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Association between
gamma-glutamyl transferase
levels and the retinal age gap

Kai Yang† , Xiaoxuan Zhu† , Ziyu Li, Wei Lian, Jinxia Yan,
Shasha Ding, Zhenqing Wang, Yudie Wang, Jiaqi Ai,
Zhengyang Guo, Binbin Su, Jia Qu, Fan Lu*, Lele Cui* and
Ming Li*

National Clinical Research Center for Ocular Diseases, Eye Hospital, Wenzhou Medical University,
Wenzhou, Zhejiang, China

Background: To develop a retinal age prediction model based on a foundation
model using fundus images and to determine the association between gamma-
glutamyl transferase (GGT) levels and the retinal age gap.

Methods: A total of 36,044 fundus images with reasonable quality from 9,752
participants in the Jidong Eye Cohort Study were included in this study. Of
these images, 8,869 fundus images from 3,010 healthy individuals were used to
train and validate the model based on the foundation model RETFound for age
prediction using 10-fold cross-validation. A total of 4,081 fundus images from
4,081 participants who were enrolled from May to October 2023 had available
GGT data, and these images were used to investigate the association between
GGT levels and the retinal age gap.

Results: The trained model in this study achieved excellent performance, with a
mean absolute error (MAE) of 2.42 ± 0.08 years. Themean age of the participants
in the analysis dataset was 43.7 ± 10.4 years, and 1987 (48.7%) participants were
women. Themultivariable βs and 95% confidence intervals (CIs) of the retinal age
gap in the second, third, and fourth GGT quartiles compared with the lowest
GGT quartiles were 0.42 (0.08–0.77), 0.54 (0.15–0.92), and 0.72 (0.29–1.14) (P
for trend = 0.001), respectively, in the fully adjusted model (adjusted for age, sex,
current smoking status, current drinking status, body mass index, hypertension,
diabetes, dyslipidemia, and serum uric acid).

Conclusion: Increased GGT levels were significantly associatedwith accelerated
retinal aging as quantified by the retinal age gap. Our findings indicate that
elevated GGT levels may have an adverse effect on the aging process.

KEYWORDS

retinal age gap, gamma-glutamyl transferase, foundation model, aging acceleration,
non-invasive screening

Introduction

Gamma-glutamyl transferase (GGT), which is a ubiquitous enzyme that is critical for
glutathione metabolism and oxidative stress regulation, has increasingly been identified
as a biomarker in addition to its traditional role in hepatobiliary health (Emdin et al.,
2005; Kunutsor, 2016; Brennan et al., 2022). Elevated GGT levels are closely correlated
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with systemic oxidative damage, chronic inflammation, and
metabolic dysfunction, all of which play critical roles in the
progression of aging (Ali et al., 2016; Corti et al., 2020;
Chiyanika et al., 2025). Several studies have demonstrated that
higher GGT levels are associated with various age-related chronic
diseases, including cardiovascular disease, cognitive impairment,
and all-cause/disease-specific mortality, suggesting its profound
relevance for the aging process (Breitling et al., 2011; Jeon et al., 2020;
Tang et al., 2021; Cho et al., 2023). Furthermore, emerging evidence
suggests that GGT may mediate the effects of modifiable lifestyle
factors, such as diet, sleep, and cardiovascular risk profiles, on aging
(Liu et al., 2024, pp. 2005–2018; Wang X. et al., 2024; Xu et al.,
2024). However, direct investigations into the association between
GGT and biological aging remain scarce, highlighting a critical gap
in understanding the use of GGT as a systemic aging marker.

