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Weakly supervised
multiple-instance active learning
for tooth-marked tongue
recognition

Feilin Deng† , Shangxuan Li† , Zizhu Yang and Wu Zhou*

School of Medical Information Engineering, Guangzhou University of Chinese Medicine, Guangzhou,
China

Introduction: Recognizing a tooth-marked tongue has important clinical
diagnostic value in traditional Chinesemedicine. Current deep learningmethods
for tooth mark detection require extensive manual labeling and tongue
segmentation, which is labor-intensive. Therefore, we propose a weakly
supervised multipleinstance active learning model for tooth-marked tongue
recognition, aiming to eliminate preprocessing segmentation and reduce the
annotation workload while maintaining diagnostic accuracy.

Method: We propose a one-stage method tongenerate tooth mark instances
that eliminates the need for pre-segmentation of the tongue. To make full use
of unlabeled data, we introduce a semisupervised learning paradigm to pseudo-
label unlabeled tongue images with high model confidence in active learning
and incorporate them into the training set to improve the training efficiency of
the active learningmodel. In addition, we propose an instance-level hybrid query
method considering the diversity of tooth marks.

Result: Experimental results on clinical tongue images verify the effectiveness of
the proposed method, which achieves an accuracy of 93.88% for tooth-marked
tongue recognition, outperforming the recently introduced weakly supervised
approaches.

Conclusion: The proposed method is effective with only a small amount of
image-level annotation, and its performance is comparable to that of image-
level annotation, instance-level annotation and pixel-level annotation, which
require a large number of tooth markers. Our method significantly reduces the
annotation cost of the binary classification task of traditional Chinese medicine
tooth mark recognition.

KEYWORDS

tooth-marked tongue, weakly supervised learning, multiple instance learning, active
learning, pseudo label

1 Introduction

The tongue is the main organ of human internal organs and can reflect disorder and
even pathological changes in human internal organs. Tongue diagnosis is a non-invasive
diagnostic method that provides important signs for early diagnosis of disease and human
health. The tooth mark, one of the most important features of the tongue, is usually formed
when the tongue body is squeezed by adjacent teeth. The clinical manifestations of patients
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with a tooth-marked tongue are anorexia, abdominal distention,
gastric distention, and constipation (David Zhang andZhang, 2017).
Therefore, identifying tooth-marked tongue is of great value for
clinical diagnosis. In the clinic, tooth-marked tongue recognition
depends on doctors’ subjective observation of the morphological
information of the tooth marks on the tongue. Researchers have
attempted to use digital image processing and feature analysis for
objective tooth mark recognition, especially based on tooth mark
shape and color features (Hsu et al., 2011; Lo et al., 2012; Shao et al.,
2014). However, due to the great differences in the shape and color
of tooth marks, it is difficult to ensure the reliability and accuracy
of tooth-marked tongue recognition according to the color or shape
characteristics.

Deep neural networks (DNNs), with their significant feature
representation advantages, have been applied to tooth-marked
tongue recognition. There are two kinds of tooth-marked tongue
recognition methods: one is tooth-marked tongue classification
based on supervised image-level annotation, and the other is
object detection based on tooth-marked areas. For the first
category of tooth-marked tongue image classification, Sun et al.
(2019) proposed to classify tooth-marked tongue images by deep
convolution networks, and the concerned area of tooth marks
is visualized by the Grad-CAM (Selvaraju et al., 2017) model.
Wang et al. (2020) used a deeper convolutional neural network
(CNN), Resnet34 (He et al., 2016), and demonstrated that their
method achieved better efficiency and scene generalization ability.
Lu et al. (2023) proposed a prior regularization tooth-marked tongue
recognition method utilizing the prior knowledge of the location
and width of tooth marks. Tan et al. (2023) used a non-subsampled
wavelet transform for multi-scale decomposition and applied the
autoregressive local linear model encoding algorithm to retain key
texture information and remove redundant data in the decomposed
sub-images. This enabled the model to more comprehensively
extract the texture features of tooth-marked tongues, thereby
improving the accuracy of identification.

However, tooth-marked tongue recognition is a fine-grained
classification problem, which is not suitable for classification using
the above image-level supervision information (Fu et al., 2017). For
the other category of tooth-marked tongue recognition with respect
to object detection, Weng et al. (2021) proposed that the tooth
mark on the tongue be selected by frame, introduced the YOLOv3
(Redmon and Farhadi, 2018) model in object detection to detect
the tooth mark, and obtained promising results. Li et al. (2018)
considered tooth-marked tongue recognition as a multiple instance
learning (MIL) framework and first used the prior knowledge
that the tooth mark is concave–convex to generate candidate
regions. They then trained an instance feature extractor followed by
multi-instance classification Via support vector machine (MISVM)
(Andrews et al., 2002) for classification to obtain good performance.
The above methods based on object detection can yield promising
performance, but they require a large number of tooth mark
instances with strong annotation, which carries a huge labor cost.
Recently, Zhou et al. (2022) proposed a weakly supervised target
detection model (WSDDN) (Bilen and Vedaldi, 2016) for tooth-
marked tongue recognition to avoid the labor cost of toothmark
instances. However, this method requires tongue segmentation in
advance, which has a very large clinical workload.More importantly,
the above tooth-marked tongue recognition methods do not

consider large numbers of unlabeled data. When clinical labeling
is very cumbersome, this unlabeled tongue information should
be included to improve the performance of tooth-marked tongue
recognition.

