining factor in
the group separation and therefore was not considered in the
subsequent dimensional interpretations.This is reflected in the clear
separation of individuals with metabolic syndrome, who cluster
in a region with high values on this component, indicating an
alteredmetabolic and cardiovascular profile. In contrast, individuals
without metabolic alterations cluster at the opposite end, suggesting
a healthier metabolic state. Participants in the NMS2 group occupy
an intermediate position, reflecting a moderate metabolic risk.

3.4 Individual comparison of relevant
parameters

Following the PCA, several parameters were identified as
relevant to evidence variance between the study groups. To evaluate
the differences in the means of these parameters among the three
groups (NMS0, NMS2, and WSM) an individual analysis was
performed using Welch’s t-test. This analysis revealed statistically
significant differences across a range of parameters, which were
divided into two groups based on their clinical relevance and their
potential to provide insights into themetabolic and autonomic status
of the participants.

The first group includes parameters traditionally associated with
the metabolic profile, such as atherogenic index, body mass index
(BMI), glucose, insulin, uric acid, waist circumference, weight, total
cholesterol, HDL, LDL, and triglycerides (Figure 3).The atherogenic
index was higher in the WSM group compared to NMS0 and
NMS2, indicating a significant difference in this parameter among

the groups. BMI also showed a progressive increase from NMS0
to WSM, with statistically significant differences, suggesting that
this parameter increases in relation to the severity of the metabolic
profile. Glucose levels were significantly higher in the WSM group
compared to the NMS0 and NMS2 groups. Insulin levels were
elevated in theWSMgroup, although the differences betweenNMS0
and NMS2 were not statistically significant. Uric acid levels were
also significantly higher in the WSM group compared to NMS0
and NMS2, indicating a substantial variation in this parameter
depending on the metabolic status. Waist circumference showed a
notable increase in the WSM group, being significantly larger than
in the other groups. Body weight was also significantly higher in
the WSM group compared to NMS0 and NMS2. Total cholesterol
and LDL levels were higher in the WSM group, with significant
differences compared to the other groups, while HDL levels were
lower in WSM compared to NMS0 and NMS2. Finally, triglycerides
showed significantly elevated levels in the WSM group compared
to the other groups, indicating a clear difference in this parameter
among the study groups.

The second group of parameters includes those primarily
derived from exercise activity and detailed electrocardiogram
(ECG) analysis, such as resting entropy, Δα−Total, γ at rest and
during exercise, systolic and diastolic blood pressure before and
after exercise, recovery time, and post-recovery slope (Figure 4).
Resting entropy was lower in the WSM group compared to NMS0
and NMS2, reflecting lower complexity in the cardiac signal
of individuals with metabolic syndrome. Δα−Total also showed
differences between the groups, with lower values in the WSM
group compared to NMS0, indicating a variation in autonomic
regulation based on metabolic status. DFA, both at rest and during
exercise, was lower in the WSM group compared to NMS0 and
NMS2, with statistically significant differences among the groups,
suggesting reduced stability in autonomic control in individualswith
metabolic syndrome.

In addition, systolic and diastolic blood pressure measurements
before and after exercise showed significant differences among
the groups, being higher in the WSM group compared to
NMS0 and NMS2.

Finally, recovery time and post-recovery slope showed clear
differences between the groups, with longer recovery times and less
pronounced slopes in the WSM group, indicating a variation in
cardiovascular recovery capacity according to the metabolic profile.

4 Discussion

Principal component analysis allowed the identification of key
factors that explain a significant portion of the variance between
the study groups. Among these factors, resting entropy, heart rate
variability, andDFA values were themost relevant for differentiating
theNMS0,NMS2, andWSMgroups, suggesting that non-traditional
markers derived from electrocardiographic analysismay be essential
for assessing metabolic risk and identifying autonomic dysfunction.
Although the inclusion criteria allowed for a broad age range (18–60
years), the actual distribution of participants was concentrated
around young adults due to the nature of voluntary recruitment. As
a result, age did not contribute significantly to the PCA variance
and was not used for further interpretations. This demographic
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FIGURE 2
Principal component analysis representing the distribution of individuals across the first two principal components, Dim1 and Dim2, which together
explain 37.6% of the total variance (Dim1: 22.1%, Dim2: 15.5%). Individuals without metabolic alterations (NMS0), those with one or two metabolic
alterations (NMS2), and those with metabolic syndrome (WSM) are differentiated. (A) shows the distribution of individuals in each group with 95%
confidence ellipses; (B) displays the contribution of each variable to each dimension, with colors indicating the intensity of the contribution; and (C)
illustrates the correlation of each variable with the principal components in multiple dimensions.