The retina is an ideal window for assessing systemic aging
(Zhu et al., 2023; Tan et al., 2024; Wang et al., 2025), given
its shared embryological origins and microvascular features with
vital organs (e.g., the brain, heart, and kidneys) (Patton et al.,
2005; Flammer et al., 2013; Wong et al., 2014; Li et al., 2023);
thus, retinal alterations reliably reflect systemic circulatory health
and neurodegenerative processes. Importantly, retinal imaging
allows the rapid, noninvasive, and cost-effective assessment of
aging and presents a critical advantage in population-scale studies
(Li et al., 2022). Recent advances in deep learning, particularly
with convolutional neural networks, have revealed the potential
to rapidly and accurately predict biological age based on retinal
images (Grimbly et al., 2024). Additionally, advances in foundation
model technology have further increased the accuracy of retinal
age prediction, decreased training data volume, and reduced
associated computational expenses (Zhou et al., 2023). The retinal
age gap, that is, the difference between predicted retinal age
and chronological age, has emerged as a reliable and promising
indicator for quantifying aging acceleration (Grimbly et al., 2024). A
positive retinal age gap indicates accelerated retinal aging (exceeding
chronological age), whereas a negative retinal age gap signifies
slower retinal aging, and the retinal age gap is correlated with
mortality risk and diseases (e.g., Parkinson’s disease, cardiovascular
disease, kidney failure, and diabetic retinopathy) (Zhu et al., 2023;
Hu et al., 2022; Zhu et al., 2022; Zhang et al., 2023; Chen et al.,
2023a). Thus, retinal age may provide new insight into GGT-related
effects on aging. Although previous studies reported established
roles of GGT in systemic aging and validated the retinal age gap as an
available indicator of aging, the relationship betweenGGT levels and
the retinal age gap remains unexplored. Therefore, this community-
based study aimed to investigate the association betweenGGT levels
and the retinal age gap using the foundation model of color fundus
photography.

Abbreviations: GGT, gamma-glutamyl transferase; JECS, Jidong Eye
Cohort Study; MAE, mean absolute error; MAPE, mean absolute percentage
error; RMSE, root mean squared error; FBG, fasting blood glucose; LDL-
C, low-density lipoprotein; HDL-C, high-density lipoprotein; TC, total
cholesterol; TG, triglyceride; SUA, serum uric acid; SD, standard deviation;
BMI, body mass index; CIs, confidence intervals; AMD, age-related macular
degeneration.

Materials and methods

Study design and population

This study was a part of the Jidong Eye Cohort Study (JECS).
All the data that were analyzed in this study were collected
from participants who were enrolled in the JECS. The detailed
design and methodology of the JECS have been previously
published (Yang et al., 2020). From August 2019 to October 2023,
approximately 10,000 participants were recruited from the Jidong
communities (Tangshan, Hebei, China). All the participants were
subjected to comprehensive ophthalmic examinations, physical
measurements, and biological sample collection, and all the
participants completed detailed healthcare questionnaires. This
study was approved by the Ethics Committee of the Staff Hospital of
Jidong Oil-field of Chinese National Petroleum (approval number:
2018 YILUNZI 1) and the Ethics Committee of the Eye Hospital
of Wenzhou Medical University (approval number: 2021-074-K-63-
01).The study followed the guidelines of theDeclaration ofHelsinki,
and all the participants provided written informed consent.

Assessment of color fundus photography

In this study, digital fundus images were captured using a
45° nonmydriatic fundus camera (CR2AF; Canon; Tokyo, Japan)
without pupil dilation. A total of 43,558 images from 9,752
participants were collected from the JECS. After quality control,
36,044 images from 9,285 participants met the required standards.
The quality control process, described in detail in previous
publications (Wang J. et al., 2024; Zhou et al., 2022; 2023), utilized a
collaboration between ophthalmologists and an automated retinal
image analysis tool that included image quality grading. Color
fundus photography with retinal disease (i.e., nerve fiber layer
defects, abnormal cup-to-disco ratio, macular degeneration, retinal
vein occlusion, diabetic retinopathy, and severe opacification of the
refractivemedia)were ruled out, and only images thatwere classified
as good or usable were considered acceptable for this study.

Fine-tuning the foundation model for age
prediction

Following previous studies (Zhu et al., 2023;
Grimbly et al., 2024; Wang J. et al., 2024), chronological age was
assumed to match biological age in normally aging individuals. To
establish a reliable reference for biological age prediction, the healthy
dataset formodel training and validation included JECS participants
without clinical diagnoses of hypertension, diabetes, chronic
kidney disease, cardiovascular disease, or stroke. Subclinical cases
were excluded via imaging examinations, physical examinations,
and laboratory tests (e.g., fasting blood glucose), ensuring only
individuals with normal results were included.