Tooth-marked tongue detection with few image-level
annotations is a very challenging problem. First, if the tongue body is
not pre-segmented, the boundary information of the tongue cannot
be obtained. Consequently, it becomes difficult to extract samples
based on the prior knowledge that tooth marks are distributed on
the edge of the tongue body. Then, the simple instance generation
method (Van de Sande et al., 2011; Girshick, 2015; Zitnick and
Dollár, 2014) in object detection often generates many instances
from the background so that the image-level information learned by
the model is seriously disturbed by background noise, resulting in
inconsistent uncertainty between image-level and target instances.
Subsequently, a large amount of unlabeled tongue image data with
tooth mark information is not utilized by deep learning networks,
and whether to use active learning or semi-supervised learning for
fine-grained detection tasks without instance-level labeling is still an
unexplored problem. Finally, due to the diversity of the instances of
tooth marks produced by the tooth-marked tongue, it is difficult to
accurately represent image-level information only by the uncertainty
of the instance.

In this work, we propose a weakly supervised multiple-
instance active learning (WSMIAL)model for tooth-marked tongue
recognition that can significantly reduce the labeling cost from
three aspects: instance-level tooth mark region selection, pixel-level
tongue segmentation, and image-level category labeling. Specifically,
we propose a one-stage method to generate toothmark instances
without pre-tongue segmentation. Then, we introduce a semi-
supervised learning paradigm to pseudo-label images with high
model confidence and incorporate them into the training set to
improve the training efficiency of the active learning model. In
addition, we align the uncertainty consistency between the tooth
mark instances and the tongue image and propose an instance-
level hybrid query method considering the diversity of tooth marks.
Through comparative experiments of clinical tongue images with
related work, the proposed model has a competitive performance in
tooth-marked tongue recognition, and its annotation cost is much
lower than the existing tooth-marked tongue recognition models.

2 Materials and methods

2.1 Study population and tooth mark labels

The study was approved by the local ethics committee, and
the patients signed the informed consent form. We used standard
equipment designed byDaoshiMedical TechnologyCo., Ltd. (DS01-
B) to obtain tongue images from patients in the local institute.
We obtained 1,108 tongue images from the local medical research
institution. Figure 1 shows the representative tongue images with
or without tooth marks. The clinical criteria for the diagnosis of
tooth-marked tongue in traditional Chinesemedicine are as follows:
first, observe whether there are teeth squeezing on both sides of
the tongue body, resulting in tooth marks; Second, for parts of
the tongue where the tooth mark is not obvious, observe the color
depth of the suspicious area. The extruded tooth mark area usually
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FIGURE 1
Representative tongue images. (a) Tooth-marked tongue. The outline of both sides of the tongue is obviously distorted, and the color of the tongue
extrusion area changes; (b) tongue without tooth marks. The tongue is flat, with regular peripheral contour, without contour deformation and
discoloration area; (c) suspicious tooth-marked tongue. Because the tongue body is flat and the surrounding contour is not distorted, its label is finally
determined as a tooth-marked tongue by the color change of the extrusion area of the tongue edge.

has a darker color (Weng et al., 2021), as shown in Figures 1a,c.
Four traditional Chinese medicine doctors with 2–5 years of clinical
experience divided the tongue image into tooth-marked or non-
tooth-marked areas and framed the mark area judged as a tooth-
marked tongue to construct the tongue image data set. Although
the proposed method in this work does not need to segment the
tongue in advance and does not need instances of tooth marks to
realize other relevant tooth-marked tongue recognition methods
and compare their performance, we also arranged for doctors to
segment the tongue and label the tooth marks.

The flowchart of the work in this article is presented in Figure 2.
The blue arrows represent the workflow of labeled data, the light
pink arrows represent the workflow of unlabeled data, and the
gradient arrows represent the workflow of sharing labeled and
unlabeled data. Specifically, during the pre-training of the feature
extractor and the weakly supervised multi-instance learning stage,
only the data with labels is used, and the output is a binary
classification label of whether an image represents a toothed
tongue or not. In the instance uncertainty learning stage, unlabeled
data are added to the training, and then they enter the instance
representation learning stage together. The output is a tongue image
with a bounding box of the predicted tooth mark area. Finally,
the unlabeled data are subjected to efficient active learning. The
pseudo-labeled standard samples are finally placed in the label
data pool to start a new round of training. Only samples that
are particularly difficult to identify will be given to the experts
for annotation.

