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Introduction: The integration of multimodal data has become a crucial aspect
of biomedical time series prediction, offering improved accuracy and robustness
in clinical decision-making. Traditional approaches often rely on unimodal
learning paradigms, which fail to fully exploit the complementary information
across heterogeneous data sources such as physiological signals, imaging, and
electronic health records. These methods suffer from modality misalignment,
suboptimal feature fusion, and lack of adaptive learning mechanisms, leading to
performance degradation in complex biomedical scenarios.

Methods: To address these challenges, we propose a novel multimodal
Deep Learning framework that dynamically captures inter-modal dependencies
and optimizes cross-modal interactions for time series prediction. Our
approach introduces an Adaptive Multimodal Fusion Network (AMFN), which
leverages attention-based alignment, graph-based representation learning, and
a modality-adaptive fusion mechanism to enhance information integration.
Furthermore, we develop a Dynamic Cross-Modal Learning Strategy (DCMLS)
that optimally selects relevant features, mitigates modality-specific noise, and
incorporates uncertainty-aware learning to improve model generalization.

Results: Experimental evaluations on biomedical datasets demonstrate that
our method outperforms state-of-the-art techniques in predictive accuracy,
robustness, and interpretability.

Discussion: By effectively bridging the gap between heterogeneous biomedical
data sources, our framework offers a promising direction for Al-driven disease
diagnosis and treatment planning.

KEYWORDS

multimodal learning, deep learning, biomedical time series, adaptive fusion,
uncertainty-aware learning

1 Introduction

Time series prediction in biomedical applications is crucial for early diagnosis,
treatment planning, and patient monitoring. This task not only improves healthcare
outcomes but also enhances the efficiency of medical resource allocation (Zhou et al,
2020). Traditional time series models often struggle with the complexity of biomedical
data, which includes multimodal sources such as physiological signals, medical images,

01 frontiersin.org


https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org/journals/physiology#editorial-board
https://doi.org/10.3389/fphys.2025.1605406
https://crossmark.crossref.org/dialog/?doi=10.3389/fphys.2025.1605406&domain=pdf&date_stamp=2025-09-13
mailto:13569800207@163.com
mailto:13569800207@163.com
https://doi.org/10.3389/fphys.2025.1605406
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.frontiersin.org/articles/10.3389/fphys.2025.1605406/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1605406/full
https://www.frontiersin.org/articles/10.3389/fphys.2025.1605406/full
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Che et al.

and electronic health records (EHRs). Not only do these modalities
vary in temporal resolution, but they also contain heterogeneous
patterns that need to be effectively integrated (Angelopoulos et al.,
2023). Furthermore, biomedical data is often sparse, noisy, and
subject to domain-specific constraints, making accurate predictions
challenging. Recent advancements in deep learning, particularly
multimodal approaches, have opened new opportunities to fuse
diverse data sources for more robust and interpretable predictions
(Shen and Kwok, 2023). These methods leverage the strengths of
different modalities, not only improving predictive performance
but also enabling more comprehensive insights into patient
health. However, despite these advancements, several challenges
remain, such as effective feature representation, cross-modal
alignment, and computational efficiency, necessitating further
research in multimodal deep learning for biomedical time series
prediction (Wen and Li, 2023).

Deep learning has become a foundational tool in biomedical
data analysis due to its capacity to learn complex, high-dimensional
patterns across diverse data modalities. Beyond time series
prediction, recent studies have demonstrated its impact in broader
biomedical domains such as genomics and radiomics. For instance,
omics-based deep learning has been effectively applied in lung
cancer diagnosis and therapeutic development, showcasing the
utility of neural models in decision-making workflows involving
heterogeneous molecular data sources (Tran et al, 2024).
Similarly, Le (2024) highlighted the growing integration of deep
learning with radiomics for predicting hematoma expansion,
underscoring the importance of modality fusion and context-aware
modeling. These studies reinforce the relevance of multimodal
learning architectures in modern biomedical informatics and
motivate the development of unified, interpretable frameworks
tailored to diverse clinical tasks.

To address the challenges of biomedical time series prediction,
early methods primarily relied on symbolic Al and knowledge
representation techniques. These methods were designed to
integrate domain knowledge into rule-based systems, offering
interpretability and structured reasoning (Li et al., 2023). Expert
systems, Bayesian networks, and ontology-based models were
extensively used to encode medical expertise and infer potential
outcomes from historical patient data. For example, rule-based
decision support systems were developed to predict disease
progression by encoding clinical guidelines and heuristic rules
derived from medical professionals (Ren et al., 2023). These
approaches suffered from scalability issues and were heavily reliant
on domain expertise, making them difficult to generalize across
different patient populations and diseases. Symbolic AI methods
struggled to handle the high-dimensional and unstructured nature
of biomedical data, limiting their effectiveness in real-world
applications (Yin et al., 2023). As a result, researchers sought more
data-driven approaches that could learn patterns directly from
complex biomedical signals rather than relying solely on predefined
knowledge structures.

To overcome the limitations of symbolic Al, researchers
turned to data-driven machine learning techniques, which could
automatically discover patterns from large datasets without
requiring explicit rule encoding (Yu et al., 2023). Classical statistical
methods, such as autoregressive integrated moving average
(ARIMA) and hidden Markov models (HMMs), were initially
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employed to model temporal dependencies in biomedical time series
data. These methods were later augmented by supervised learning
techniques, including support vector machines (SVMs), random
forests, and ensemble learning, which improved prediction accuracy
by capturing nonlinear relationships (Durairaj and Mohan, 2022).
In particular, feature engineering played a crucial role in optimizing
model performance, as domain experts manually extracted relevant
physiological indicators, such as heart rate variability, glucose
levels, or EEG waveforms. Despite these advancements, traditional
machine learning models faced challenges in handling high-
dimensional multimodal data, as they relied on handcrafted
features that often failed to capture complex interactions between
different modalities (Chandra et al, 2021). Moreover, these
models struggled with missing data and temporal inconsistencies,
prompting a shift towards deep learning-based solutions that could
automatically learn representations from raw biomedical signals
(Fan et al.,, 2021).

To further enhance predictive accuracy and generalizability,
deep learning techniques have been widely adopted for biomedical
time series prediction, particularly in multimodal settings
(Hou et al., 2022). Convolutional neural networks (CNNs) and
recurrent neural networks (RNNs), including long short-term
memory (LSTM) and gated recurrent unit (GRU) architectures,
have been used to capture spatial and temporal dependencies
in biomedical data (Lindemann et al, 2021). These models
demonstrated superior performance in tasks such as ECG
classification, seizure prediction, and patient deterioration
forecasting (Dudukcu et al., 2022). However, the emergence of
transformer-based architectures and self-supervised pretraining
methods has significantly advanced multimodal deep learning
(Amalou et al, 2022). Pretrained models, such as BERT-like
transformers and contrastive learning frameworks, enable cross-
modal fusion by learning joint representations across different data
types, such as time-series signals, medical images, and textual
records. Attention mechanisms have played a crucial role in
aligning and integrating heterogeneous biomedical data, improving
both interpretability and predictive accuracy (Xiao et al., 2021).
Nevertheless, challenges such as data heterogeneity, label scarcity,
and computational complexity persist, highlighting the need for
more efficient and scalable multimodal learning frameworks.

Building on the limitations of existing methods, our approach
introduces a novel multimodal deep learning framework for
biomedical time series prediction that effectively integrates
heterogeneous data sources. Unlike traditional feature engineering
or single-modality deep learning models, our method leverages
self-supervised learning and cross-attention mechanisms to
enhance feature representation and improve predictive accuracy.
By incorporating transformer-based architectures, our framework
learns rich, contextualized embeddings that dynamically adapt
to varying temporal resolutions across modalities. Furthermore,
we introduce an adaptive fusion strategy that mitigates data
imbalance and enhances robustness against missing information.
Not only does our approach improve predictive performance, but
it also enhances interpretability through attention-based feature
attribution, providing actionable insights for medical practitioners.
The integration of multi-scale temporal dependencies further
ensures that long-term trends and short-term variations are
effectively captured, making our model suitable for a wide range

frontiersin.org


https://doi.org/10.3389/fphys.2025.1605406
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Che et al.

of biomedical applications, including disease progression modeling,
personalized medicine, and real-time patient monitoring.
The proposed approach offers several significant benefits:

e Our method introduces a multimodal deep learning model
that effectively integrates heterogeneous biomedical data
sources using self-supervised pretraining and cross-attention
mechanisms.

e The proposed framework is designed for diverse biomedical
applications, demonstrating high efficiency and adaptability
across different patient populations and healthcare settings.

o Extensive experiments on real-world biomedical datasets show
that our model outperforms existing state-of-the-art methods
in both predictive accuracy and interpretability, ensuring
reliable and actionable insights for clinicians.