characteristic should be considered a limitation, and the present
findings should not be generalized to older populations without
additional studies including more age-diverse groups.

Parameters derived from signal analysis, such as entropy
and heart rate variability, are effective in capturing subtle
differences in participants’ autonomic and metabolic health and
have been suggested as early markers of autonomic deterioration

(Carricarte Naranjo et al., 2017; Castiglioni et al., 2022; Ortiz-
Guzmán et al., 2023b; Wei et al., 2019). However, our study reveals
that decreases in entropy and heart rate variability occur not
only in individuals with advanced metabolic syndrome but also
in those with one or two metabolic alterations, suggesting that
these parameters could serve as early biomarkers of metabolic risk.
This suggests that integrating traditional metabolic markers with
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FIGURE 3
Comparative analysis of traditional metabolic parameters across the three study groups: NMS0 (no metabolic alterations), NMS2 (one or two metabolic
alterations), and WSM (with metabolic syndrome). The box plots display the distribution of atherogenic index, BMI, glucose, insulin, uric acid, waist
circumference, weight, total cholesterol, HDL, LDL, and triglycerides. Statistical significance was assessed using Welch’s t-test. Significance levels are
indicated by asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, and ns (not significant) for p > 0.05.

autonomic parameters provides a more comprehensive view of
metabolic health. Although body mass index and blood pressure
are critical indicators of metabolic syndrome, the inclusion of
autonomic markers such as entropy and DFA adds an additional
layer of understanding, especially in the early stages of metabolic
dysfunction, allowing for earlier interventions and potentially
slowing disease progression.

The findings show notable differences in various traditional
metabolic profile parameters between the NMS0, NMS2, and WSM
groups. The atherogenic index, BMI, glucose, insulin, uric acid, waist
circumference, weight, total cholesterol, HDL, LDL, and triglycerides
exhibitedprogressivealterationsasthenumberofmetabolicalterations
increased (Figure 3). The WSM group, which includes individuals
withmetabolic syndrome, exhibited themost pronounced differences
in all these parameters compared to the NMS0 and NMS2 groups,
evidencing a deteriorated metabolic health state.

It has been extensively demonstrated that BMI and waist
circumference are predictors of cardiovascular and metabolic risk,
as both are directly related to visceral fat accumulation and insulin
resistance (Murguía-Romero et al., 2012). However, recent studies
have pointed out the limitations of these indicators when used as

sole risk predictors, especially in younger populations or individuals
with metabolically healthy obesity (Murguía-Romero et al., 2013).
This reinforces the need to consider additional parameters that
provide a more accurate picture of metabolic risk (Murguía-
Romero et al., 2015).

Moreover,elevatedglucoseandinsulin levelsobservedintheWSM
groupalignwithresearch(Figure 3),which identifies insulinresistance
as a fundamental component of metabolic syndrome (Guerrero-
Romero et al., 2016). This phenomenon is a known precursor of
type 2 diabetes and other metabolic disorders, emphasizing the
importance of monitoring these parameters in patients at risk of
progressing to metabolic syndrome.

Another relevant parameter for assessing metabolic risk is
uric acid. Although it has been associated with gout and renal
dysfunction, uric acid has recently been linked to metabolic
alterations, especially in those with metabolic syndrome (Wall-
Medrano et al., 2016). Recent findings have shown that elevated uric
acid levels may be associated with a higher risk of hypertension,
diabetes, and chronic kidney disease (Fahed et al., 2022).