In this study, all the data were divided into two parts: the data
from JECS 2023 were utilized as the analysis dataset only, and
the data from JECS 2019 to JECS 2021 were used as the training
and validation dataset. To prevent leakage in the analysis set, all
the participants who had follow-up data in 2023 were removed
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FIGURE 1
Flow Chart of the Study Participants and Images. JECS, Jidong Eye Cohort Study; CKD, chronic kidney disease; CVD, cardiovascular disease; GGT,
gamma-glutamyl transferase.

from the training and validation datasets. In detail, among the
9,285 participants with fundus images of acceptable quality, we first
identified 4,377 individuals who had follow-up data from 2023 (May
to October 2023) in the JECS, and these data were included in the
analysis dataset. Fundus images from right eyes were primarily used
for retinal age calculation, and left-eye imageswere substitutedwhen
right-eye images were unavailable. A total of 4,081 fundus images
of the 4,081 participants had available GGT data, and these images
were used to investigate the association between GGT levels and the
retinal age gap (images and other data were all acquired fromMay to
October 2023). For the remaining 4,908 participants, a total of 8,869
fundus images from 3,010 healthy individuals were selected to form
the healthy dataset for model training and validation. This dataset
was further divided using 10-fold cross-validation to ensure robust
model development (Figure 1).

We fine-tuned the foundation model of color fundus
photography RETFound (Zhou et al., 2023), which is a state-of-
the-art architecture that was pretrained on large-scale retinal image
datasets (904,170 unlabeled retinal fundus images), to develop
and validate the model for age prediction (Figure 2). Briefly, all
the fundus images were preprocessed by resizing to a resolution
of 224 × 224 pixels and normalized using the mean and standard
deviation of the retinal image dataset. Data augmentation, including
random erasing and DeiT-style random augmentation, was applied
during training (Zhou et al., 2023). The model was optimized
using the L2 loss between the predicted and chronological ages.
Training utilized the AdamW optimizer with a 10-epoch warm-
up and a cosine learning rate decay policy with an initial learning
rate of 0.001. When implemented on an NVIDIA 4090 GPU with
a batch size of 64, the model was trained for 100 epochs using

PyTorch. Performance was evaluated using the mean absolute
error (MAE), mean absolute percentage error (MAPE), root mean
squared error (RMSE), and R2 between the predicted retinal age and
chronological age.

Definition of the retinal age gap

The retinal age gap was calculated as the difference between
the predicted retinal age according to the fundus images and the
chronological age. A positive retinal age gap indicated faster retinal
aging than chronological age, while a negative retinal age gap
suggested slower retinal aging.

Assessment of general variables

In this study, we collected the participants’ basic information
through clinical examinations, laboratory tests, and standardized
questionnaires about their demographic features, current smoking
and alcohol consumption statuses, and medical history (Su et al.,
2022). The average monthly income was classified into two levels:
“< ¥3000” and “≥ ¥3000”. Education level was defined as “illiterate,
primary or middle school” and “college graduate and above”. In this
study, diabetes was defined as a fasting blood glucose (FBG) level
≥7.0 mmol/L, self-reported history of diabetes, or current use of
antidiabetic drugs. Hypertension was defined as a systolic blood
pressure ≥140 mmHg, diastolic blood pressure ≥90 mmHg, self-
reported history of hypertension, or current use of antihypertensive
medications. Dyslipidemia was defined as low-density lipoprotein
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FIGURE 2
Overview of the study workflow. The workflow illustrates how retinal age gaps were calculated from the color fundus images. (A) The pretrained
foundation model of color fundus photography used in this study was a Masked Autoencoders architecture. (B) The encoder from RETFound was
fine-tuned using fundus images of healthy participants, with chronological age as the target (using a linear head). (C) Model validation was performed
using 10-fold cross-validation. (D) The fine-tuned model predicted retinal ages for participants in the analysis dataset. (E) The retinal age gap was
defined as the difference between predicted retinal age and chronological age, with positive values indicating faster aging and negative values
indicating slower aging.