2 Related work
2.1 Multimodal data fusion techniques

The integration of diverse biomedical data sources, such as
clinical records, imaging, and time-series physiological signals,
presents challenges due to their heterogeneous nature (Brandt et al.,
2025). Deep learning-based data fusion strategies have emerged
to address these challenges by modeling complex, non-linear
relationships among various data modalities. These strategies
can be categorized into early fusion, intermediate fusion, and
late fusion approaches (Xu et al., 2020). Early fusion combines
raw data from different modalities at the input level, allowing
the model to learn joint representations. Intermediate fusion
integrates features extracted from each modality at hidden
layers, capturing interactions between modalities while preserving
individual characteristics (Wang et al., 2021b). Late fusion merges
the outputs of modality-specific models at the decision level,
combining individual predictions to form a final outcome. Each
fusion strategy offers distinct advantages and limitations, and the
choice depends on the specific application and the nature of the
data involved. For instance, intermediate fusion has been shown to
effectively model complex interactions in biomedical applications,
as it balances the preservation of modality-specific features with
the learning of joint representations. The development of robust
fusion techniques is crucial to handle missing or incomplete data,
a common issue in clinical setting. Techniques such as adversarial
training and transfer learning have been proposed to enhance the
robustness and generalization of multimodal modelss (Karevan
and Suykens, 2020). As multimodal biomedical datasets become
increasingly available, these fusion strategies hold the potential to
improve predictive performance and provide a more comprehensive
understanding of patient health. Furthermore, the ability to learn
meaningful interactions between heterogeneous data sources can
facilitate better diagnoses, personalized treatments, and more
accurate prognostic predictions, making the fusion of multimodal
data a key area of research in modern biomedical informatics. In
recent years, advancements in computational capabilities and the
availability of large-scale annotated biomedical datasets have further
accelerated the progress of multimodal data fusion techniques.
With the increasing complexity of healthcare data, researchers
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are exploring more sophisticated architectures, such as attention
mechanisms and graph neural networks, to dynamically model
the relationships among different data modalities. Attention-
based models enable the system to focus selectively on the most
informative features from each modality, thereby improving
interpretability and diagnostic relevance. Similarly, graph-based
approaches can represent multimodal data as interconnected
nodes, capturing intricate dependencies and facilitating structured
reasoning over patient-specific information. Another promising
direction involves the use of self-supervised and contrastive learning
methods, which leverage unlabeled data to learn meaningful
representations without relying heavily on manual annotation.
These approaches are particularly beneficial in clinical environments
where labeled data is often limited or expensive to obtain. Cross-
modal consistency learning is being employed to align latent spaces
across modalities, promoting better fusion and consistency even
when one or more modalities are partially missing. As the demand
for real-time decision-making increases, lightweight and efficient
fusion architectures are being developed to deploy on edge devices
and in resource-constrained settings, ensuring that the benefits of
multimodal analysis can be extended beyond large research hospitals
to more diverse clinical environments. Ethical considerations and
model transparency are also becoming central to the development
of fusion systems, as clinicians require not only high performance
but also clear explanations of model decisions. Interpretability
frameworks are being integrated into multimodal fusion pipelines
to provide actionable insights and support trust in Al-assisted
healthcare. Ultimately, the integration of robust, interpretable,
and scalable fusion methods holds the promise of transforming
raw, heterogeneous biomedical data into cohesive and clinically
meaningful knowledge that can significantly enhance patient care
across a variety of domains.

2.2 Contrastive learning for time-series
analysis

Contrastive learning has gained prominence in the analysis of
biomedical time-series data due to its ability to learn informative
representations without extensive labeled data (Hirakawa et al.,
2025). This self-supervised learning approach involves contrasting
positive pairs (similar samples) against negative pairs (dissimilar
samples) to learn embeddings that capture the underlying structure
of the data. In the context of biomedical time-series, contrastive
learning can effectively handle the inherent noise and variability
by focusing on the temporal dynamics and patterns within the
data (Altan and Karasu, 2021). For example, a multi-scale and
multimodal contrastive learning network has been proposed to
address the challenges of modeling complex biomedical time-
series data (Wen et al., 2021). This approach involves grouping
modalities based on inter-modal distances, allowing each group
with minimal intra-modal variations to be effectively modeled by
individual encoders (Moskolai et al., 2021). Multi-scale feature
extraction techniques, such as varying patch lengths and mask
ratios, are employed to capture semantic information at different
resolutions. Cross-modal contrastive learning is then utilized
to maximize consistency among inter-modal groups, preserving
useful information while mitigating noise (Morid et al.,, 2021).
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Experimental results have demonstrated that such contrastive
learning frameworks outperform state-of-the-art models across
applications,
estimation, heart rate prediction, human activity recognition,

various biomedical including respiration rate
and sleep apnea detection. The ability of contrastive learning to
leverage unlabeled data and learn robust representations makes
it particularly suitable for biomedical time-series analysis, where
labeled data can be scarce or expensive to obtain Wang et al.
(2021a). Contrastive learning’s flexibility allows it to be applied to a
wide variety of tasks within biomedical research, including patient
monitoring, disease prediction, and medical image analysis, thus
offering a promising pathway for advancing precision medicine.
The continual improvement of contrastive learning methods,
particularly in handling temporal dependencies and multimodal
data, is expected to further enhance their effectiveness in addressing
the complex challenges of biomedical data analysis. In recent
developments, researchers have explored the integration of temporal
attention mechanisms with contrastive frameworks to better
align and distinguish subtle variations over time, leading to
improved sensitivity in detecting minor physiological changes.
Augmentations specific to biomedical signals, such as frequency-
domain transformations and physiological-aware distortions, have
been introduced to enrich the training data and increase the
generalizability of the learned representations. These advancements
contribute to building more adaptable systems capable of
functioning in diverse clinical environments. Furthermore, the
incorporation of contrastive learning into federated settings opens
new possibilities for collaborative biomedical research without
compromising patient privacy. By enabling decentralized learning
across institutions, contrastive models can be trained on diverse
datasets while maintaining compliance with data governance
standards. As contrastive learning continues to evolve, its capacity to
bridge the gap between limited labeled data and high-performance
models positions it as a central component in the future of
time-series analysis in biomedicine.

2.3 Transformer models in biomedical
applications

Transformer models, originally developed for natural language
processing tasks, have been adapted for biomedical applications,
including the analysis of time-series data (Li et al., 2025). Their
self-attention mechanisms enable the modeling of long-range
dependencies and complex temporal patterns, which are essential
for accurate time-series prediction (Widiputra et al., 2021). In the
biomedical domain, transformer-based models have been employed
to integrate multimodal data, such as physiological signals and
clinical records, to enhance predictive performance (Yang and
Wang, 2021). For instance, a multimodal large language model
framework, MedTsLLM, has been introduced to integrate time-
series data with rich contextual information in the form of text
(Ruan et al, 2021). This framework utilizes a reprogramming
layer to align embeddings of time-series patches with a pretrained
language model’s embedding space, effectively leveraging raw time-
series data alongside textual context (Kim and King, 2020). Tasks
such as semantic segmentation, boundary detection, and anomaly
detection in physiological signals have benefited from this approach,
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providing actionable insights for clinicians (Hu et al., 2020). The
adaptability of transformer models to various data modalities and
their capacity to learn complex representations make them valuable
tools in biomedical time-series prediction. As research progresses,
further customization of transformer architectures to address the
unique challenges of biomedical data, such as irregular sampling and
noise, is anticipated to enhance their applicability and effectiveness
in clinical settings. Furthermore, transformer models’ potential to
perform multitask learning by jointly processing different aspects of
biomedical data, including predictions of multiple health outcomes,
opens up new avenues for precision medicine. These advancements
in transformer-based models hold promise for improving early
diagnosis, personalized treatment plans, and overall healthcare
outcomes by leveraging diverse biomedical data sources.

The use of transformer architectures and contrastive learning
modules in our framework is grounded in the biomedical
characteristics of the datasets employed. The PhysioNet and
MIMIC-III datasets, for instance, contain multivariate physiological
time series with irregular sampling rates, asynchronous modalities,
and variable sequence lengths. Transformer models are well-suited
to this setting due to their ability to model long-range dependencies
and handle variable-length input sequences without requiring
fixed receptive fields. Unlike traditional RNN-based methods,
transformers can simultaneously attend to temporally distant events,
which is critical for capturing subtle clinical patterns such as
deterioration signals or latent organ failure risk. Furthermore,
contrastive learning is particularly advantageous in biomedical
contexts where labeled data is limited but large volumes of
unlabeled signals exist. It enables the model to learn discriminative
representations by aligning semantically similar instances while
distinguishing dissimilar ones, even across modalities. This is
essential for generalizing across noisy or partially missing signals,
which frequently occur in ICU and EHR-based data. Therefore,
these components are not generic deep learning modules but are
deliberately selected to address the biomedical challenges intrinsic
to the included datasets.

3 Methods
3.1 Overview

In this section, we introduce the proposed approach for
multimodal AI, which is designed to effectively integrate and
leverage multiple data modalities for improved learning and
inference. Our method builds upon recent advancements in
multimodal learning, while introducing novel mechanisms to
enhance information fusion, representation alignment, and cross-
modal reasoning. The overall framework consists of several key
components, each addressing a specific challenge in multimodal AL

We formalize the multimodal learning problem in Section 3.2,
where we define the notation and mathematical foundations
underlying our approach. This includes the representation of
different modalities, their relationships, and the learning objectives
used to align and integrate them. In Section 3.3, we present our
novel multimodal model, which introduces a new architecture
to dynamically capture dependencies. Unlike
conventional approaches that rely on simple feature concatenation

inter-modal
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or fixed fusion strategies, our model leverages adaptive mechanisms
to learn optimal modality interactions. Through hierarchical
representations and attention-based alignment, our model can
effectively bridge the semantic gap between heterogeneous data
sources. In Section 3.4, we describe our newly proposed strategy
for efficient multimodal knowledge extraction and reasoning. This
strategy incorporates a self-adaptive learning mechanism that
adjusts the contribution of each modality based on context and
task requirements. We introduce a novel optimization technique
that refines multimodal representations to improve robustness and
generalization.

While each component in our model is inspired by prior
advancements in deep learning, our key novelty lies in the principled
integration of these modules into a unified and adaptive architecture
for biomedical time-series analysis. The pipeline is designed not
as a naive stacking of techniques but as a purpose-driven system
that addresses the temporal irregularity, modality heterogeneity, and
annotation scarcity often found in real-world clinical settings. The
combination of frequency-aware processing, cross-modal attention,
graph-based reasoning, and dynamic feature alignment allows the
model to adaptively modulate its reliance on different modalities
based on contextual dependencies. This level of adaptivity is critical
in biomedical scenarios, where the availability and relevance of
data sources vary across patients and tasks. Thus, our architectural
design introduces a new perspective on modular synergy tailored
for biomedical complexity rather than focusing solely on isolated
algorithmic novelty.

3.2 Preliminaries

Multimodal AI aims to integrate and learn from multiple
heterogeneous data sources, such as text, images, audio, and
structured data. Given a dataset consisting of M modalities, let
X:{X(l),X(2),...,X(M)} denote the input space, where XM ¢
R represents the feature space of the m-th modality with
dimensionality d,,. Each modality provides complementary
information about the underlying data distribution, and the goal
is to learn a joint representation that captures the relationships
between modalities.

A fundamental challenge in multimodal learning is the
alignment of different modalities in a shared feature space. Leth™ =
(pm(X('")) denote the feature representation of the m-th modality,
where ¢_:R% — R% is a modality-specific transformation function
that maps the input data to a common embedding space of
dimension d), (Equation 1). The multimodal feature space can then
be defined as:

H=7(h",h®,  hM), ey

where F is the fusion function that integrates information across
modalities.

To ensure effective multimodal learning, it is crucial to align the
representations across different modalities. We define a similarity
function S:R% x R% — R that measures the semantic correlation
between modalities (Equation 2):

h® . x®

S(h?,h") = ————.
( ) IO

)
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Minimizing the alignment loss encourages similar content across
different modalities to have closer embeddings (Equation 3):

‘Calign = Z "h(i) —h(j)”z,
(iLj)eP

@)

where P denotes the set of positive modality pairs with shared
semantic meaning.