2.2 Proposed method

In order to reduce the interference of the background on tooth
mark recognition, previous studies (Li et al., 2018; Sun et al.,
2019; Wang et al., 2020; Weng et al., 2021; Zhou et al., 2022)
generally needed to preliminarily segment the tongue, which has

high labor costs. By comparison, we use a one-stage detection
method to directly extract the candidate tooth mark area to avoid
the tedious work of tongue pre-segmentation. Then, considering
that tooth-marked tongue recognition is a fine-grained classification
problem, we adopt the multi-instance learning paradigm (Li et al.,
2018). In addition, obtaining a large number of labeled tooth-
marked tongues requires high labor costs, while unlabeled data are
relatively easy to obtain and have not been used in tooth-marked
tongue recognition. Typically, there are two ways to use unlabeled
data: active learning and semi-supervised learning. The former
requires expert participation, and the latter does not. Inspired by
the works by Wang et al. (2017) and Zhang et al. (2022), we use
the combination of the two to obtain better performance. The
main difference is that we acquire image information based on
instance information and build a multi-instance efficient active
learning framework.

Previous studies have shown that weakly supervised target
detection can assist in locating the location of tooth marks,
and its advantage is that it does not require instance-level
annotation (Zhou et al., 2022). If the active learning model is
introduced based on the weakly supervised network, a significant
reduction of instance-level and image-level annotations can be
achieved. However, there are two problems in simply combining
weakly supervised target detection and active learning. The first is
weak supervision. There is no instance box labeling, so it is difficult
to filter instances. If the image information is simply obtained
by averaging the instance information with high uncertainty, it
will lead to the problem of background instance interference.
Second, due to the diversity of tooth marks, the selected examples
cannot fully represent the image. In order to solve the above
problems, we start with the uncertainty consistency between
instances and images and the representative learning of instances
and get the best image-level information through multi-instance
learning.
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FIGURE 2
The workflow of this work. The blue, light pink, and black arrows represent the processes of labeled data, unlabeled data, and combined data
processing, respectively.

Figure 3 shows the overall framework of the proposedWSMIAL
model. The framework is composed of an instance generation
module, a weakly supervised learning module, and a multi-instance
active detection module.

As shown in Figure 3, the blue, red, and black arrows represent
the processes of labeled data, unlabeled data, and combined data
processing, respectively. Initially, in step 1, the feature extractor
is pre-trained using labeled data. Subsequently, step 2 involves
generating instance proposals, which are then employed in step
3 for image-level predictions aimed at identifying tooth-marked
tongues. Step 4 performs instance uncertainty learning, fixes the
featureextractor’sparameters, andfine-tunes the instanceclassifiers
( fdet, f1, f2, fmil) tomaximize predictiondiscrepancies onunlabeled
data, thereby highlighting high-uncertainty instances. Following
this, step 5 shifts focus to instance-representative learning. The
classifiers’ parameters are fixed, and instead, the feature extractor
is fine-tuned to enhance its ability to select the most representative
instances, ultimately outputting theobject detection results. Finally,

step6leveragesactive learningtoselect imagesthatmeet thepseudo-
labeling criteria and incorporates them into the training dataset.
Refer toAlgorithm1for thespecificprocess.Eachmodule isdetailed
in the following sections.

2.3 Instances generation module

Similar to Weng et al. (2021), we use a one-stage method to
generate instances of tooth marks. The preset boundary boxes are
the length and width obtained by K-means clustering (Redmon and
Farhadi, 2018), while the backbone of feature extraction is replaced
by Resnet34, which has been demonstrated to be the best toothmark
feature extraction model (Wang et al., 2020). For the predefined
bounding boxes, we randomly select nine clusters and three scales,
evenly distributing the clusters across the scales.Thenine clusters are
(37, 19), (20, 41), (25, 36), (37, 35), (27, 52), (21, 69), (34, 47), (37, 64),
and (32, 90). We divide images into S× S grid cells. If the center of a
target falls into a grid, the grid is responsible for detecting the object.
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FIGURE 3
The proposed weakly supervised multiple-instance active learning (WSMIAL) network. FE means feature extractor, Du means unlabeled data pool, Dl

means labeled data pool, and Dpl means pseudo-label data pool (best viewed in color).

Each grid cell predicts the bounding boxes and the confidence score
of the boxes. The size of S depends on the size of the input image
size and the size of the downsampling. S is calculated by dividing
the input image size by the downsampling factor of the network.

2.4 Weakly supervised learning module

In the instance generation module, each lattice is responsible
for predicting the bounding box and the confidence of the
bounding box, but it may not completely contain objects. The
generated bounding box may not be able to frame the target
well, and there is no real bounding box, so the confidence
cannot be calculated according to the definition (Redmon et al.,
2016): con fidence = pred(object) ∗ IOUtruth

pred .Therefore, we follow the
method of Zhou et al. (2022), using the score of the detection
branch to describe the confidence of the bounding box, and use the
detection score and classification score to calculate the image-level

label and weakly monitor the accuracy of frame selection through
the image-level loss (Zhou, 2017).