The results show that individuals with metabolic syndrome
(WSM group) had significantly higher levels of BMI, waist
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FIGURE 4
Comparative analysis of parameters derived from exercise and electrocardiogram (ECG) data across the three study groups: NMS0 (no metabolic
alterations), NMS2 (one or two metabolic alterations), and WSM (with metabolic syndrome). The box plots display the distribution of diastolic blood
pressure (DBP) after exercise, diastolic blood pressure before exercise, resting entropy, systolic blood pressure (SBP) after exercise, systolic blood
pressure before exercise, Total Da, DFA during exercise, and DFA at rest. Statistical significance was assessed using Welch’s t-test. Significance levels are
indicated by asterisks: ∗p < 0.05, ∗∗p < 0.01, ∗∗∗p < 0.001, ∗∗∗∗p < 0.0001, and ns (not significant) for p > 0.05.

circumference, plasma lipids (total cholesterol, LDL, triglycerides),
glucose, insulin, and uric acid compared to the other groups
(Figure 3). The NMS2 group, composed of individuals with
one or two metabolic alterations, also showed significant
differences in several of these parameters compared to the
NMS0 group, particularly in insulin levels, triglycerides, and
waist circumference, suggesting that these alterations may be
early indicators of insulin resistance and cardiovascular risk
(Guerrero-Romero et al., 2016; Wall-Medrano et al., 2016).

It is likely that the combination of traditional and
non-traditional markers would enable a more precise and
earlier detection of metabolic risk, facilitating preventive

interventions in the initial stages (Murguía-Romero et al., 2015;
2012; Srikanthan et al., 2016).

The integration of autonomic parameters with traditional
markers provides a more comprehensive view of metabolic health,
as demonstrated by the results obtained for systolic (SBP) and
diastolic blood pressure (DBP), both before and after exercise.These
parameters show a progressive increase from individuals without
metabolic alterations (NMS0) to those with one or two alterations
(NMS2), and finally, to those with full metabolic syndrome (WSM)
(Figure 4). This pattern suggests a close relationship between
progressive metabolic deterioration and increased blood pressure,
indicating that blood pressure may be a sensitive marker of
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cardiovascular and metabolic health. The literature has documented
that changes in blood pressure are often among the first signs
of cardiovascular dysfunction, even before the full manifestation
of metabolic syndrome, which underscores the relevance of
these findings (Murguía-Romero et al., 2015).

The increase in systolic and diastolic blood pressure in
groups with metabolic alterations may also be associated with
increased vascular resistance, a phenomenon widely linked to
endothelial dysfunction. Endothelial dysfunction is a key factor in
the development of cardiovascular diseases and is closely related
to insulin resistance, a central component of metabolic syndrome
(Wall-Medrano et al., 2016). Recent studies have shown that insulin
resistance can lead to increased arterial stiffness and, consequently,
higher blood pressure, which aligns with the results observed in
this study (Murguía-Romero et al., 2015).

It is important to note that the NMS2 group, which includes
individuals with one or two metabolic alterations, showed
intermediate blood pressure levels that are significantly higher
than those in the NMS0 group (Figure 4). This suggests that
blood pressure begins to increase at an early stage of metabolic
deterioration, highlighting the importance of monitoring this
parameter even in individuals who do not yet meet all criteria for a
metabolic syndrome diagnosis. Recent literature has emphasized
that early detection of blood pressure changes can be crucial
for implementing preventive interventions before irreversible
cardiovascular damage occurs (Guerrero-Romero et al., 2016).

The results of detrended fluctuation analysis (DFA) during
exercise and at rest reveal significant differences between individuals
with metabolic syndrome and those without metabolic alterations,
but not between the group with one or two metabolic alterations
and the other two groups (Figure 4). These findings suggest that
the long-term correlation of the heart rate variability time series, as
assessed by DFA, could be a sensitive indicator of fully developed
metabolic alterations, though itmay be less sensitive to early stages of
metabolic syndrome development (Pranata et al., 2017; Sharif et al.,
2018; Li, 2020; Nayak et al., 2019).