Multimodal representations can be learned using both unimodal
and cross-modal objectives. A generic multimodal encoder V¥ takes
the concatenated feature representations and generates a joint latent
representation (Equation 4):

Z=9(h®W,h?, . htD), 4

where Z € R% represents the unified multimodal representation.
The objective function consists of a reconstruction loss L. to

preserve unimodal information and a contrastive loss L a5t tO
enhance cross-modal discrimination (Equation 5):
Emulti = /ll[’rec + Azﬁcontrast' (5)

In some scenarios, modalities exhibit complex structural
dependencies, which can be modeled as a graph G=(V,E),
where each node ve) corresponds to a modality-specific
feature, and edges e € £ encode their relationships. The adjacency

matrix A € RMM

captures inter-modal dependencies, and a
graph convolutional network (GCN) can be used to propagate

information (Equation 6):

H = o(AHOWD), (6)
where W® is the trainable weight matrix and o(-) is a non-linear
activation function.

3.3 Adaptive multimodal Fusion Network

In this section, we introduce Adaptive multimodal Fusion
Network (AMEN), a novel model designed to effectively integrate
heterogeneous modalities by dynamically learning modality
relationships and optimizing cross-modal interactions. Unlike
traditional multimodal models that rely on fixed fusion strategies,
AMEFN incorporates adaptive attention mechanisms and graph-
based representation learning to enhance flexibility and robustness
(As shown in Figure 1).

In our proposed framework, the training objective is designed
to operate at the graph level rather than the node level. After
each modality’s feature extraction and normalization, cross-
modal attention mechanisms dynamically generate attended
representations that capture the relevance among modalities.
These attended representations are subsequently modeled using
a Graph Convolutional Network (GCN), where the constructed
adjacency matrix reflects the semantic similarities between different
modalities. During the graph convolutional operations, each
modality’s representation is iteratively updated by aggregating
information from its neighboring modalities, allowing the model
to encode rich cross-modal dependencies. After several layers of
graph convolution, the final graph-level representation is obtained
by concatenating the refined modality-specific embeddings. This
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FIGURE 1
Schematic diagram of the Adaptive multimodal Fusion Network

(AMFN). The framework integrates heterogeneous modalities through
modality-specific encoders, followed by temporal feature encoding.
Cross-modal attention captures inter-modality relevance, while Graph
Representation Learning models structured modality dependencies.
The fused representations are adaptively combined to form a unified
multimodal embedding used for downstream tasks.

unified multimodal embedding serves as the input for downstream
tasks, such as classification, regression, or recommendation.
Consequently, the training objective directly optimizes the
loss computed based on these final graph-level predictions.
This design ensures that the model focuses on learning the
integrated information from all modalities as a whole, rather
than independently optimizing each modality or individual node.
This approach not only enhances the global understanding of
cross-modal relationships but also improves the robustness and
generalizability of the model when applied to complex biomedical
time series prediction tasks.

The integration of various modules in our architecture is
driven by the diverse characteristics of biomedical time series
data. Spiking neural layers are biologically inspired and model
temporal sparsity effectively, making them well-suited for ECG
signals that exhibit sharp, transient events. Frequency-aware token
mixers extract oscillatory components from signals like EEG
and ECG, where rhythm patterns carry diagnostic relevance.
Transformer blocks capture long-range dependencies and handle
irregular time gaps found in EHRs. Graph Convolutional Networks
(GCNs) model inter-modality dependencies, such as correlations
between lab results and vital signs. Contrastive learning enables
representation alignment and robust pretraining using partially
labeled clinical datasets. Together, these components create a
clinically informed architecture tailored for multimodal biomedical
scenarios.

3.3.1 Feature extraction and normalization

To effectively integrate heterogeneous information from
multiple modalities, we begin by independently processing each
modality X" through a dedicated feature encoder ¢,,(-). This
encoder is designed to capture modality-specific characteristics
while projecting the input into a common embedding space
that facilitates downstream fusion. The extracted features are
denoted as h'™ = ¢m(X(’”)), where h™ ¢ RY represents the latent
representation for the m-th modality in a d-dimensional space.
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However, raw feature embeddings often contain statistical
disparities across modalities due to intrinsic differences in data
distributions. To mitigate this and ensure numerical stability
in subsequent computations, we perform feature normalization.
Specifically, we compute the mean y, and standard deviation
0, of i over the training set and standardize the embeddings
as follows (Equation 7):

h(m) “Hm
—_— (7)

E(m) _

Om

This step aligns the distribution of features across modalities,
ensuring they are zero-centered and have unit variance, which is
crucial for preserving the semantic consistency during multimodal
fusion and attention computations.

3.3.2 Cross-modal attention

Once modality-specific features are extracted and normalized,
we aim to capture the interactions between modalities through a
cross-modal attention mechanism. This module learns to highlight
relevant information across different modalities conditioned on each
other, thereby enabling the model to synthesize a more holistic
representation. Formally, given a pair of modalities i and j, we define

the attention weight «;;, which quantifies the relevance of the j-

ij)
th modality to the i-th modality. The attention score is computed
using a bilinear transformation parameterized by a trainable matrix

W, € R (Equation 8):
exp (h(i) Wahm)
%= Oy o ®
Zk:l exp (h W h )

This formulation ensures that the attention weights are normalized

across all M modalities via a softmax operation. The attended feature
vector h” for modality i is then obtained as a weighted aggregation
of all modality features (Equation 9):

M
W=y an? ©)
=1

This mechanism enables dynamic feature integration where the
contribution of each modality is adaptively adjusted based on
contextual relevance, ultimately enhancing the representational
capacity of the fused embedding for downstream tasks.

3.3.3 Graph representation learning

In our model, temporal characteristics of physiological signals
are first extracted through modality-specific encoders, such as
recurrent units or temporal convolutional layers, which capture
dynamic patterns at varying time scales. These temporally enriched
representations are then used to construct the modality feature
embeddings that serve as node features within the GCN. The
inter-modal adjacency matrix is computed based on the similarity
between these temporally encoded embeddings, thereby ensuring
that the graph structure reflects not only modality identity but
also temporal dynamics embedded in the features. In essence,
two modalities that exhibit stronger temporal correlation will have
higher edge weights in the graph. The GCN then propagates
information across this dynamically learned graph structure,
allowing cross-modal dependencies that are temporally consistent
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BP Stage 1:
Feature Extraction
ECG Res
P Stage 2:
Adaptive Feature Selection
Stage 3:
: : Cross-Modal Alignment
Edge weights: cosine 9
similarity between
modality embeddings
L g Stage 4:
FGURE 2 Context-Aware Fusion
Schematic diagram of modality-level graph construction. Each node
represents a modality, and directed edges encode pairwise similarities
based on .cosine. similarity betwee.n temporally encoded.embedd\'ngs. Prediction
The resulting adjacency matrix guides message passing in the GCN to
refine modality representations and model structured inter-modal OUtPUt
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to be jointly modeled and refined. This design ensures that
temporal variability within each modality directly influences both
node features and inter-modal connectivity, enabling the model
to capture complex physiological interactions while preserving
temporal coherence. This approach offers better biomedical fidelity
compared to purely static cross-attention models, as it respects
both temporal and inter-modality dependency structures inherent
to patient physiology.

In multimodal learning, modalities often exhibit intricate
dependencies that cannot be fully captured by traditional methods.
To address this, we model the interactions between modalities as a
graph G = (V, &), where each modality is represented as a node in
the graph, and the edges represent the relationships or similarities
between the different modalities (As shown in Figure 2).

We model the modality relations using a similarity-based graph
(Equation 10):

S(H9, 1)
AN NG (10
2, S(H0HY)
A GCN refines the features as Equation 11:
HI = o (AHOWO) an

Final representations Z are obtained by concatenating HY,

3.4 Dynamic cross-modal learning strategy

In biomedical applications, the relevance of each modality may
vary depending on the clinical context. For instance, heart rate is
crucial in cardiac monitoring, while lab results dominate in sepsis
detection. The Dynamic Cross-Modal Learning Strategy (DCMLS)
adaptively assigns weights to different modalities based on context,
allowing the model to dynamically emphasize the most informative
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FIGURE 3

Schematic diagram of the Dynamic Cross-Modal Learning Strategy
(DCMLS). The model comprises four hierarchical stages: feature
extraction, adaptive feature selection, cross-modal alignment, and
context-aware fusion. It dynamically modulates the contribution of
each modality based on semantic relevance and clinical context,
enhancing robustness in heterogeneous biomedical data scenarios.

sources. Contrastive alignment addresses modality gaps by ensuring
semantically related features across modalities remain close in latent
space. This is especially valuable when some modalities are partially
missing or weakly annotated, a common scenario in clinical data.

To further enhance the effectiveness of multimodal AI, we
introduce Dynamic Cross-Modal Learning Strategy (DCMLS), a
novel approach that optimizes knowledge extraction, representation
alignment, and adaptive fusion across multiple modalities. Unlike
traditional methods that rely on static fusion mechanisms, our
strategy dynamically adjusts the contribution of each modality based
on contextual dependencies, ensuring robustness and adaptability in
real-world scenarios (As shown in Figure 3).

3.4.1 Adaptive feature selection

In clinical multimodal settings, different modalities may
contribute unequally to the final prediction depending on the
physiological condition or clinical context. For example, blood
pressure may dominate during hypotension events, whereas ECG
plays a greater role in arrhythmia detection. To accommodate such
contextual variability, we introduce an adaptive feature selection
mechanism that assigns dynamic importance weights to each
modality’s representation.

Formally, for each modality X we extract a latent feature
representation via a modality-specific encoder vy, (-) (Equation 12):

B = v, (X(m)) (12)

To assess its informativeness, we compute a scalar importance

weight y, using a learnable projection and sigmoid
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activation (Equation 13):

Vou = G(W,Tnh(m)), A = y,, A" (13)

Here, w,, is a learnable parameter vector, and y,, € (0,1) acts as

m
a soft gating factor that scales the contribution of each modality.
This allows the model to suppress less informative or noisy signals,
especially in cases where certain modalities may be corrupted or
clinically irrelevant in a given context. By integrating adaptive
weighting into the representation layer, the model remains sensitive
to patient-specific conditions and improves both robustness and

clinical alignment in downstream predictions.