Specifically, the detection branch is defined as Equation 1:

ydetcr =
ex

d
cret

∑Rn

r=1
ex

d
cret

(1)

where ydetcr ∈ R
C×Rn is the prediction score of all regions in a category.

c represents the category, and r represents the region.
The classification branch is defined as Equations 2, 3:

yclscrt =
∑T

t=1
xclscrt

T
(2)

yclscr =
ey

cls
crt

∑C
c=1

ey
cls
crt

(3)

where yclscrt ∈ R
C×Rn is the predicted score of all categories in a

candidate area, and t represents the number of branches.
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Input: Test set data pool Dt, unlabeled data pool

Du, labeled data pool Dl, pseudo-labeled data pool

Dpl, number of selected samples K, number of

selected instances Rn, pseudo-labeling threshold

δ, threshold decay rate dr, maximum number of

active learning iteration A, and times of

fine-tuned epoch.

1: a = 0, pre-train FE ← Dl

2: while a < A do

3: Fine-tuned model, Limg ← ycr ← yf1, yf2,

yfdet ← Dl, Dpl, epoch

4: Remove pseudo-annotation, Du ← Dpl

5: Use instance information to select K

image samples:

6:  Fixed FE

7:  Rn ∗2 instances ← Lmil, Ldis ← yf1, yf2, yfmil,

yfdet ,Du, Dl, Rn, epoch/2

8:  Unfixed FE, fixed f1, f2

9:  Rn instances ←, Lw ← yf1, yf2, Du, Dl, Rn,

epoch/2

10:  Top K ← Image information ← Rn instances

11:  Unfixed f1, f2

12: Expert annotation, Dl ← Du, K

13: Pseudo-annotation, Dl ← Dpl ← Du, δ

14: Threshold decay, δ ← a, dr

15: a = a+1

16: end while

17: Test model ← Dt

Output: Image-Level Prediction

Algorithm 1. Process of WSMIAL.

In the two branches of our model, the final score of each region
is obtained by taking the Hadamard product of two module scores:

ycr =
Rn

∑
r=1

yclscr �y
det
cr (4)

Finally, we calculate the image classification loss function
as Equation 5:

Limg (x) =
C

∑
c=1

yGT�log(ycr) (5)

2.5 Multi-instance active learning

The key to active learning lies in sample selection. If we
simply use the image score in Equation 4 as the information degree
of the image to select the sample, we will inevitably introduce
many background noise instances. Because we do not use the pre-
segmentation method to generate candidate instances, the image
score will be calculated using many background noises. In addition,
there is diversity in tooth mark instances, and such an image score
cannot represent the information degree of the image. Therefore,
we build the instance uncertainty learning module and the instance
representative learning module.

2.5.1 Instance uncertainty learning
To learn the uncertainty at the instance level, we use two

antagonistic instance classifiers in the detection network to obtain
the prediction of the instance (Lakshminarayanan et al., 2017). The
prediction difference between these two classifiers is maximized to
predict the uncertainty of the instance. The relevant equations are
shown in Equations 6, 7:

L = ∑
x∈Dl

Limg (x) − ∑
x∈Du

β�Ldis (x) (6)

Ldis (x) =
Rn

∑
r=1
|ycls1_cr − ycls2_cr| (7)

where ycls1_cr,ycls2_cr ∈ R
Rn×C are the instance classification

predictions of the rth instance in image x by two classifiers.
In addition, we add multiple instance learning classifiers

fmil in parallel next to the instance classifiers to reweight the
uncertainty of the instances, and the calculation process of the
classification score in Equation 3 of multiple instances in the same
image is updated as

ymil
cr =

ex
mil
cr

∑C
c=1

ex
mil
cr

� ey
cls
crt

∑C
c=1

ey
cls
crt

(8)

The classification score Equation 4 at the image level is updated
to Equation 9

y∗cr =
Rn

∑
r=1

ymil
cr �y

det
cr (9)

We reweight the uncertainty score of instances by minimizing
the loss of image classification to reweight the uncertainty of
instances while filtering noise instances. This actually defines an
expectation maximization procedure (Andrews et al., 2002; Bilen
and Vedaldi, 2016). Considering that the MIL score of instances
from backgrounds is very small, this can be achieved by optimizing
the following loss function:

Lmil (x) =
C

∑
c=1

yGT�log(y∗cr) (10)

This makes instances with larger classification scores but
smaller MIL scores be suppressed as the background. First,
the initial detector is obtained by applying MIL loss in the
labeled pool training process, and then the instance uncertainty
in the unlabeled set is reweighted. We combine the image
classification scores of all categories into a score vector, and
then reweight the example uncertainty, as represented in
Equation 11:

Ldis (x) =
Rn

∑
r=1
|wr|�(ycls1_cr − ycls2_cr) (11)

Finally, we update the optimization loss in Equation 6 to
Equation 12:

L = ∑
x∈Dl

(Limg (x) + Lmil (x)) − ∑
x∈Du

β�Ldis (x) (12)

According to Equation 8 and Equation 10, MIL loss ensures
that the highlighted instance uncertainty can represent the
image uncertainty, that is, minimizing the classification loss
of the image and minimizing the gap between the instance
uncertainty and the image uncertainty. Through the iterative
optimization of Equation 12, the gap between instance-level
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observation and image-level evaluation can be narrowed statistically,
and this is helpful in suppressing instances with high noise.