Our study results also showed a significant reduction in resting
entropy in individuals with metabolic syndrome compared to
those without metabolic alterations (Figure 4). This finding suggests
that the loss of complexity in the heart rate variability time
series is associated with impaired autonomic regulation of the
cardiovascular system, which is consistent with what has been
reported in the literature. The decrease in entropy reflects a reduced
capacity of the cardiovascular system to adapt to physiological
changes, as observed in several chronic diseases, such as heart
failure and other metabolic conditions (Aguilar-Molina et al.,
2019). Previous studies have shown that reduced sample entropy
is associated with decreased parasympathetic (vagal) activity and
lower adaptability of the autonomic nervous system to internal
and external stimuli (Costa et al., 2005; Voss et al., 2008). In
individuals with metabolic syndrome, this decrease in entropy has
been interpreted as a marker of early dysautonomia that precedes
overt clinical deterioration (Trivedi et al., 2019). Our findings align
with these reports, suggesting that the reduced entropy observed
in our MS group reflects an early autonomic inflexibility linked to
impaired metabolic control.

Furthermore, we observed a significant decrease in sample
entropy in the group of individuals with one or two metabolic

alterations (Figure 4), suggesting that the complexity of cardiac
signals begins to decline in the early stages of metabolic risk,
even before meeting the full criteria for metabolic syndrome.
This pattern of early entropy loss has been previously reported,
suggesting that autonomic dysfunction could serve as an early
marker of metabolic deterioration (Solís-Montufar et al., 2020).
Specifically, this dysfunction has been associated with a reduction in
parasympathetic modulation and decreased autonomic adaptability,
leading to impaired cardiovascular control and reduced flexibility in
responding to metabolic demands. These alterations in autonomic
tone may precede clinically detectable changes and have been
described as early signs of cardiometabolic dysregulation (Ortiz-
Guzmán et al., 2023a; Voss et al., 2008).

The literature has consistently shown that young and healthy
individuals tend to have higher entropy in their cardiac signals,
indicating greater complexity and, therefore, better cardiovascular
health. In contrast, individuals with chronic conditions, such as
metabolic diseases, exhibit a reduction in entropy, suggesting
a dysfunction in autonomic regulation mechanisms (Rojas-
Jiménez et al., 2021). This reduction in system complexity reflects
a diminished ability to adapt to physiological changes, which has
been linked to an increased risk of cardiovascular events in patients
with metabolic syndrome and related conditions.

These observations underscore the importance of using
non-conventional methods, such as sample entropy, DFA and
multifractal spectrum analysis, to capture early alterations in cardiac
signals that may not be detected through traditional linear analyses.
The ability of sample entropy to detect these early changes reinforces
its potential as a promising marker for the early detection of
metabolic risk (Muñoz-Diosdado et al., 2023). A methodological
limitation of the present study is the absence of standardized dietary
control prior to the exercise and recovery phases. Acute food intake
may influence metabolic and autonomic responses, potentially
introducing variability in HRV measurements.

5 Conclusion

Our study shows a significant relationship between reduced
sample entropy and the presence of metabolic syndrome, suggesting
that entropy could be an important early marker of autonomic
dysfunction in individuals at risk of developing this condition.
The decrease in dynamic cardiac signal complexity was detectable
not only in individuals with fully established metabolic syndrome
but also in those with one or two metabolic alterations. This
suggests that entropy and other non-traditional markers derived
from electrocardiographic analysis, such as DFA, could help identify
metabolic dysfunctions before full clinical symptoms emerge,
allowing for early intervention and potentially altering the disease
trajectory.

Furthermore, connecting these non-traditional markers with
conventional metabolic indicators, such as body mass index, blood
pressure, and lipid profiles, provides a broader perspective on
metabolic health. While traditional indicators are effective for
diagnosing metabolic syndrome once it is advanced, the inclusion
of parameters such as entropy and DFA enables the detection of
subtle deviations in autonomic regulation that may lead to the full
manifestation of the condition. This highlights the ability of these
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markers to enhance risk assessment and support more personalized
clinical decisions, focused on preventing the progression toward
more severe metabolic syndrome.
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