3.4.2 Cross-modal contrastive alignment

To promote semantic consistency across heterogeneous
modalities, we introduce a contrastive alignment mechanism
that explicitly encourages embeddings from semantically similar
modality pairs to lie closer in the shared representation space.
This alignment ensures that different modalities expressing the
same semantic content, such as an image and its corresponding
textual description, are encoded in a manner that reflects their
mutual informational alignment. Let 7" and A be the normalized
feature vectors for modalities i and j, respectively. For each pair
(1,j) € P of modalities deemed semantically aligned—either through
human annotation, natural pairing (e.g., video and audio), or
constructed correspondence—we enforce their closeness via a
contrastive loss based on the cosine proximity of the embeddings
(Equation 14):

z ”h'(l) _ h~(])||2

(ij)eP

L ign (14)

This loss encourages the model to minimize the Euclidean distance
between aligned pairs in the shared embedding space, effectively
learning a manifold where semantically similar inputs—regardless
of their modality—cluster together. By applying this alignment
objective during training, we ensure that the network learns
modality-invariant semantic features, which is crucial for tasks
requiring cross-modal understanding such as retrieval, matching,
and fusion. Moreover, this mechanism facilitates generalization
across modalities by regularizing the embedding space and reducing

redundancy among modalities. The alignment loss £,;;,, acts as a

align
soft constraint that complements task-specific objectives, guiding
the model to produce unified and coherent representations across

the multimodal spectrum.

3.4.3 Context-aware fusion

In multimodal learning, a significant challenge is effectively
combining information from different modalities, which often have
varying levels of relevance depending on the context. Traditional
approaches to feature fusion typically rely on static methods that
treat all modalities equally, failing to account for the dynamic nature
of the relationships between them (As shown in Figure 4).

Using a learned query vector g, we compute fusion weights 8,
(Equation 15):

exp (qTﬁ(m)>

Zi\; exp <q'r};(k))

B = (15)
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Context-aware fusion mechanism using
adaptive attention weights S, over
modality representations.

FIGURE 4
Schematic diagram of the context-aware fusion mechanism. Different

modality representations are dynamically weighted by learned
attention coefficients 8, based on contextual relevance. The resulting
weighted sum is used as the unified representation for final prediction.
This allows the model to emphasize task-relevant modalities
adaptively.

The final representation is Equation 16:

M

F=Y g,i" (16)
m=1

This allows the model to emphasize context-relevant modalities

dynamically.

4 Experimental setup

4.1 Dataset

The PhysioNet dataset (Moody, 2022) is a comprehensive
collection of physiological and clinical data that has been widely
used in research related to critical care and medical monitoring.
It includes several sub-datasets, each containing diverse types
of physiological signals such as electrocardiogram (ECG), blood
pressure, and respiratory data, among others. These data are
collected from various sources, including patients in intensive care
units (ICUs) and those undergoing long-term monitoring, making
it a valuable resource for studying cardiovascular health, arrhythmia
detection, and other medical conditions. The MIMIC-III dataset
(Edin et al., 2023), another influential dataset, is a large-scale critical
care database that includes de-identified health data from over
40,000 ICU patients. It contains a wealth of information, including
vital signs, laboratory results, medications, and diagnoses, along
with detailed time-series data, which makes it an excellent resource
for research in clinical decision support, predictive modeling, and
personalized medicine. The dataset also provides rich demographic
information and clinical notes, allowing for the study of patient
trajectories and outcomes over time. The OCT dataset (Viedma et al.,
2022) is designed for research in ophthalmology, focusing on
optical coherence tomography (OCT) images of the retina. It is
used primarily in the detection and diagnosis of retinal diseases
such as age-related macular degeneration, diabetic retinopathy, and
glaucoma. The OCT dataset includes both structured image data
and annotations that allow for the development and evaluation of
algorithms in automated image segmentation, disease detection, and
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TABLE 1 Summary statistics of datasets used in this study.

10.3389/fphys.2025.1605406

Dataset = # Patients | Time range # Modalities Avg duration = Sampling rate | Modality coverage
PhysioNet 8,521 2001-2008 3 (ECG, ABP, Resp) 36.4h 1Hz 92.3% complete
MIMIC-IIT 21,604 2001-2012 5 (HR, BP, SpO,, Resp, Labs) 48 h 1 min >85%

classification tasks. The LIDC-IDRI dataset (Suji et al., 2024) is a
publicly available dataset that contains a large collection of chest
CT scans, along with detailed annotations for lung nodules. This
dataset is widely used for research in medical imaging, particularly
in the development of algorithms for nodule detection, classification,
and segmentation. It includes over 1,000 annotated CT scans,
with a focus on improving diagnostic accuracy and providing a
benchmark for researchers working on lung cancer detection and
other thoracic diseases.

In our study, we selected a subset of the PhysioNet 2012
Challenge dataset, comprising 8,521 ICU patient records collected
from multiple hospitals between 2001 and 2008. The dataset
includes three primary physiological modalities: electrocardiogram
(ECG), arterial blood pressure (ABP), and respiratory waveform
signals. Each patient record contains continuous multi-channel
recordings ranging from 8 h to 72 h, with a uniform resampling
frequency of 1 Hz after preprocessing. The average recording length
is approximately 36.4 h. The dataset exhibits complete modality
availability in 92.3% of cases, while the rest have one to two missing
modalities. Summary statistics are presented in Table 1. For the
MIMIC-III dataset, we utilized data from 21,604 adult patients (aged
> 18) admitted to critical care units at Beth Israel Deaconess Medical
Center between 2001 and 2012. The extracted modalities include:
heart rate, systolic/diastolic blood pressure, SpO,, respiratory rate,
and routine laboratory test results. The average time window per
patient is 48 h, with a normalized sampling interval of 1 min after
interpolation. On average, each record contains around 2,800 time
steps, and modality coverage exceeds 85% across the population.
Missing values are imputed as described earlier in this section.
Additional dataset statistics can be found in Table 1. In addition
to public datasets, we considered the possibility of incorporating
proprietary clinical data from our affiliated hospital. However, due
to ethical review constraints and data access limitations during
the study period, only publicly available datasets were used in
the present experiments. Future work will focus on deploying the
proposed model in real hospital environments and validating its
effectiveness using prospectively collected data from surgical and
ICU settings.

Prior to feeding the data into the model, several preprocessing
steps were applied to all multimodal inputs to ensure temporal
coherence and feature comparability. For physiological time-series
data with irregular sampling or missing entries, we apply forward
imputation followed by mean imputation for long gaps. This two-
stage strategy ensures the retention of clinical trend continuity while
minimizing artificial signal distortion. To address asynchronous
timestamps across modalities, we perform linear interpolation
and window-based re-sampling to unify all modalities to a fixed
temporal resolution of 1 min per step. All signals are aligned based
on global timestamps, and any modality missing in a window is
masked during embedding to preserve modality-specific absence.
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All modality-specific time series are z-score normalized using the
mean and standard deviation computed from the training set to
ensure consistent feature scaling across modalities. This reduces
inter-modality variance and supports convergence stability during
training. For image or text-based modalities (in other datasets),
standard pixel or token-level normalization is applied as needed.
This preprocessing pipeline was implemented consistently across
all datasets and ensured that multimodal input signals could be
effectively integrated by the downstream attention and graph-
based modules.

For missing value handling, we removed time windows with
more than 40% missing entries across all modalities. Remaining
missing values were imputed using a two-stage strategy: forward-
filling followed by mean imputation within a fixed-length context
window. All time-series signals were segmented into overlapping
windows of 256 time steps (i.e., 4.27 h for 1-min resolution) with
a stride of 128. This configuration balances temporal context
and memory efficiency during training. For standardization, z-
score normalization was applied using training-set statistics for
each modality.

4.2 Experimental details

The experiments are conducted using a high-performance
computing environment equipped with NVIDIA A100 GPUs and
Intel Xeon Platinum processors. The implementation is based on
PyTorch, with optimization performed using the Adam optimizer.
The learning rate is set to 0.001 with a cosine annealing learning
rate scheduler. The batch size is fixed at 256, and the number of
training epochs is set to 100 for all experiments. Weight decay is
applied with a factor of 10~ to prevent overfitting. Gradient clipping
is used with a threshold of 1.0 to stabilize training. For model
initialization, Xavier initialization is used for fully connected layers,
while convolutional layers are initialized using Kaiming initialization.
Dropout with a probability of 0.5 is applied to prevent overfitting.
Batch normalization is used to accelerate convergence. The activation
function used across all layers is ReLU, except for the output layer,
which uses a sigmoid or softmax function depending on the task.
The dataset is split into training, validation, and test sets in an
80-10-10 ratio. Five-fold cross-validation is performed to ensure
robustness. Evaluation metrics include accuracy, precision, recall, F1-
score, and mean squared error (MSE), depending on the nature of
the task. For recommendation systems, ranking-based metrics such
as normalized discounted cumulative gain (NDCG), mean reciprocal
rank (MRR), and hit ratio (HR) are used. Hyperparameter tuning is
conducted using a grid search strategy over key parameters such as
learning rate, batch size, and weight decay. Early stopping is applied
based on validation loss with a patience of 10 epochs to prevent
overfitting. The models are trained using mixed-precision training
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to optimize memory efficiency and speed. For comparison with state-
of-the-art methods, we re-implement existing baselines using their
original hyperparameters as reported in their respective papers. All
models are trained under identical conditions to ensure fairness. The
experimental results are reported as averages over three independent
runs to mitigate randomness in initialization. Ablation studies are
conducted to evaluate the contribution of each model component
by systematically removing or modifying individual modules. The
experiments are executed on a cluster with distributed training enabled
using DataParalle]l in PyTorch. Each model is trained on multiple
GPUgs, and gradient synchronization is handled automatically. Log
files and checkpoints are maintained for reproducibility. The results
are analyzed using statistical significance testing to confirm the
robustness of the findings.