2.5.2 Instance representative learning
A well-known problem of uncertainty-based sampling in

active learning is the so-called sampling bias (Li et al., 2021),
indicating that the current instance cannot represent the image’s
potential distribution (Yuan et al., 2021). In particular, during the
generation of tooth marks, there are many instances with similar
characteristics to tooth marks that are not distributed on the
tongue. As shown in Figure 3, teeth, lips, cracks, and ecchymosis
are distributed on the tongue, which makes the instances based on
uncertainty alone unable to fully represent the information of the
image. Therefore, we introduce Wasserstein distance to select the
most representative instances.

The advantage ofWasserstein distance (Villani, 2009) is that even
if the two distributions do not overlap, Wasserstein distance can still
reflect their distance. This has been applied to the field of image
generation and has been demonstrated to be a good measure of
diversity (Gulrajani et al., 2017; Zhang et al., 2020).TheWasserstein
distance is defined as

W(PL,PU) = in f
γ∼II(PL,PU)

E(m,n)∼γ [‖m− n‖] (13)

where (PL,PU) is the set of all possible joint distributions of PL
and PU. Conversely, the marginal distributions of each distribution
are PL and PU. Each possible joint distribution can be sampled
from (m,n) ∼ γ to get two instance samples m, n and calculate the
distance of the pair of samples, so the expected value of the distance
of the samples under the joint distribution can be calculated as
E(m,n)∼γ[‖m− n‖]. The lower bound that can be obtained for this
expected value in all possible joint distributions is defined as the
Wasserstein distance.

Because in fγ∼II(PL,PU) cannot be solved directly, we can learn from
the generation method of the discriminator loss in Gulrajani et al.
(2017). First, according to Xiao et al. (2019), Equation 13 can be
equivalent to

W(PL,PU) =
1
Z

sup
‖ f‖L≦Z
(Ex∼PL [ f (x)] −Ex∼PU [ f (x)]) (14)

When the Lipschitz constant ‖ f‖L does not exceed the constant
Z, its upper bound Ex∼PL[ f(x)] −Ex∼PU[ f(x)] can be taken for all f
that can meet the condition, and we can use a set of parameters θ
to define a series of possible functions fθ. Then, Equation 14 can be
approximately solved as Equation 15:

K�W(PL,PU) ≈ max
θ:| fθ|L≦Z
(Ex∼PL [ fθ (x)] −Ex∼PU [ fθ (x)]) (15)

Due to the strong fitting ability of a deep neural network, a series
of fθ is enough to highly approximate sup‖ f‖L≦Z in Equation 14. So
far, we can construct a discriminator network containing parameter
θ within the limit of not more than under the condition of a certain
range (−Q,Q) to ensure that Equation 16 holds true.

LW (x) = Ex∼PL [ fθ (x)] −Ex∼PU [ fθ (x)] (16)

The smaller the value of LW is, the smaller the Wasserstein
distance representing the distribution of the instance is, which
means that the instance is more representative and the model
training is better.We denote fnail as this discriminator network.The

loss is shown in Equation 17:
L = ∑

x∈Dl

(Limg (x) + Lmil (x)) − ∑
x∈Du

β(�Ldis (x) + LW (x)) (17)

2.5.3 Efficient active learning
Because the data with image-level annotation need annotation

are expensive, the labeled samples in active learning are not
sufficient to train a deep neural network because most unlabeled
samples are usually ignored in active learning. It is difficult to
obtain proper feature representation by fine-tuning the deep
neural network using these few information samples. Therefore,
we introduce a more efficient active learning method, namely,
semi-supervised active learning (Wang et al., 2017; Li et al.,
2021). Specifically, a few images with rich information help
train more powerful classifiers, while most high-confidence
images help learn more distinctive feature representations. On
the one hand, although the number of labeled data is small,
the most uncertain unlabeled samples usually have a great
potential impact on the classifier. Selecting and labeling them
in training can help to develop a better decision boundary for
the classifier. On the other hand, although the performance of
the classifier cannot be significantly improved, the unlabeled
samples with high confidence are close to the labeled samples
in the feature space of a deep neural network. The practice of
pseudo-labeling and incorporating them into the training set
can improve the generalization performance of modularity and
is conducive to the low-density separation between categories
(Zou et al., 2019; Wei et al., 2021).