(LDL-C) ≥ 3.3 mmol/L, high-density lipoprotein (HDL-C) <
1.04 mmol/L, total cholesterol (TC) ≥ 5.18 mmol/L, triglyceride
(TG) ≥ 1.7 mmol/L, the use of lipid-lowering medications, or a
self-reported history of dyslipidemia.

Assessment of gamma-glutamyl
transferase

Fasting venous blood samples were obtained from the elbow in
themorning after the participants had fasted from food anddrink for
at least 8 h, and the samples were stored in vacuum tubes containing
ethylenediaminetetraacetic acid. The levels of GGT and serum uric
acid (SUA) were measured by an autoanalyzer (Hitachi, Tokyo,
Japan) via the uricase‒peroxidase method at the Central Laboratory
of Jidong Oil-Field Hospital (Tang et al., 2021). The participants in
this study were stratified into quartiles based on the GGT levels (Q1:
≤16 U/L; Q2: 17–23 U/L; Q3: 24–37 U/L; and Q4: ≥38 U/L).

Statistical analysis

Continuous variables are presented as means and standard
deviations (SD), whereas categorical variables are presented as
frequencies and percentages. To analyze the differences among
different GGT quartile groups, we applied a one-way ANCOVA

test for normally distributed continuous variables. For categorical
variables, we used chi-square tests or Fisher’s exact tests.

Multivariable generalized linear models were used to assess the
relationship between GGT quartiles and the retinal age gap. We
treated the GGT quartiles as a continuous ordinal variable to test for
trends. The multivariable generalized linear models were adjusted
for different sets of covariates: age and sex (Model 1); age, sex,
current smoking status, current drinking status, body mass index
(BMI), hypertension, diabetes, dyslipidemia, and SUA (Model 2).
Furthermore, we examined the associations of a 1 standard deviation
change in GGT level with the retinal age gap. Additionally, by
adding interaction terms in the adjusted models, we investigated
whether the associations betweenGGTand the retinal age gap varied
according to sex, hypertension, diabetes, dyslipidemia, and current
drinking status.

The associations are expressed as βs and 95% confidence
intervals (CIs). In generalized linearmodels, βs estimate the absolute
change in retinal age gap: for GGT quartiles, they represent the
difference relative to the lowest quartile, while for continuous GGT,
they reflect the change per 1 SD increase. A positive β indicates
an increase in the retinal age gap, and a negative β indicates a
decrease. In all the analyses, statistical significance was set to a
2-tailed P value <0.05. All the statistical analyses were carried
out using SAS software (version 9.4; SAS Institute Inc., Cary, NC,
United States).
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TABLE 1 Performance of the trained model in this study.

10-Fold MAPE MAE RMSE MSE R2

Fold 1 0.062 2.33 3.10 8.67 0.90

Fold 2 0.065 2.54 3.35 10.10 0.87

Fold 3 0.063 2.36 3.33 9.75 0.87

Fold 4 0.061 2.39 3.05 9.43 0.90

Fold 5 0.064 2.41 3.22 9.55 0.90

Fold 6 0.061 2.37 3.09 8.47 0.89

Fold 7 0.061 2.37 3.10 9.75 0.90

Fold 8 0.063 2.57 3.17 10.31 0.89

Fold 9 0.062 2.41 3.14 9.38 0.89

Fold 10 0.060 2.44 3.13 9.43 0.89

Mean 0.062 2.42 3.17 9.48 0.89

SD 0.002 0.08 0.10 0.57 0.01

MAPE, mean absolute percentage error; MAE, mean absolute error; RMSE, root mean
squared error; MSE, mean square error; SD, standard deviations.

Results

Performance of the trained model for
predicting age

The model was trained and validated on data from 3,010 healthy
participants; these participants had a mean age of 40.6 ± 10.9 years
at baseline, and 1773 (58.9%) were female. As shown in Table 1,
the trained model in this study achieved strong performance on the
healthy dataset, with an MAE of 2.42 ± 0.08 years, an RMSE of 3.17
± 0.10, and an R2 of 0.89 ± 0.01; thus, this model is better than those
described in previous studies (Ahadi et al., 2023; Zhu et al., 2023;
Grimbly et al., 2024; Wang J. et al., 2024).