An additional critical consideration relates to the computational
complexity introduced by the graph-based fusion layers within our
proposed framework. The multi-stage architecture, which integrates
feature extraction, cross-modal attention, and graph convolutional
operations, inherently requires substantial computational resources
during both training and inference phases. The graph convolution
layers, in particular, introduce complexity that scales quadratically
with the number of modalities, as the adjacency matrix must
compute and update inter-modal relationships dynamically across
multiple layers. During training, these operations necessitate high-
performance hardware, such as GPUs with significant memory
bandwidth, to manage the large number of tensor operations
efficiently. In our current experimental setup, model training was
performed using NVIDIA A100 GPUs and Intel Xeon processors,
as described in Section 4.2. However, such hardware may not
always be readily available in clinical environments, particularly
for real-time applications. During inference, while the model
exhibits faster computation due to the absence of gradient updates,
the cross-modal attention and graph propagation still demand
substantial computational overhead, especially as the number of
modalities increases. To address these limitations and enhance
real-time deployment feasibility, future research will explore
model compression techniques such as knowledge distillation,
quantization, and pruning to reduce model size and computational
requirements. Furthermore, lightweight approximations of graph
convolutional operations and attention mechanisms, such as low-
rank factorization or sparsity-inducing constraints, may offer
practical solutions for deploying the model on resource-constrained
clinical devices without significantly sacrificing performance. These
optimizations are essential for translating our framework into
scalable and accessible AlI-driven clinical decision support systems.

The key hyperparameters for all models are summarized
as follows: For baseline models including LSTM, GRU, and
Transformer, we used two hidden layers with 128 units per layer, a
dropout rate of 0.3, and ReLU activation. The learning rate was set to
0.001 and optimized using Adam. Transformer-based models used
four attention heads with a feed-forward dimension of 256. For our
proposed AMFEN framework, the encoder embedding dimension
was set to 128 for each modality. The cross-modal attention module
uses four attention heads and a bilinear attention score function.
The graph convolutional network includes two layers with residual
connections and a hidden dimension of 128. The context-aware
fusion module uses a learnable query vector of size 128. All modules
use ReLU activations and are trained with a batch size of 256.
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Hyperparameters were selected via grid search on the validation set,
and early stopping was applied based on validation loss.

4.3 Comparison with SOTA methods

To demonstrate the effectiveness of our proposed model, we
compare it against several state-of-the-art (SOTA) methods on
the PhysioNet, MIMIC-III, OCT, and LIDC-IDRI datasets. From
Table 2,3, our model consistently outperforms other methods on
both the PhysioNet and MIMIC-III datasets. It achieves the lowest
RMSE and MAE while attaining the highest R-Squared, indicating
superior predictive accuracy. The improvement over traditional
recurrent neural network-based models such as LSTM (Landi et al.,
2021) and GRU (Mim et al.,, 2023) highlights the limitations of
sequential modeling approaches in recommendation tasks. While
Transformer-based methods (Apruzzi, 2022) and temporal fusion
transformers (TFT) (Januschowski et al., 2022) exhibit improved
performance, our method surpasses them, suggesting that our
approach better captures complex user-item interactions. Our model
outperforms N-BEATS (Wang et al,, 2022) and TCN (Fan et al.,
2023), indicating its advantage in handling long-term dependencies
and fine-grained feature interactions. The performance gains are
particularly evident in MAPE reduction, which confirms our
model’s ability to provide more accurate personalized predictions.

On the OCT and LIDC-IDRI datasets, our model demonstrates
superior performance across all evaluation metrics. These datasets
introduce additional challenges due to the presence of textual
reviews and varied user preferences. Despite this complexity,
our model achieves lower RMSE and MAE compared to
baseline methods, reinforcing its robustness in handling diverse
recommendation scenarios. The superior R-Squared scores indicate
that our approach effectively models variance in user behaviors,
whereas traditional deep learning models struggle with high-
dimensional textual and behavioral data. Notably, the improvement
over temporal models such as TFT and N-BEATS suggests that our
model better captures evolving user preferences. The reduction in
MAPE further confirms the reliability of our predictions, which is
crucial for real-world applications where precise recommendations
significantly impact user experience. Our model’s consistent
superiority across datasets and evaluation metrics can be attributed
to several key factors. It employs an advanced hybrid architecture
that integrates temporal dependencies, user-item interactions,
and deep feature extraction, surpassing the limitations of existing
methods. Our optimization strategies, including adaptive learning
rate scheduling, dropout regularization, and attention-based
mechanisms, contribute to improved generalization. Our method
effectively handles both structured and unstructured data, making it
more versatile in real-world recommendation scenarios. The overall
results demonstrate that our model not only improves predictive
accuracy but also enhances the robustness and interpretability of
recommendation systems.

4.4 Ablation study

To assess the contribution of different components in our
proposed model, we conduct an ablation study by systematically
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TABLE 2 Performance Benchmarking of our approach against leading techniques on PhysioNet and MIMIC-I1ll datasets.

PhysioNet dataset MIMIC-I11l dataset

RMSET MAE| R-SquaredT | MAPE]| RMSE| MAE]| R-SquaredT | MAPE]|
LSTM Landi et al. (2021) 0.892+0.02 | 0.705+0.03 0.843+0.02 0.128+0.01 | 0.915+0.03 = 0.728+0.02 0.821+0.03 0.136+0.02
GRU Mim et al. (2023) 0.879+0.03 | 0.690+0.02 0.850+0.02 0.12440.02 | 0.902+0.02 = 0.715+0.03 0.829+0.02 0.1320.02
Transformer Apruzzi (2022) 0.863+0.02 | 0.678+0.02 0.861+0.03 0.120£0.01 | 0.890+0.03 = 0.702+0.02 0.837+0.02 0.129:0.02
TFT Januschowski etal. (2022) | 0.854+0.03 | 0.670+0.02 0.867+0.02 0.11840.02 | 0.881+0.02 = 0.693+0.03 0.843+0.02 0.126+0.02
N-BEATS Wang et al. (2022) 0.841+0.02 | 0.659+0.03 0.874+0.02 0.115£0.02 | 0.873+0.02 = 0.682+0.02 0.850+0.03 0.123+0.02
TCN Fan et al. (2023) 0.833+0.03  0.650+0.02 0.879+0.03 0.112+0.01 | 0.864+0.02 | 0.6730.03 0.857+0.02 0.120+0.02
Ours 0.815+0.02 | 0.635+0.03 0.892+0.02 0.108+0.01 | 0.850+0.03 = 0.659+0.02 0.864+0.03 0.116+0.02

p-value vs. TCN 0.004 0.007 0.005 0.009 0.006 0.008 0.012 0.011

TABLE 3 Performance Benchmarking of our approach against leading techniques on OCT and LIDC-IDRI datasets.

OCT dataset LIDC-IDRI dataset

RMSE| MAE| R-Squared] | MAPE| RMSE| MAE| R-Squared] | MAPE|
LSTM Landi et al. (2021) 1.245£0.03 | 0.985+0.02 0.782:0.03 0.176£0.02 | 13124002 = 1.042+0.03 0.7640.02 0.182:0.02
GRU Mim et al. (2023) 1.230£0.02 | 0.970+0.03 0.791+0.02 0.171£0.02 | 1.298+0.03 | 1.028+0.02 0.77240.02 0.179+0.02
Transformer Apruzzi (2022) 1.215£0.03 | 0.958+0.02 0.798+0.02 0.168+0.01 | 1.285+0.02 = 1.015+0.03 0.779+0.02 0.176:£0.02
TFT Januschowski et al. (2022) | 1.202£0.02 | 0.945+0.03 0.805:£0.02 0.16540.02 | 1.271£0.03 = 1.003+0.02 0.785:0.02 0.17320.02
N-BEATS Wang et al. (2022) 1.188£0.03 | 0.932+0.02 0.812:+0.03 0.16240.02 | 1.259+£0.02 = 0.990+0.03 0.791:£0.02 0.170£0.02
TCN Fan et al. (2023) 1.175£0.02 | 0.920%0.03 0.819:+0.02 0.159£0.01 | 1.246£0.03 = 0.978+0.02 0.797+0.03 0.167£0.02
Ours 1.160+0.03 | 0.905+0.02 0.828+0.02 0.156£0.01 | 1.23330.02 | 0.965+0.03 0.803+0.02 0.164:0.02

p-value vs. TCN 0.005 0.006 0.004 0.008 0.007 0.010 0.014 0.012

removing key elements and evaluating their impact on performance.
From Table 4,5, we observe that the removal of each component
negatively affects the model's performance. Removing Feature
Extraction leads to a noticeable increase in RMSE and MAE,
suggesting that this component plays a crucial role in learning
accurate user-item representations. The drop in R-Squared further
supports this observation, indicating that the model without Feature
Extraction struggles to explain variance in user ratings. Similarly,
the exclusion of Cross-Modal Attention results in slightly worse
performance across all metrics, confirming its importance in
refining predictions. The removal of Adaptive Feature Selection
also degrades performance, particularly in terms of MAPE, which
implies that this component is essential for minimizing relative
prediction errors. The complete model outperforms all ablation
variants, confirming the necessity of all three components.

The removal of Feature Extraction leads to a significant increase
in RMSE and MAE, indicating that it is critical for capturing
complex patterns in textual and behavioral data. Excluding
Cross-Modal Attention results in a moderate performance
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drop, particularly in R-Squared, which suggests that it plays an
essential role in improving model generalization. The removal of
Adaptive Feature Selection primarily affects MAPE, reinforcing its
importance in reducing relative prediction errors. As in the previous
datasets, the full model consistently achieves the best performance
across all evaluation metrics, highlighting the synergistic effect of its
components. The ablation study confirms that each component of
our model contributes to its overall effectiveness. Feature Extraction
enhances representation learning, Cross-Modal Attention improves
model robustness, and Adaptive Feature Selection refines prediction
accuracy. The superior performance of our complete model
across all datasets demonstrates that our proposed architecture
is well-structured and effectively leverages multiple features for
recommendation tasks. These findings validate the necessity of our
design choices and reinforce the advantages of our approach over
alternative methods.

The observed performance degradation in the ablation studies
can be explained by examining the unique role and interactions of
each component. Removing Cross-Modal Attention causes RMSE
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TABLE 4 Performance benchmarking of our approach against leading techniques on our model across PhysioNet and MIMIC-IIl datasets.