Because the uncertainty between the image and the instance
has been aligned, we select the top 2Rn samples with the highest
uncertainty and select the top Rn most representative instances
from them. Then, we average the uncertainty of these instances to
get the final image information degree. According to the ranking
of image information degree, we select 10% of the images with
the highest information each time to request experts for image-
level annotation. Then, we pseudo-label the samples with the
lowest information. It is worth noting that the pseudo-annotation
technology of semi-supervised learning is similar to active learning.
They must both learn image information, but the former is
based on model-based image annotation, and the latter requires
expert participation. We combine semi-supervised pseudo-labeling
methods, make full use of unlabeled data, and build an efficient
active learning model based on more training samples of the model
to improve model stability and robustness. We use a dynamic
threshold decay mechanism to enhance pseudo-label reliability as
the model learns. Specifically, we choose the sample with the lowest
information from the unmarked pool, and its image uncertainty
value is less than the threshold δ, thus avoiding the introduction of
noise from low-confidence pseudo labels. Then, we assign pseudo-
labels with explicit predictions. Pseudo-label ypse is defined as
Equation 18:

ypse = argmax(ycr) (18)

It is worth noting that the image will be pseudo-marked
only when the uncertainty of the image is less than δ. With
the incremental learning process, the classification ability of the
classifier is improved. In order to ensure the reliability of pseudo-
labeled image sample selection, we update the threshold at the end
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of each active learning iteration a through theEquation 19: a through
the following formula:

δ =
{
{
{

δ0, a = 0

δ− dr∗ a, a > 0
(19)

where δ0 is the initial threshold and dr is the threshold decay rate.

2.6 The implementation

The proposed model is implemented using PyTorch (pytorch.
org), and the objective function is minimized by using the AdmaW
algorithm. We used an NVIDIA RTX3090 graphics card with 24 G
memory. Parameters are set as follows: K = 100,A = 10,epoch =
20,δ0 = 0.01,dr = 0.001,Q = 0.01,Rn = 6,C = 2,T = 2. The basic
implementation code of this work can be found onGitHub at https://
github.com/Lsx0802/AUW.

3 Experimental results

3.1 Experimental setup and evaluation
metric

In order to assess the performance of the proposed method
and conduct an objective comparison with other related methods,
we annotate all tooth marks in tongue images at the image and
instance levels in advance.Meanwhile, different proportions of labels
were assigned in specific experiments to simulate the active learning
process of interacting with doctors and objectively compared with
other methods. Specifically, because only a few studies only used
CNN as a feature extractor (Li et al., 2018; Wang et al., 2020;
Zhou et al., 2022; Weng et al., 2021), we use Resnet34 (Wang et al.,
2020) as the backbone for fair comparison in all the methods.
The clinical screening data set contains 401 images of tooth-
marked tongues and 707 images of non-tooth-marked tongues. We
randomly used 108 of 1,108 images as an independent test set
Dt, containing 68 non-tooth-marked tongues and 40 tooth-marked
tongues, and the remaining 1,000 images were used as the training
set. We repeated the training and testing 10 times and evaluated
the performance of the model by evaluating the average value of
the indicators. For image-level tooth-marked tongue recognition,
we used Accuracy, Precision, Recall, and F1 scores to evaluate the
performance of the models. Clinically, patients with tooth-marked
tongues need further treatment, so we hope the model has a higher
Recall value under similar accuracy conditions. The following is a
detailed description. TP represents True Positives, TN represents
True Negatives, FP represents False Positives, and FN represents
False Negatives.

Accuracy reflects the percentage of correct predictions made by
the model over the entire dataset. It is calculated by the Equation 20:

Accuracy = TP+TN
TP+TN+ FP+ FN

(20)

Precision represents the proportion of all samples predicted by
the model to be in the positive category that are actually in the
positive category. It is calculated by Equation 21:

Precision = TP
TP+ FP

(21)

Recall, also known as the sensitivity or true-positive rate,
measures the proportion of samples that the model correctly
identifies as being in the positive category of all samples that truly
belong in the positive category. It is calculated as Equation 22:

Recall = TP
TP+ FN

(22)

F1 score (F1-Score) is the reconciled average of precision and
recall and is often used to balance the trade-off between the two. It
is particularly adaptable to the problem of category imbalance. It is
calculated by Equation 23:

F1− Score = 2× Precision×Recall
Precision+Recall

(23)

3.2 Performance comparison with different
methods

Current tooth-marked tongue recognition methods (Li et al.,
2018; Wang et al., 2020; Zhou et al., 2022; Weng et al., 2021) all
require 100% image-level annotation, while the object detection-
based methods (Li et al., 2018; Zhou et al., 2022; Weng et al., 2021)
require further instance-level annotation. In order to obtain better
detection performance (Li et al., 2018; Wang et al., 2020; Zhou et al.,
2022), the tongue body must be segmented at the pixel level in
advance in order to eliminate the interference of the background
area outside the tongue. From the performance comparison in
Table 1 and Figure 4, it can be seen that Li et al. (2018) have the
top performance of tooth-marked tongue recognition among the
above methods but also require the highest annotation cost. By
comparison, our method can match the performance of Li et al.
(2018) with only 50% image-level annotation without instance-level
and pixel-level annotation.Moreover, after active learning completes
100% annotation of the image, the tooth-marked tongue recognition
performance can slightly exceed the results of Li et al. (2018).This is
because our active learning strategy based on instance uncertainty
and diversity canmake the model obtain a better decision boundary
for tooth-marked tongue recognition. In addition, the pseudo-
annotation method can make the active learning model with small
data more robust.