Baseline characteristics of the participants
included in the analysis dataset

A total of 4,081 participants from the Jidong communities, who
were recruited between May and October 2023, were ultimately
included in the analysis. The mean age of the included participants
was 43.7 ± 10.4 years, 1987 (48.7%) were female, and the mean
retinal age gap was −0.5 ± 4.18 years. Table 2 summarizes the
baseline characteristics of the participants in different quartiles of
GGT levels. Participants with higher GGT levels were more likely
to be male (P < 0.001), current smokers (P < 0.001), and current
drinkers (P < 0.001). They were also more likely to have a higher
BMI (P < 0.001), higher SUA (P < 0.001), and a higher prevalence of
hypertension (P < 0.001), diabetes (P < 0.001), and dyslipidemia (P
< 0.001).

Table 2 also presents the retinal age gap in differentGGTquartile
groups for the baseline characteristics. The retinal age gap increased
from −0.76 years in Q1 to 0.06 years in Q4 (P for trend <0.001).

Associations between GGT levels and
the retinal age gap

The associations between GGT quartiles and the retinal age
gap are shown in Table 3. The participants in the highest GGT
quartile showed a significant increase in the retinal age gap (β =
1.00, 95% CI = 0.63–1.36, P < 0.001), even after fully adjusting
for potential confounding factors. Moreover, compared with those
for the participants in the lowest quartile, the fully adjusted βs
and 95% CIs for the participants in the second, third, and fourth
GGT quartiles were 0.42 (0.08–0.77), 0.54 (0.15–0.92), and 0.72
(0.29–1.14), respectively. Additionally, a significant trend (P for
trend ≤0.001) was observed across all quartiles in both models.

Furthermore, to verify the reliability of our results, we also
examined the relationships between a 1 SD change in GGT and
the retinal age gap. We found similar relationships. In two models
(Model 1: adjusted for age and sex; Model 2: adjusted for age, sex,
current smoking status, current drinking status, BMI, hypertension,
diabetes, dyslipidemia, and SUA.), the βs values and 95% CIs were
0.31 (0.19–0.43) and 0.19 (0.07–0.33), respectively.

Subgroup analysis

Subgroup analyses by sex, hypertension, diabetes, dyslipidemia,
and current drinking status are presented in Table 4. A significant
interaction was found between non-hypertension and continuous
GGT quartiles for the retinal age gap. The βs of the continuous
GGT quartile items in participants with or without hypertension
were 0.18 and 0.22, respectively (P for interaction = 0.04).
However, no significant interactions were observed for sex, diabetes,
dyslipidemia, or current drinking status with the continuous GGT
quartiles for the retinal age gap.

Discussion

This study provides compelling evidence linking elevated GGT
levelswithacceleratedretinal aging, asquantifiedby theretinal agegap,
in a relatively large community-based population. The multivariable
generalized linear model analysis revealed that the participants with
GGT levels in the highest quartile had a significantly greater retinal
age gap independent of potential confounders, and a significant trend
was observed across all quartiles.

In this study, we developed and validated a deep learning model
forpredicting retinal ageusing fundus images, and themodel achieved
strong performance with an MAE of 2.42 years, outperforming most
of the previousmodels in predicting age using fewer training samples.
Previous studies have shown MAEs of 2.8–3.5 years for retinal
age prediction (Zhu et al., 2023; Ahadi et al., 2023; Chen et al.,
2023b; Abreu-Gonzalez et al., 2023), and MAEs of 3.26–3.65 years
for multimodal biological age estimation including fundus images
(Wang J. et al., 2024). The improvement in the performance and
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TABLE 2 Baseline characteristics of participants grouped according to gamma-glutamyl transferase quartiles.