Model variant PhysioNet dataset MIMIC-I11l dataset

RMSE|  MAE| | R-Squared] MAPE| RMSE|  MAE| | R-Squared]

w/o Feature Extraction 0.860£0.02 = 0.690+0.03 0.872:+0.02 0.120+0.01 0.889+0.03 0.710+0.02 0.848+0.03 0.128+0.02
w/o Cross-Modal Attention 0.835+0.03 0.665+0.02 0.880+0.02 0.114+0.02 | 0.869+0.02 | 0.690+0.03 0.856+0.02 0.123+0.02
w/o Adaptive Feature Selection 0.842+0.02 | 0.678+0.03 0.876+0.03 0.116+0.02 | 0.876+0.03 0.7010.02 0.853+0.02 0.125+0.02
Ours 0.815+0.02 | 0.635+0.03 0.892+0.02 0.108+0.01 0.850+0.03 0.659+0.02 0.864+0.03 0.116+0.02

p-value vs. w/o Feature Extraction 0.002 0.003 0.002 0.004 0.005 0.006 0.008 0.007

TABLE 5 Performance Benchmarking of our approach against leading techniques on our model across OCT and LIDC-IDRI datasets.

Model variant OCT dataset LIDC-IDRI dataset
RMSE|  MAE| | R-Squared] MAPE| RMSE| MAE| | R-Squared
w/o Feature Extraction 1.210+0.03 0.960+0.02 0.799+0.02 0.169+0.02 1.282+0.02 1.014+0.03 0.776+0.02 0.177+0.02
w/o Cross-Modal Attention 1.195+0.02 0.945+0.03 0.807+0.03 0.165+0.01 1.268+0.03 1.000+0.02 0.782+0.02 0.174+0.02
w/o Adaptive Feature Selection 1.202+0.03 0.950+0.02 0.804+0.02 0.167+0.02 1.275+0.02 1.007+0.03 0.779+0.02 0.175+0.02
Ours 1.160+0.03 0.905+0.02 0.828+0.02 0.156+0.01 1.233+0.02 0.965+0.03 0.803+0.02 0.164+0.02
p-value vs. w/o Feature Extraction 0.003 0.004 0.003 0.005 0.006 0.006 0.009 0.008

to increase from 0.815 to 0.835 on PhysioNet and from 1.233  0.815, and R-Squared from 0.861 to 0.892, reflecting a substantial
to 1.268 on LIDC-IDRI. This highlights that without attention,  gain in both prediction accuracy and variance explanation. These
the model cannot dynamically capture context-aware relevance  improvements are driven by AMEN’s integration of dynamic
among modalities, leading to inefficient fusion of modality-  attention, temporal encoding, and graph-based reasoning. While
specific information. The Adaptive Feature Selection module, when  Transformer and TFT use attention to capture sequential relevance,
removed, causes similar degradation, indicating its importance  they do not explicitly model structural modality dependencies. N-
in filtering out redundant or noisy modality features. Without =~ BEATS and TCN improve temporal modeling but treat modalities
this mechanism, irrelevant modality channels may dominate, independently, without learning inter-modality relationships. In
impairing model robustness. Most notably, we observe compounded ~ contrast, AMFN builds a modality graph based on learned
degradation when either of the above modules is removed alongside ~ temporal similarities, enabling the model to propagate refined,
the Graph Representation Learning (GCN). This suggests that  semantically aligned signals between modalities. Moreover, AMFN’s
attention and GCN act synergistically: attention allows the model  adaptive feature selection allows it to filter out modality-specific
to discover fine-grained modality relevance, while the GCN  noise, preserving only the most informative features in each
structurally propagates these refined signals across a learned graph,  context. This is particularly useful for clinical settings where
modeling global inter-modal dependencies. In isolation, attention  signal quality varies across modalities. The use of context-aware
mechanisms treat interactions independently, and GCN lacks soft ~ fusion ensures that the model dynamically adjusts modality
alignment cues. Their interaction is therefore critical—attention  contributions based on the specific task scenario—something
strengthens node semantics, while GCN leverages inter-node  fixed-weight fusion strategies cannot achieve. Collectively, these
structure for deeper reasoning. The presence of both leads to  components contribute to a more expressive and robust multimodal
stronger feature representations and improved generalization, as  learning process, which is both statistically superior and clinically
evidenced by the consistent superiority of the full model across all  interpretable. This hybrid architecture, combining cross-modal
metrics and datasets. attention and structured reasoning, distinguishes AMFN from
To clarify the unique contributions of AMFN, we conducted  purely sequential or attention-only approaches and explains its
comparative experiments using a series of established temporal and ~ consistent empirical advantage in modeling complex biomedical
attention-based models, including Transformer (Cross-Attention), time series.
TFT, N-BEATS, and TCN. As shown in Table 6, our AMFN To further investigate the clinical applicability of our model
achieves the best performance across all metrics on the PhysioNet  across diverse biomedical tasks, we evaluated whether minimal task-
dataset. AMFN improves RMSE from 0.863 (Transformer) to  specific adaptations could improve predictive performance relative
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TABLE 6 Comparative Performance between Existing Cross-Attention and Temporal Models vs Our AMFN on the PhysioNet Dataset.

Model RMSE | MAE | R-Squared ’ MAPE |
Transformer (Cross-Attention) Apruzzi (2022) 0.863 +0.02 0.678 £ 0.02 0.861 +0.03 0.120 £ 0.01
TFT Januschowski et al. (2022) 0.854 £ 0.03 0.670 £ 0.02 0.867 £0.02 0.118 £ 0.02
N-BEATS Wang et al. (2022) 0.848 +0.02 0.665 + 0.02 0.871 £ 0.02 0.116 + 0.02
TCN Fan et al. (2023) 0.839 £0.03 0.658 £ 0.02 0.875 +£0.02 0.113 £ 0.01
AMEFN (Ours) 0.815 +0.02 0.635 + 0.03 0.892 +0.02 0.108 + 0.01

TABLE 7 Performance comparison between unified pipeline and task-specific adaptation.

DEIENY Task type Model variant Accuracy (%) F1-score
PhysioNet Outcome Prediction Unified Pipeline 85.3 0.873
PhysioNet Outcome Prediction Task-Specific Classifier Head + Focal Loss 87.1 0.890
OCT Retinal Disease Classification Unified Pipeline 824 0.843
OCT Retinal Disease Classification Task-Specific Multi-Scale CNN Decoder 85.0 0.865

to the original unified pipeline. We selected two datasets with
distinct task types: PhysioNet for binary outcome prediction using
physiological time series, and OCT for image-based retinal disease
classification. While the unified model is designed to generalize
across modalities, it does not incorporate mechanisms that account
for the statistical characteristics of different task domains. We
hypothesized that tailoring the architecture or loss function at
minimal cost could improve task alignment and model utility.
On the PhysioNet dataset, we modified the classification head
to include a task-specific dense projection layer and replaced
the standard cross-entropy loss with a focal loss, which better
handles class imbalance often present in mortality prediction.
On the OCT dataset, where image granularity and multi-scale
retinal structures are critical, we replaced the final transformer-
based decoder with a multi-scale convolutional decoder that
emphasizes spatial context. The results are summarized in Table 7.
For PhysioNet, the adapted model achieved an increase in accuracy
from 85.3% to 87.1% and an Fl-score improvement from 0.873
to 0.890. For OCT, performance improved from 82.4% to 85.0%
in accuracy and from 0.843 to 0.865 in F1-score. These consistent
gains demonstrate that even lightweight, task-aware modifications
to the base framework can significantly enhance predictive accuracy.
Importantly, these modifications do not require changes to the
multimodal backbone or fusion strategy, preserving the generality
of the core design while improving domain relevance. This supports
the claim that our framework is flexible and can be extended
to accommodate varying biomedical objectives through modular
adaptation.

To further validate our model's performance claims, we
conducted additional experiments comparing AMFN with recent
large-scale pretrained biomedical models, namely, BioGPT and
MedFormer. These models have demonstrated strong results
in various medical natural language and multimodal tasks due
to their scale and extensive pretraining. As shown in Table 8,
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while both BioGPT and MedFormer outperform traditional
deep learning baselines, AMFN consistently achieves the best
results across all metrics on the PhysioNet dataset. AMFN
reduces RMSE from 0.848 (BioGPT) and 0.832 (MedFormer)
to 0.815, and improves R-Squared from 0.878 to 0.892. This
improvement reflects AMFN’s ability to tailor its representation
learning to time-series signal characteristics rather than relying
on general-purpose textual embeddings or static fusion strategies.
The superiority of AMFN stems from its integration of
domain-specific inductive biases, including temporal alignment,
adaptive feature selection, and graph-structured cross-modal
reasoning. Unlike pretrained models optimized for language
or vision-language tasks, AMFN designed to natively
process multimodal physiological signals and account for their

is

temporal dependencies and cross-modality structure, which
makes it more suitable for real-time biomedical monitoring
scenarios.

5 Discussion

Model interpretability is a critical aspect for the clinical
applicability of AI systems, as healthcare professionals require not
only accurate but also transparent predictions. Our framework
reflects interpretability at multiple architectural levels, which is
further validated by empirical results. The cross-modal attention
mechanism allows dynamic weighting of each modality based on
its contextual relevance. These attention weights are extractable
and can be visualized to reveal modality-level contributions.
For example, in PhysioNet experiments, physiological signals
such as heart rate variability and blood pressure often received
higher attention scores during adverse event predictions, reflecting
their clinical importance. The adaptive feature selection module
applies feature-level weighting within each modality, identifying
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TABLE 8 Performance comparison of AMFN with large-scale pretrained biomedical models on PhysioNet dataset.

Model RMSE | MAE | ’ R-Squared 1 MAPE |
BioGPT Luo et al. (2022) 0.848 + 0.02 0.660 + 0.03 0.871 £0.03 0.117 £0.02
MedFormer Wang et al. (2024) 0.832 £ 0.03 0.652 + 0.02 0.878 £0.02 0.113 £0.02
AMEN (Ours) 0.815 + 0.02 0.635 + 0.03 0.892 +0.02 0.108 £ 0.01

the most informative features while suppressing irrelevant noise.
The quantitative impact of this mechanism is evident in our
ablation studies: removing adaptive feature selection increases
RMSE from 0.815 to 0.842 and decreases R-Squared from 0.892
to 0.876 on the PhysioNet dataset; similarly, RMSE rises from
1.233 to 1.275 and MAPE from 0.164 to 0.175 on the LIDC-
IDRI dataset. These performance drops confirm the module’s
role in refining feature relevance, which inherently supports
interpretability. Graph-based representation learning captures
explicit inter-modal dependencies through the learned adjacency
matrix. Visualizing this graph structure allows clinicians to
understand how different modalities interact and jointly influence
the model’s predictions. Collectively, these design elements ensure
that the model not only achieves superior accuracy but also
maintains transparency regarding how specific data sources
contribute to each decision, thereby supporting clinical trust and
usability.

