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1 Introduction

Epidemiological studies show that living at moderate altitudes, i.e., 1,000–2,500 m,
is associated with beneficial health effects when compared to lower altitudes. Studies,
particularly from theAlpine regions (Faeh et al., 2009; Burtscher et al., 2021; Burtscher et al.,
2025) and the United States of America (Ezzati et al., 2012; Thielke et al., 2015),
unanimously report lower mortality rates, e.g., of all causes, cardiovascular diseases,
certain cancers and neurodegenerative diseases in populations living at moderate altitudes.
Lifestyle differences such as higher physical activity levels, and environmental factors such
as cooler ambient temperatures (particularly in times of accelerated global warming),
lower levels of aeroallergens, and elevated solar radiation (possibly via increasing
Vitamin D synthesis) might all contribute to healthy ageing when living in those areas
(Faeh et al., 2016; Burtscher et al., 2021). In addition, these studies also suggested a
protective role of higher altitude-associated hypobaric hypoxia. However, it remains unclear
how the small decrease in barometric – and associated partial oxygen – pressure at
moderate altitude could provoke beneficial adaptive responses. At least in awake and resting
humans, the resulting mild hypoxic conditions are not thought to induce robust hypoxic
responses. This opinion article discusses why hypoxic episodes can occur even at moderate
altitudes and which effects they may trigger to contribute to the beneficial health outcomes
mentioned above.

2 Can hypoxia promote beneficial adaptations at
moderate altitude?

A major environmental characteristic of increasing altitude is the decreasing
atmospheric pressure and the associated hypobaric hypoxia. In principle, exposure
to hypoxia can trigger adaptive responses on both the molecular and systemic
levels (Baillieul et al., 2017; Rani et al., 2025; Burtscher et al., 2023a). Although
oxygen availability is not considered to be reduced sufficiently up to about
2,500 m to induce meaningful physiological hypoxia responses in an awake state
and at rest, in certain conditions, e.g., during exercise or sleep, the hypoxia
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FIGURE 1
Arterial oxygen saturation (SaO2) values at the different levels of
arterial oxygen partial pressure (PaO2) at sea level and moderate
altitude, i.e., 2,240 m; at rest (black line) and during intense exercise
(red dotted line) based on reported blood gas values and equations
suggested by S.everinghaus.

occurring at moderate altitude may be strong enough (Rojas-
Córdova et al., 2023). Support for meaningful physiological effects
of hypoxia already at moderate altitude comes from the observation
that in humans the hemoglobin concentration – which is regulated
by precise oxygen sensing mechanisms – continuously and in
a linear fashion increases in people living at altitudes from
200 m to 2000 m (Staub et al., 2020).

The oxygen-hemoglobin dissociation curve (ODC, Figure 1)
illustrates that there is an apparently negligible decline of the arterial
oxygen saturation (SaO2) when moving from sea level to moderate
altitudes, i.e., 1,000–2,500 m, in the provided example in Figure 1
of <2%. This is the case despite an expected large decrease of the
arterial partial pressure of oxygen (PaO2) from about 100 mmHg to
70 mmHg at 2,240 m (Cid-Juárez et al., 2023). From this point (the
knee of the ODC), a steep decline of SaO2 follows with each further
drop in PaO2.

Depending on factors like increased temperature and decreased
pH of blood, the ODC is shifted to the right during physical
exercise. This results in a much more pronounced (>6%) drop in
SaO2 already at moderate altitude (i.e., 2,240 m in the example of
Figure 1) compared to sea level conditions. Thus, during exercise,
SaO2 drops from about 95% at rest to below 90%, usually considered
to indicate hypoxemia. Similarly, PaO2 also declines during mild
hypoventilation (e.g., during normal sleep or sleep-disordered
breathing), resulting in considerably more pronounced decreases of
SaO2 at moderate altitudes than at sea level (Rojas-Córdova et al.,
2023). This behavior of the ODC may be highly relevant for the
more than 860million people residing atmoderate altitudes between
1,000 and 2,500 m worldwide (Tremblay and Ainslie, 2021) and
also for the many millions of people annually visiting moderate
altitudes for sightseeing, hiking and skiing (Burtscher et al., 2023b).
Consequently, people living at or sojourning to moderate altitudes
repeatedly experience physiologically relevant drops in oxygen

availability, likely inducing a phenomenon similar to “hypoxia
conditioning”.