Characteristics Total
(n = 4081)

GGT P P For trend

Q1 (n = 1177) Q2 (n = 948) Q3 (n = 976) Q4 (n = 980)

Age, y, mean (SD) 43.7 (10.4) 42.5 (10.8) 44.6 (11.0) 44.9 (10.3) 43.0 (9.2) <0.001 0.08

Retinal age gap, y,
mean (SD)

−0.50 (4.18) −0.76 (4.08) −0.67 (4.13) −0.60 (4.4) 0.06 (4.0) <0.001 <0.001

Sex, n (%) <0.001 <0.001

 Male 2094 (51.3) 176 (15.0) 425 (44.8) 685 (70.2) 808 (82.5)

 Female 1987 (48.7) 1,001 (85.1) 523 (55.2) 291 (59.8) 172 (17.6)

Educational level, n (%) 0.09 0.3

 literacy/Primary
Middle School

1,125 (27.6) 300 (25.5) 270 (28.5) 294 (30.1) 261 (26.6)

 College/University 2,956 (72.4) 877 (74.5) 678 (71.5) 682 (69.9) 719 (73.4)

Income, n (%) 0.2 0.4

 <¥5,000 3093 (75.8) 893 (75.9) 723 (76.3) 756 (77.5) 721 (73.6)

 ≥¥5,000 988 (24.2) 284 (24.1) 225 (23.7) 220 (22.5) 259 (26.4)

Current Smoking,
n (%)

891 (23.1) 52 (4.7) 148 (16.5) 273 (29.8) 418 (44.7) <0.001 <0.001

Current Drinking,
n (%)

996 (25.8) 61 (5.5) 160 (17.9) 304 (33.2) 471 (50.3) <0.001 <0.001

Hypertension, n
(%)

948 (23.2) 142 (12.1) 190 (20.0) 294 (30.1) 322 (32.9) <0.001 <0.001

Diabetes, n (%) 359 (8.8) 23 (2.0) 64 (6.7) 105 (10.8) 167 (17.0) <0.001 <0.001

Dyslipidemia, n
(%)

2,562 (62.8) 451 (38.3) 551 (58.1) 713 (73.1) 847 (86.4) <0.001 <0.001

SBP, mmHg, mean
(SD)

123.4 (18.0) 116.4 (17.0) 122.3 (16.9) 126.5 (17.8) 129.5 (17.3) <0.001 <0.001

DBP, mmHg, mean
(SD)

75.5 (12.1) 70.3 (10.6) 74.4 (10.9) 77.5 (11.9) 80.7 (12.2) <0.001 <0.001

FBG, mmol/L,
mean (SD)

5.7 (1.3) 5.2 (0.6) 5.5 (1.1) 5.8 (1.5) 6.1 (1.7) <0.001 <0.001

BMI, kg/m2, mean
(SD)

24.9 (3.9) 22.5 (2.8) 24.4 (3.5) 25.8 (3.6) 27.2 (3.9) <0.001 <0.001

TC, mmol/L, mean
(SD)

5.0 (0.9) 4.8 (0.8) 4.9 (0.9) 5.0 (0.9) 5.3 (1.0) <0.001 <0.001

Triglycerides,
mmol/L, mean
(SD)

1.9 (1.7) 1.1 (0.7) 1.5 (1.0) 2.1 (1.7) 3.0 (2.4) <0.001 <0.001

HDL-C, mmol/L,
mean (SD)

1.4 (0.3) 1.5 (0.3) 1.3 (0.3) 1.3 (0.3) 1.3 (0.3) <0.001 <0.001

LDL-C, mmol/L,
mean (SD)

2.6 (0.7) 2.4 (0.6) 2.6 (0.7) 2.7 (0.7) 2.9 (0.8) <0.001 <0.001

(Continued on the following page)
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TABLE 2 (Continued) Baseline characteristics of participants grouped according to gamma-glutamyl transferase quartiles.

Characteristics Total
(n = 4081)

GGT P P For trend

Q1 (n = 1177) Q2 (n = 948) Q3 (n = 976) Q4 (n = 980)

SUA, umol/L,
mean (SD)

362.3 (94.5) 297.8 (66.0) 347.5 (76.6) 393.0 (86.1) 423.4 (95.0) <0.001 <0.001

GGT, U/L, mean
(SD)