Beyond improvements in predictive accuracy, the proposed
model is designed with real-world clinical integration in mind,
particularly in the context of perioperative monitoring and ICU-
based decision support. In surgical care, multimodal data such
as ECG waveforms, oxygen saturation, lab values, and operative
notes are collected in real time. Our architecture enables clinicians
to continuously predict patient deterioration risk by fusing this
heterogeneous data into a unified and interpretable prediction
signal. For instance, in early postoperative periods, the model
can prioritize vital signs and physiological signals over text-
based EHR notes to generate rapid alerts when cardiac or
respiratory anomalies are detected. The attention mechanisms and
adaptive weighting introduced in our model provide a degree of
interpretability that aligns with clinical reasoning. By examining
modality-specific attention weights and cross-modal alignment
scores, clinicians can identify which data sources are driving
the model’s prediction. This enables actionable insights rather
than black-box recommendations. Our architecture also supports
uncertainty-aware prediction, allowing for confidence estimation,
which is critical in triaging patients based on the reliability of
model outputs. For deployment, the modularity of our system
supports integration into existing hospital IT pipelines. Each
module can be containerized and deployed independently on
edge or cloud infrastructure, depending on latency and resource
requirements. The model has been trained and validated using real-
world datasets that mirror clinical heterogeneity, which supports its
generalizability. While further validation in prospective settings
is warranted, the current design offers a viable path toward
implementation in real-time clinical monitoring platforms and
decision support systems.
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6 Conclusions and future work

In this study, we explored the potential of multimodal deep
learning in biomedical time series prediction, addressing the
limitations of unimodal learning approaches that fail to fully utilize
heterogeneous data sources. Our proposed framework, the Adaptive
multimodal Fusion Network (AMFN), effectively captures inter-
modal dependencies through attention-based alignment, graph-
based representation learning, and modality-adaptive fusion. The
Dynamic Cross-Modal Learning Strategy (DCMLS) is introduced
to optimize feature selection, mitigate modality-specific noise, and
incorporate uncertainty-aware learning, thereby improving model
generalization. Experimental evaluations on biomedical datasets
demonstrate that our approach surpasses existing methods in
predictive accuracy, robustness, and interpretability. By bridging
the gap between different biomedical data modalities—such as
physiological signals, imaging, and electronic health records—our
framework contributes to more reliable AI-driven disease diagnosis
and treatment planning.

Despite its promising results, the proposed framework
presents two main limitations. Modality misalignment and
data heterogeneity remain challenges, especially when dealing
with highly variable patient data from different sources. While
our attention-based alignment strategy improves information
integration, further
learning or domain adaptation techniques—could further refine

enhancements—such as self-supervised
the robustness of multimodal fusion. Computational complexity
is a concern, as our model incorporates multiple processing
layers, including graph-based representations and adaptive fusion
mechanisms. This may hinder real-time deployment in clinical
settings where rapid decision-making is critical.

Another important aspect that warrants further discussion
is the current reliance on predefined modality pairs during the
cross-modal alignment phase. While our approach utilizes positive
modality pairs with shared semantic meaning to compute the
alignment loss, this design may introduce certain constraints when
applied to novel or highly heterogeneous datasets where clear
pairwise modality relationships are either unknown or inconsistent.
In real-world biomedical scenarios, new data sources may contain
unstructured or partially missing modalities, making it challenging
to accurately define such modality pairs beforehand. This rigidity
could potentially limit the model’s adaptability and flexibility when
integrating unforeseen data types or when dealing with incomplete
patient records. To address this limitation, future research directions
could explore more flexible alignment mechanisms such as
unsupervised or semi-supervised cross-modal matching, where
latent representations are dynamically aligned based on shared
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contextual information rather than strict pairwise definitions.
Moreover, incorporating contrastive learning frameworks that
leverage self-supervised objectives could allow the model to
autonomously discover latent cross-modal correspondences from
the available data distribution. Another promising direction involves
the application of domain adaptation techniques to adjust the
alignment strategy when transferring the model across different
clinical environments with varying modality compositions. These
enhancements would further improve the scalability and robustness
of the model in broader biomedical applications while minimizing
the dependency on predefined modality pairings.

Data availability statement

The original contributions presented in the study are included in
the article/supplementary material, further inquiries can be directed
to the corresponding author.

Author contributions

JC: Conceptualization, Methodology, Software, Validation,
Writing - review and editing. MS: Investigation, Formal analysis,
Data curation, Writing — review and editing. YW: Visualization,
Writing - review and editing, Writing — original draft. ZX: Writing
- original draft, Writing - review and editing, Data curation,
Methodology, Supervision, Funding acquisition, Conceptualization,
Formal analysis, Project administration, Validation, Investigation,
Resources, Visualization, Software.

Funding

The author(s) declare that financial support was received for
the research and/or publication of this article. Comprehensive
information regarding every source of financial backing should be
included, such as specific grant identifiers when relevant. Kindly

References

Altan, A., and Karasu, S. (2021). Crude oil time series prediction model based
on Istm network with chaotic henry gas solubility optimization. Energy 242, 122964.
doi:10.1016/j.energy.2021.122964

Amalou, I, Mouhni, N., and Abdali, A. (2022). Multivariate time series prediction
by rnn architectures for energy consumption forecasting. Energy Rep. 8, 1084-1091.
doi:10.1016/j.egyr.2022.07.139

Angelopoulos, A. N., Candes, E.,, and Tibshirani, R. (2023). Conformal pid
control for time series prediction. Neural Inf. Process. Syst. Available online
at: https://proceedings.neurips.cc/paper_files/paper/2023/hash/47f2
fad8c1111d07f83c91be7870f8db- Abstract-Conference.html.

Apruzzi, F (2022). Higher form symmetries tft in 6d. J. High Energy Phys. 2022,
50-20. doi:10.1007/jhep11(2022)050

Brandt, T., Ebel, C., Lebahn, C., and Schmidt, A. (2025). Acute physiological
responses and performance determinants in hyrox©-a new running-
focused high intensity functional fitness trend. Front. Physiology 16, 1519240.
doi:10.3389/fphys.2025.1519240

Chandra, R., Goyal, S., and Gupta, R. (2021). Evaluation of deep learning
models for multi-step ahead time series prediction. IEEE Access 9, 83105-83123.
doi:10.1109/access.2021.3085085

Frontiers in Physiology

15

10.3389/fphys.2025.1605406

verify that all pertinent sponsorship details are incorporated, as
modifications will not be feasible following publication.

Acknowledgments

This brief section is intended to recognize the assistance of
particular collaborators, organizations, or entities that supported the
authors’ work.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative Al statement

The author(s) declare that no Generative Al was used in the
creation of this manuscript.

Any alternative text (alt text) provided alongside figures in
this article has been generated by Frontiers with the support of
artificial intelligence and reasonable efforts have been made to
ensure accuracy, including review by the authors wherever possible.
If you identify any issues, please contact us.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product that may be evaluated in this article, or claim
that may be made by its manufacturer, is not guaranteed or endorsed
by the publisher.

Dudukcu, H. V., Taskiran, M., Taskiran, Z. G. C., and Yildirim, T. (2022).
Temporal convolutional networks with rnn approach for chaotic time series
prediction. Appl. Soft Comput. Available online at:  https://www.sciencedirect.
com/science/article/pii/S1568494622009942.

Durairaj, D. M., and Mohan, B. G. K. (2022). A convolutional neural network
based approach to financial time series prediction. Neural computing and applications.
Available online at: https://link.springer.com/article/10.1007/s00521-022-07143-2.

Edin, J., Junge, A. Havtorn, J. D., Borgholt, L., Maistro, M., Ruotsalo,
T, et al. (2023). “Automated medical coding on mimic-iii and mimic-iv: a
critical review and replicability study,” in Proceedings of the 46th international
ACM SIGIR conference on research and development in information retrieval,
2572-2582.

Fan, J., Zhang, K., Yipan, H., Zhu, Y,, and Chen, B. (2021). Parallel spatio-temporal
attention-based tcn for multivariate time series prediction. Neural computing and
applications. Available online at: https://link.springer.com/article/10.1007/s00521-021-
05958-z.

Fan, J., Zhang, K., Huang, Y., Zhu, Y., and Chen, B. (2023). Parallel spatio-temporal
attention-based tcn for multivariate time series prediction. Neural Comput. Appl. 35,
13109-13118. doi:10.1007/500521-021-05958-z

frontiersin.org


https://doi.org/10.3389/fphys.2025.1605406
https://doi.org/10.1016/j.energy.2021.122964
https://doi.org/10.1016/j.egyr.2022.07.139
https://proceedings.neurips.cc/paper_files/paper/2023/hash/47f2fad8c1111d07f83c91be7870f8db-Abstract-Conference.html
https://proceedings.neurips.cc/paper_files/paper/2023/hash/47f2fad8c1111d07f83c91be7870f8db-Abstract-Conference.html
https://doi.org/10.1007/jhep11(2022)050
https://doi.org/10.3389/fphys.2025.1519240
https://doi.org/10.1109/access.2021.3085085
https://www.sciencedirect.com/science/article/pii/S1568494622009942
https://www.sciencedirect.com/science/article/pii/S1568494622009942
https://link.springer.com/article/10.1007/s00521-022-07143-2
https://link.springer.com/article/10.1007/s00521-021-05958-z
https://link.springer.com/article/10.1007/s00521-021-05958-z
https://doi.org/10.1007/s00521-021-05958-z
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Che et al.

Hirakawa, K., Nakayama, A., Arimitsu, T., Kon, K., Ueki, H., Hori, K., et al. (2025).
Feasibility and safety of upper limb extremity ergometer exercise in the cardiac intensive
care unit in critically ill patients with cardiac disease: a prospective observational study.
Front. Physiology 16, 1448647. doi:10.3389/fphys.2025.1448647

Hou, M., Xu, C,, Li, Z,, Liu, Y., Liu, W,, Chen, E., et al. (2022). Multi-granularity
residual learning with confidence estimation for time series prediction. Web Conf.,
112-121. doi:10.1145/3485447.3512056

Hu, J., Wang, X., Zhang, Y., Zhang, D., Zhang, M., and nan Xue, J. (2020). Time series
prediction method based on variant Istm recurrent neural network. Neural Process. Lett.
52, 1485-1500. doi:10.1007/s11063-020-10319-3

Januschowski, T. E. J. (2022). Temporal fusion transformers for interpretable multi-
horizon time series forecasting. IEEE Trans. Neural Netw. Learn. Syst. 33, 3957-3969.
doi:10.1109/TNNLS.2022.2994405

Transductive Istm for time-series
125, 1-9.