3.3 Ablation study of multi-instance active
learning

In terms of query strategy in active learning, we compare the
proposed query strategy with baseline random sampling (random)
and common active learning strategies based on instance filtering,
such as sampling based on least confidence (Guo et al., 2017),
sampling based on uncertainty (entropy) (Lakshminarayanan et al.,
2017), and unsupervised clustering sampling based on diversity (K-
means) (Ash et al., 2019). As shown in Figure 5, the sampling
based on uncertainty outperforms random, minimum confidence
(least confidence), and clustering (K-means). Under the same
detection model (Section 2.4 WSL module), the entropy method has
the best performance among the common active learning strategies,
but theyall fail to surpass theperformanceofWSL’sbackboneResnet34
under 100% annotation. The methods of deterministic learning and
representative learning of examples are targeted to solve the problems
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TABLE 1 Performance comparison of different methods for tooth-marked tongue recognition (%).

Method Annotation Accuracy Precision Recall F1

Image Instance Pixel

ResNet34 (Wang et al., 2020) 100% - 100% 82.90 81.70 64.99 69.25

DarkNet-53 (Redmon and Farhadi, 2018) 100% - 100% 81.32 78.22 62.53 67.91

MISVM (Li et al., 2018) 100% 100% 100% 93.03 93.84 89.95 91.66

WSYOLO (Weng et al., 2021) 100% 50% - 84.50 83.78 77.21 81.59

WSYOLO (Weng et al., 2021) 100% 100% - 90.99 91.71 87.92 90.36

WSTDN (Zhou et al., 2022) 100% - 100% 91.80 86.80 93.39 89.45

WSMIAL (Ours) 50% - - 91.66 88.71 93.42 91.30

WSMIAL (Ours) 100% - - 93.88 89.90 93.70 92.50

FIGURE 4
Performance comparison of different methods of tooth-marked tongue recognition.

of weakly supervised detection of background noise and lack of
representativeness of examples and make full use of unlabeled data,
thus surpassing other common active learning strategies.

As shown in Figure 6, IUL represents the uncertainty of
our alignment instances and images, IRL represents that we use
the Wasserstein distance to learn the diversity of instances, and
EAL represents the introduction of the pseudo-labeling process.
Because we have excluded noisy instances by aligning instances
to image uncertainty (IUL), the performance of the model is
further improved, outperforming direct classification with 100%
image-level annotations while requiring only 40% of image-level
annotations way of ResNet34 Wang et al. (2020). Our approach
(Proposed) outperforms ResNet34’s approach when only 30%
image-level annotations are required. In the case where only 50%
image-level annotations are required, our method can achieve

almost the sameperformance as the fully annotatedMISVMmethod
Li et al. (2018). Combined with the results in Table 1, our model
outperforms the MISVM method when it is finally trained to
100% image-level annotation (Table 1), which demonstrates that our
method can greatly reduce the annotation cost while maintaining a
high level of performance.

Finally, we visualize the selected instances to confirm that our
method can improve the accuracy of image recognition through
instance information and the effect of weakly supervised localization
to assist clinical diagnosis. As shown in Figure 7, our method can
reduce the background noise of the instances shown in Figure 8 and
highlight the most informative instances by aligning the uncertainty
of instances and images and learning from the diversity of instances.
A–B and C–D are the images selected by the model in the second
and fifth rounds of active learning to request expert annotation,
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FIGURE 5
Accuracy of tooth-marked tongue recognition with different query strategies under active learning. The green dashed line represents the performance
of ResNet34 (Wang et al., 2020), and the purple dashed line represents the performance of MISVM Li et al. (2018).

FIGURE 6
Ablation performance of the proposed model with the accuracy of tooth-marked tongue recognition. The green dashed line represents the
performance of ResNet34 (Wang et al., 2020), and the purple dashed line represents the performance of MISVM Li et al. (2018).

respectively. In particular, as shown inA, themodel is not sensitive to
large toothmarks, whichmay be caused by the fact thatwe donot use
multi-scale detection methods like the common one-stage method.
In B and D, the model fails to detect the tongue tip. This may be due
to the fact that most of the teeth marks on the tongue are located on
both sides of the tongue (Zhou et al., 2022). The model identifies
the instances in the upper left corner of C and D as informative
regions, and these regions were also identified by later experts as
earlier annotation errors (as we introduced in Section “Experiment
setup and evaluation metric,” we first label all and then simulate the
process of requesting experts to label), the difficult areas where these
experts will makemistakes are the areas that need themost attention
of the model. E and F are the samples selected in the fifth round of
the pseudo-labeling process of the model. It can be clearly seen that

themodel hasmademore accurate discrimination on the toothmark
area of these images, so the final information of these images is the
lowest, and the pseudo-labels are added to enrich the training data.