32.6 (32.1) 13.1 (2.1) 19.8 (2.0) 29.6 (4.0) 71.2 (46.4) <0.001 <0.001

GGT range, U/L 6–422 6–16 17–23 24–37 38–422

Data were presented as number (percentage) for category variables and mean (SD) for continuous variables.
P for trend tested by considering the GGT, quartile as continuous ordinal variables.
Q1, quartile 1 (n = 1,177): ≤16 U/L; Q2, quartile 2 (n = 948): 17–23 U/L; Q3, quartile 3 (n = 976): 24–37 U/L; Q4, quartile 4 (n = 980): >37 U/L.
GGT, gamma-glutamyl transferase; SBP, systolic blood pressure; DBP, diastolic blood pressure; FBG, fasting blood glucose; BMI, body mass index; TC, total cholesterol; HDL-C, high-density
lipoprotein cholesterol; LDL-C, low-density lipoprotein cholesterol; SD, standard deviation; SUA, serum uric acid.

TABLE 3 Association between gamma-glutamyl transferase levels and
the retinal age gap.

GGT (U/L) β 95%CI P P For trend

Model 1 <0.001

 Q1 Reference

 Q2 0.51 (0.18–0.84) 0.002

 Q3 0.66 (0.31–1.01) <0.001

 Q4 1.00 (0.63–1.36) <0.001

Model 2 0.001

 Q1 Reference

 Q2 0.42 (0.08–0.77) 0.02

 Q3 0.54 (0.15–0.92) 0.007

 Q4 0.72 (0.29–1.14) 0.001

Model 1: adjusted for age and sex; Model 2: adjusted for age, sex, current smoking status,
current drinking status, BMI, hypertension, diabetes, dyslipidemia, and SUA.
βs for quartiles: absolute change vs. Q1.
P for trend tested with generalized linear models by considering the GGT, quartiles as
continuous ordinal variables.
Q1, quartile 1 (n = 1,177): ≤16 U/L; Q2, quartile 2 (n = 948): 17–23 U/L; Q3, quartile 3 (n =
976): 24–37 U/L; Q4, quartile 4 (n = 980): >37 U/L.
GGT, gamma-glutamyl transferase; BMI, body mass index; SUA, serum uric acid.

training efficiency of the retinal age prediction model occurred due
to the use of the foundation model that was pretrained on 904,170
unlabeled retinal fundus images (Zhou et al., 2023). After being
pretrainedona large-scale retinal imagedataset, the foundationmodel
learned how to detect and analyze the characteristics of retinal images.
Thus, we only needed to fine-tune the model on a relatively small
dataset to achieve even better performance (Sevgi et al., 2025).

TABLE 4 Subgroup analyses of the associations between
gamma-glutamyl transferase levels and the retinal age gap were
performed on the basis of sex, hypertension, diabetes, dyslipidemia, and
current drinking status.

Subgroup n β 95%CI P For
interaction

Sex 0.14

 Male 2094 0.15 (−0.03–0.34)

 Female 1987 0.36 (0.16–0.56)

Hypertension 0.04

 Hypertension 948 0.18 (−0.18–0.53)

 Non-Hypertension 3133 0.22 (0.08–0.37)

Diabetes 0.08

 Diabetes 359 0.23 (−0.50–0.96)

 Non-Diabetes 3722 0.09 (0.06–0.33)

Dyslipidemia 0.16

 Dyslipidemia 2,562 0.23 (0.05–0.40)

 Non-Dyslipidemia 1,519 0.24 (0.01–0.47)

Current drinking
status

0.93

 Current drinkers 996 0.17 (−0.10–0.44)

 Non-current
drinkers

2,867 0.27 (0.11–0.43)