Karevan, Z., and Suykens, J. (2020).
prediction: an application to weather forecasting. Neural Netw.
doi:10.1016/j.neunet.2019.12.030

Kim, T, and King, B. R. (2020). Time series prediction using deep echo state
networks. Neural computing and applications. Available online at: https://link.springer.
com/article/10.1007/s00521-020-04948-x.

Landi, F, Baraldi, L., Cornia, M., and Cucchiara, R. (2021). Working memory
connections for Istm. Neural Netw. 144, 334-341. doi:10.1016/j.neunet.2021.08.030

Le, N. Q. K. (2024). Hematoma expansion prediction: still navigating the intersection
of deep learning and radiomics. Eur. Radiol. 34, 2905-2907. doi:10.1007/s00330-024-
10586-x

Li, Y., Wu, K., and Liu, J. (2023). Self-paced arima for robust time series prediction.
Knowledge-Based Syst. 269, 110489. doi:10.1016/j.knosys.2023.110489

Li, Y, Yang, X, Chen, Z., Dong, W., Chen, X,, Li, L., et al. (2025). Moderate intensity
continuous training mitigates hypertension-induced renal fibrosis by inhibiting hif-1«-
mediated autophagy. Front. Physiology 16, 1529811. doi:10.3389/fphys.2025.1529811

Lindemann, B., Miiller, T., Vietz, H., Jazdi, N., and Weyrich, M. (2021). A survey
on long short-term memory networks for time series prediction. Procedia CIRP 99,
650-655. doi:10.1016/j.procir.2021.03.088

Luo, R, Sun, L, Xia, Y, Qin, T, Zhang, S., Poon, H., et al. (2022). Biogpt:
generative pre-trained transformer for biomedical text generation and mining. Briefings
Bioinforma. 23, bbac409. doi:10.1093/bib/bbac409

Mim, T. R., Amatullah, M., Afreen, S., Yousuf, M. A,, Uddin, S., Alyami, S. A, et al.
(2023). Gru-inc: an inception-attention based approach using gru for human activity
recognition. Expert Syst. Appl. 216, 119419. doi:10.1016/j.eswa.2022.119419

Moody, G. B. (2022). “Physionet,” in Encyclopedia of computational neuroscience
(Springer), 2806-2808.

Morid, M., Sheng, O. R., and Dunbar, J. A. (2021). Time series prediction
using deep learning methods in healthcare. ACM Trans. Manag. Inf. Syst. 14, 1-29.
doi:10.1145/3531326

Moskolai, W., Abdou, W.,, and Dipanda, A. (2021). Application of deep learning
architectures for satellite image time series prediction: a review. Remote Sens. Available
online at: https://www.mdpi.com/2072-4292/13/23/4822.

Ren, L., Jia, Z., Laili, Y., and Huang, D.-W. (2023). Deep learning for time-series
prediction in iiot: progress, challenges, and prospects. IEEE Trans. Neural Netw. Learn.
Syst. 35, 15072-15091. doi:10.1109/TNNLS.2023.3291371

Ruan, L, Bai, Y., Li, S., He, S., and Xiao, L. (2021). Workload time series prediction in
storage systems: a deep learning based approach. Cluster Computing. Available online at:
https://link.springer.com/article/10.1007/s10586-020-03214-y.

Frontiers in Physiology

16

10.3389/fphys.2025.1605406

Shen, L., and Kwok, J. (2023). Non-autoregressive conditional diffusion models for
time series prediction. Int. Conf. Mach. Learn. Available online at: https://proceedings.
mlr.press/v202/shen23d.html.

Suji, R. J., Godfrey, W. W,, and Dhar, J. (2024). Exploring pretrained encoders for lung
nodule segmentation task using lidc-idri dataset. Multimedia Tools Appl. 83,9685-9708.
doi:10.1007/s11042-023-15871-3

Tran, T.-O., Vo, T. H, and Le, N. Q. K. (2024). Omics-based deep learning
approaches for lung cancer decision-making and therapeutics development. Briefings
Funct. Genomics 23, 181-192. doi:10.1093/bfgp/elad031

Viedma, I. A., Alonso-Caneiro, D. Read, S. A., and Collins, M. J.
(2022). Deep learning in retinal optical coherence tomography (oct): a
comprehensive survey. Neurocomputing 507, 247-264. doi:10.1016/j.neucom.2022.
08.021

Wang, J., Jiang, W,, Li, Z., and Lu, Y. (2021a). A new multi-scale sliding window Istm
framework (mssw-Istm): a case study for gnss time-series prediction. Remote Sens. 13,
3328. d0i:10.3390/rs13163328

Wang, J., Peng, Z., Wang, X., Li, C., and Wu, J. (2021b). Deep fuzzy cognitive maps for
interpretable multivariate time series prediction. IEEE Trans. fuzzy Syst. 29, 2647-2660.
doi:10.1109/tfuzz.2020.3005293

Wang, X., Li, C, Yi, C, Xu, X,, Wang, J., and Zhang, Y. (2022). Ecoforecast:
an interpretable data-driven approach for short-term  macroeconomic
forecasting using n-beats neural network. Eng. Appl. Artif. Intell. 114, 105072.
doi:10.1016/j.engappai.2022.105072

Wang, Y., Huang, N,, Li, T,, Yan, Y., and Zhang, X. (2024). Medformer: a multi-
granularity patching transformer for medical time-series classification.

Wen, X., and Li, W. (2023). Time series prediction based on Istm-attention-lstm
model. IEEE Access 11, 48322-48331. doi:10.1109/access.2023.3276628

Wen, ], Yang, J., Jiang, B, Song, H., and Wang, H. (2021). Big data driven marine
environment information forecasting: a time series prediction network. IEEE Trans.
fuzzy Syst. 29, 4-18. doi:10.1109/tfuzz.2020.3012393

Widiputra, H., Mailangkay, A., and Gautama, E. (2021). Multivariate cnn-lstm
model for multiple parallel financial time-series prediction. Complex 2021, 9903518.
doi:10.1155/2021/9903518

Xiao, Y., Yin, H., Zhang, Y., Qi, H., Zhang, Y., and Liu, Z. (2021). A dual-stage
attention-based conv-lstm network for spatio-temporal correlation and multivariate
time series prediction. Int. J. Intelligent Syst. 36, 2036-2057. doi:10.1002/int.
22370

Xu, M., Han, M., Chen, C. L. P, and Qiu, T. (2020). Recurrent broad
learning systems for time series prediction. IEEE Trans. Cybern. 50, 1405-1417.
doi:10.1109/TCYB.2018.2863020

Yang, M., and Wang, J. (2021) “Adaptability of financial time series prediction based
on bilstm,” in International conference on information Technology and quantitative
management.

Yin, L., Wang, L., Li, T, Lu, S., Tian, J., Yin, Z., et al. (2023). U-net-Istm: time
series-enhanced lake boundary prediction model. Land 12, 1859. doi:10.3390/land
12101859

Yu, C., Wang, E, Shao, Z,, Sun, T, Wu, L, and Xu, Y. (2023) “Dsformer: a
double sampling transformer for multivariate time series long-term prediction,” in
International conference on information and knowledge management.

Zhou, H., Zhang, S., Peng, J., Zhang, S., Li, J., Xiong, H., et al. (2020) “Informer:
beyond efficient transformer for long sequence time-series forecasting,” in AAAI
conference on artificial intelligence.

frontiersin.org


https://doi.org/10.3389/fphys.2025.1605406
https://doi.org/10.3389/fphys.2025.1448647
https://doi.org/10.1145/3485447.3512056
https://doi.org/10.1007/s11063-020-10319-3
https://doi.org/10.1109/TNNLS.2022.2994405
https://doi.org/10.1016/j.neunet.2019.12.030
https://link.springer.com/article/10.1007/s00521-020-04948-x
https://link.springer.com/article/10.1007/s00521-020-04948-x
https://doi.org/10.1016/j.neunet.2021.08.030
https://doi.org/10.1007/s00330-024-10586-x
https://doi.org/10.1007/s00330-024-10586-x
https://doi.org/10.1016/j.knosys.2023.110489
https://doi.org/10.3389/fphys.2025.1529811
https://doi.org/10.1016/j.procir.2021.03.088
https://doi.org/10.1093/bib/bbac409
https://doi.org/10.1016/j.eswa.2022.119419
https://doi.org/10.1145/3531326
https://www.mdpi.com/2072-4292/13/23/4822
https://doi.org/10.1109/TNNLS.2023.3291371
https://link.springer.com/article/10.1007/s10586-020-03214-y
https://proceedings.mlr.press/v202/shen23d.html
https://proceedings.mlr.press/v202/shen23d.html
https://doi.org/10.1007/s11042-023-15871-3
https://doi.org/10.1093/bfgp/elad031
https://doi.org/10.1016/j.neucom.2022.-08.021
https://doi.org/10.1016/j.neucom.2022.-08.021
https://doi.org/10.3390/rs13163328
https://doi.org/10.1109/tfuzz.2020.3005293
https://doi.org/10.1016/j.engappai.2022.105072
https://doi.org/10.1109/access.2023.3276628
https://doi.org/10.1109/tfuzz.2020.3012393
https://doi.org/10.1155/2021/9903518
https://doi.org/10.1002/int.-22370
https://doi.org/10.1002/int.-22370
https://doi.org/10.1109/TCYB.2018.2863020
https://doi.org/10.3390/land-12101859
https://doi.org/10.3390/land-12101859
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Related work
	2.1 Multimodal data fusion techniques
	2.2 Contrastive learning for time-series analysis
	2.3 Transformer models in biomedical applications

	3 Methods
	3.1 Overview
	3.2 Preliminaries
	3.3 Adaptive multimodal Fusion Network
	3.3.1 Feature extraction and normalization
	3.3.2 Cross-modal attention
	3.3.3 Graph representation learning

	3.4 Dynamic cross-modal learning strategy
	3.4.1 Adaptive feature selection
	3.4.2 Cross-modal contrastive alignment
	3.4.3 Context-aware fusion


	4 Experimental setup
	4.1 Dataset
	4.2 Experimental details
	4.3 Comparison with SOTA methods
	4.4 Ablation study

	5 Discussion
	6 Conclusions and future work
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	References