4 Discussion

In this work, we propose an efficient multi-instance active
learning model to recognize tooth-marked tongues. This model is
based on incomplete and inaccurate supervision within the weakly
supervised learning framework. Compared with the previous tooth-
marked tongue recognition methods (Li et al., 2018; Wang et al.,
2020; Zhou et al., 2022; Weng et al., 2021), the proposed method
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FIGURE 7
Ground-truth labels of the tooth mark location boxes and examples selected by our method. A–D are the images selected by the model in the second
and fifth rounds of active learning to request expert annotation respectively. E, F are the samples selected in the fifth round of pseudo-labeling process
of the model.

solves the problem of inaccurate supervision based on multi-
instance learning and does not need a large number of instance-level
annotation. The proposed method adopts the one-stage detection
method and does not need the pixel-level annotation of tongue pre-
segmentation. In addition, we build an active learning framework,
which is not available in the previous tooth-marked recognition
methods. We use the most informative data to request expert
annotation so that the model can better represent the tooth mark

distribution and reduce the amount of image-level annotation.
Specifically, we construct the consistency of instance uncertainty
and image uncertainty to reduce the noise instances in tooth mark
detection.We further screened the toothmark instances based on the
diversity of instances, and were able to extract more representative
instances.

For active learning, previous studies have used the uncertainty
and diversity of images to select image samples (Wang et al., 2018;
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FIGURE 8
An example generated by the selective search method
Van de Sande et al. (2011) based on the common method of object
detection. The yellow bounding boxes shown in the figure represent
the object proposals generated by the selective search algorithm.

Ash et al., 2019), combined the pseudo-tagging technology of
semi-supervised learning with active learning (Wang et al., 2017;
Zhang et al., 2022), and combined multi-instance target detection
with active learning (Yuan et al., 2021). However, the proposed
method is different. We used only image-level annotation based on
weakly supervised multi-instance learning and the uncertainty and
diversity of samples to screen the information of image samples and
construct an efficient framework of active learning by using pseudo-
labeling technology. Compared with the training model with 100%
all-labeled data, the accuracy results of 30%–50% samples are also
competitive. Note that this is under the premise of active learning
of traditional Chinese medicine data with small samples; 50% of the
data of 1,108 cases is actually not much and is difficult to compare
with 20% of the data of 7,295 cases of active learning of mainstream
medical data (Zhang et al., 2022). Ourmethod of constructing image
information based on instance information captures fine-grained
information, enabling active learning models to be effective with
small datasets.

Although our proposed method is designed to solve the
problem of excessive annotation of instances in tooth-marked
tongue recognition, it can be applied to many other applications
in the field of active detection that require much instance-level
annotation, such as active detection of video streams (Zhu et al.,
2020) or the field of instance-level feature extraction based on
image-level annotation only, such as whole slide image (WSI)
classification (Shao et al., 2021). The study reported that one of
the challenges of video detection is the inconsistent cognition of
labels and the time-consuming and laborious labeling (Zhu et al.,
2020). In the future, video detection technology can be based on

weak supervision or self-supervision. In addition, a WSI image
is generally large and difficult to obtain and, therefore, very
difficult to label accurately (Shao et al., 2021). In the case of small
instances, our method can reduce the instance-level and image-
level annotation and may not significantly decrease the detection
and classification performance. In addition, the query strategy based
on the uncertainty and diversity of examples can better solve the
problem of instance diversity.

There are some studies that need to be improved in this work.
First, there is some correlation information between the instance
tooth marks of the same tongue. Previous studies (Shao et al.,
2021; Schölkopf et al., 2007) have shown that the mining of multi-
instance correlation information can further improve detection
performance. Therefore, it is possible to improve the accuracy of
the model by using the correlation between tooth marks. Then, our
method is based on the model of object detection, but most object
detection models are based on multi-scale to obtain joint accuracy.
In this work, we select the appropriate (shallow) scale to obtain the
detection accuracy. Because the tooth mark is generally small on the
tongue and accounts for a small proportion of the whole picture, a
shallow scale can have good detection performance for small targets.
However, the multi-scale method has been demonstrated to have
better detection performance in the field of object detection, so
we will consider how to further improve the performance based
on multi-scale object detection. In addition, we can strengthen
the original feature representation through feature reconstruction
(Chen et al., 2024). This will enable the model to better capture the
key features of tooth-marked tongues. After feature extraction, a
voting integration method (Bao et al., 2024) can be employed. By
combining the predictions of multiple weakly supervised classifiers
through weighted voting, the influence of noisy labels can be
mitigated. This process enhances the model’s robustness and
accuracy. Furthermore, there are not only toothmarks on the tongue
but also cracks, ecchymosis, congestion, and other diseases, and we
have not considered these additional symptoms in this work. In
future research, we will focus on conducting specialized multi-class,
multi-label, and multi-center studies on tongue images.

5 Conclusion

In this study, we proposed a weakly supervised active learning
tooth-marked tongue detection model with only a few image-level
labels. Experimental results showed that the proposed method is
effective with only a small amount of image-level annotation, and
its performance is comparable to that of image-level annotation,
instance-level annotation, and pixel-level annotation, which require
many tooth markers. Our method significantly reduces the
annotation cost of the binary classification task of traditional
Chinese medicine tooth mark recognition.
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