Interaction effect was calculated from models that included interaction terms of factor ×
continuous GGT, quartiles, and were adjusted for age, sex, current smoking status, current
drinking status, BMI, hypertension, diabetes, dyslipidemia, and SUA.
βs for continuous GGT, quartiles: change per 1 quartile.
GGT, gamma-glutamyl transferase; BMI, body mass index; SUA, serum uric acid.
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To the best of our knowledge, this study represents one of
the first attempts to demonstrate the concept of an association
between GGT levels and the retinal age gap. In our study, we
found that higher GGT levels are associated with accelerated
retinal aging, as quantified by the retinal age gap. Several
previous studies have demonstrated that elevated GGT levels
are associated with several age-related diseases, which support
our findings. For example, Cho et al. (Cho et al., 2014, pp.
2010–2011; Lei et al., 2020; Kim et al., 2022) previously reported an
association between elevated GGT levels and the risk of age-related
ocular diseases, including age-relatedmacular degeneration (AMD),
primary glaucoma, and ocular motor cranial nerve palsy. Moreover,
GGT was proven to be associated with the risk of cardiovascular
disease (Kunutsor et al., 2015), Alzheimer’s disease (Kunutsor
and Laukkanen, 2016; Kunutsor et al., 2018), Parkinson’s disease
(Yoo et al., 2020), and metabolic abnormalities (Ya et al., 2017).
Our study results may help explain why people with higher GGT
levels are more likely to have age-related diseases. The accelerated
aging of participants with higher GGT levels may be explained by
the potential proinflammatory and pro-oxidative effects of GGT
(Lee and Jacobs, 2005; Turgut et al., 2006; Turgut and Tandogan,
2011; Sarli et al., 2013). In addition, GGT levels are directly
involved in the formation of atheromatous plaques, which have
been implicated in the mechanism underlying the pathogenesis of
vascular aging (Franzini et al., 2009).

In addition, some prior studies have explored the mediating
effect of GGT in the aging process, which is supportive of our
findings. For example, Liu et al. (Liu et al., 2024, pp. 2005–2018)
showed that GGT, along with bilirubin and uric acid, collectively
mediated the relationship between Life’s Essential 8 scores and
PhenoAgeAccel, which was measured using clinical laboratory
blood chemistries. Moreover, two studies reported that GGT plays
an important role in the association of sleep and blood benzene with
accelerated aging (Wang X. et al., 2024; Yang et al., 2024). Another
study using data from the United Kingdom Biobank revealed that
the relationships between plant protein and four biological aging
measures were mediated by GGT (Xu et al., 2024). The results of
these previous studies suggest that GGT has a crucial effect on
the aging process, and our findings directly implicate GGT as an
independent driver of biological aging.

Our study revealed a stronger association between GGT levels
and the retinal age gap in non-hypertensive participants. The
associations of GGT levels with the retinal age gap remained
consistent across sex, diabetes, dyslipidemia, and current drinking
status subgroups. These findings suggest that the absence of
hypertension may enhance the association of GGT levels with the
retinal age gap. However, further studies are needed to confirm this
interplay.

Our findings have several significant implications for public
health and clinical practice. First, we investigated the relationship
between high GGT levels and accelerated retinal aging, as qualified
by the retinal age gap. Our findings extend the utility of GGTbeyond
its traditional hepatobiliary applications. Second, the retinal age gap,
as quantified through advanced imaging analytics, provides a novel

framework for assessing aging processes that is low-cost, widely
available, noninvasive, and time efficient. Third, our study further
shows the advantages of fine-tuning based on the foundationmodel.
This approach not only improves performance but also further
reduces training costs.

The main strengths of this study were the process of capturing
high-quality fundus images and performing detailed blood
biochemical examinations in a relatively large community-based
study, adjustments that weremade for several potential confounding
factors, including lifestyle and metabolic confounders, and the
use of sensitivity analyses and subgroup analyses to ensure the
robustness of the results. However, several limitations in our study
should also be acknowledged. First, the cross-sectional design
precludes causal inference. Although we propose that elevated
GGT levels drive retinal aging through oxidative pathways, reverse
causation remains theoretically possible. Longitudinal studies
tracking GGT trajectories and retinal aging progression are needed
to establish temporal relationships, and a future study objective
may include further follow-up to the JECS. Second, the study
participants were all from the Jidong community, and validation in
diverse populations is needed to confirm the universal applicability
of these findings. Finally, some potential confounders, such as
hormone levels and cell factors that may affect GGT levels, the
retinal age gap, and residual confounders, were not included in the
analysis.

Conclusion

In conclusion, this study revealed that higher GGT levels
were associated with accelerated retinal aging, as quantified by
the retinal age gap. Given the accelerating aging of the global
population, our findings emphasize that GGT, which serves as
a potential systemic biomarker for oxidative stress, may exert a
detrimental effect on the aging process, thereby highlighting the
importance of integrating GGT assessment into evaluations related
to aging.
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