3 Potential mechanisms of hypoxia
conditioning

The concept of hypoxia conditioning has been first applied
in Soviet pilots to accelerate acclimatization to high altitude
(Serebrovskaya, 2002). Continuous or repeated exposures to hypoxia
at an adequate “dose” (intensity and duration of the hypoxia
exposure) initiate adaptive responses. Methods aiming for these
benefits are termed hypoxia conditioning (Burtscher et al., 2023a;
Verges et al., 2015).Thedosemust be strong enough (i.e., SaO2 below
90%) to trigger these responses but low enough for the organism
to cope with the hypoxic stress without suffering injury. If these
preconditions are met, e.g., during exercise or sleep at moderate
altitude, hypoxia conditioning and its health-promoting effects may
occur. This is indicated, for example, by the demonstrated risk
reduction of cardiac arrest during exercise after sleeping one night at
moderate altitude (Lo et al., 2013). The induced adaptive responses
may in turn cause protection from various stressors which are
linked, e.g., to acute cardiovascular events in the short-term and
to the development of chronic diseases and ageing in the long-
term (Burtscher et al., 2023a).Mechanistically, hypoxia conditioning
is thought to be mediated by a multitude of molecular and systemic
responses that can lead to beneficial adaptations, some of which are
discussed below.

The discovery and characterization of molecular responses
to hypoxia, notably involving the hypoxia-inducible factors
(HIFs) (Kaelin Jr and Ratcliffe, 2008; Semenza, 2012), has led to
a significantly improved understanding of the oxygen sensing
mechanisms and hypoxia responses. In response to cellular
hypoxia, these key transcription factors orchestrate the expression
of multiple genes that initiate adaptive molecular processes
aimed at improving oxygen supply, reducing the dependence on
oxygen and increasing cellular resilience. These adaptations can
have profound clinical importance. For example, intermittent
hypobaric hypoxia applications were found to improve myocardial
perfusion in coronary patients (del Pilar Valle et al., 2006). Even
intermittent hypoxia in obstructive sleep apnea were shown
to have possible cardio-protective effects, i.e., development of
new coronary collateral vessels (Liu et al., 2022), although in
obstructive sleep apnea the hypoxic dose usually by far exceeds
the upper threshold for therapeutic hypoxia conditioning effects
(Navarrete-Opazo and Mitchell, 2014). Many cellular components
other than HIFs contribute to the molecular responses to
hypoxia. Among them, the transcription factor nuclear factor
erythroid 2-related factor 2 (Nrf2), a core regulator of cellular
responses to oxidative stress, importantly contributes to health-
promoting effects of hypoxia conditioning, including cardiovascular
and central nervous system benefits (Burtscher et al., 2023a).
During the transition from hypoxia to normoxia (hypoxia-
reoxygenation), reactive oxygen species (ROS) are generated,
activating Nrf2 (Burtscher et al., 2022). In turn, Nrf2 promotes
the upregulation of antioxidant pathways and protects from
related cell and tissue damage (Sprick et al., 2019). Thus, hypoxia-
reoxygenation events, as occurring during sleep or exercise at
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moderate altitude, may represent major inducers of antioxidant
defense mechanisms, promoting cellular, tissue and organism
resilience (Sprick et al., 2019). Oxidative stress, like the associated
mitochondrial dysfunction and inflammation, are crucial factors in
the promotion of (age-related, including metabolic, cardiovascular
and neurological) diseases and aging itself, which may be partially
counteracted by hypoxia conditioning (Burtscher et al., 2023a).

Systemic responses and adaptations to hypoxia include
respiratory facilitation, modulation of coronary and cerebral blood
flow, attenuation of stress-related sympatho-excitation, regulation
of appetite and favorable metabolic adaptations, and improvement
of exercise tolerance (Glazachev et al., 2021). All these adaptations
may contribute to the lower cardiovascular mortality when living
at moderate altitude (Burtscher et al., 2021; Ezzati et al., 2012;
Faeh et al., 2009). Some of them such as lower sympatho-adrenergic-
activity have been suggested as potential explanations for the
observed risk reduction to suffer from sudden cardiac death
during physical activity, i.e., skiing, after short moderate altitude
exposures (Lo et al., 2013).

We propose that some conditions, like exercising or sleeping,
aggravate the drop in SaO2 at moderate altitude to levels sufficient
for the induction of clear physiological responses even to the mild
ambient hypoxia. As illustrated in the presented example (Figure 1),
a moderate right-shift of the ODC (e.g., through exercise) can push
the SaO2 down to levels (about 92%–90%) that have been linked
to robust systemic and molecular (for example, upregulation of
HIF-regulated erythropoietin) hypoxia responses (Ge et al., 2002).

4 Conclusion

Life atmoderate altitude and the related intermittently occurring
drops in SaO2 may represent natural hypoxia conditioning scenarios
that increase the resilience of the human organism. This in turn
may contribute to the risk reduction of acute cardiovascular adverse
events and in particular that of dying from chronic diseases such as
cardiovascular diseases and certain cancers.
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