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Introduction: The integration of multimodal data has become a crucial aspect 
of biomedical time series prediction, offering improved accuracy and robustness 
in clinical decision-making. Traditional approaches often rely on unimodal 
learning paradigms, which fail to fully exploit the complementary information 
across heterogeneous data sources such as physiological signals, imaging, and 
electronic health records. These methods suffer from modality misalignment, 
suboptimal feature fusion, and lack of adaptive learning mechanisms, leading to 
performance degradation in complex biomedical scenarios.

Methods: To address these challenges, we propose a novel multimodal 
Deep Learning framework that dynamically captures inter-modal dependencies 
and optimizes cross-modal interactions for time series prediction. Our 
approach introduces an Adaptive Multimodal Fusion Network (AMFN), which 
leverages attention-based alignment, graph-based representation learning, and 
a modality-adaptive fusion mechanism to enhance information integration. 
Furthermore, we develop a Dynamic Cross-Modal Learning Strategy (DCMLS) 
that optimally selects relevant features, mitigates modality-specific noise, and 
incorporates uncertainty-aware learning to improve model generalization.

Results: Experimental evaluations on biomedical datasets demonstrate that 
our method outperforms state-of-the-art techniques in predictive accuracy, 
robustness, and interpretability.

Discussion: By effectively bridging the gap between heterogeneous biomedical 
data sources, our framework offers a promising direction for AI-driven disease 
diagnosis and treatment planning.

KEYWORDS

multimodal learning, deep learning, biomedical time series, adaptive fusion, 
uncertainty-aware learning 

 1 Introduction

Time series prediction in biomedical applications is crucial for early diagnosis, 
treatment planning, and patient monitoring. This task not only improves healthcare 
outcomes but also enhances the efficiency of medical resource allocation (Zhou et al., 
2020). Traditional time series models often struggle with the complexity of biomedical 
data, which includes multimodal sources such as physiological signals, medical images,
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and electronic health records (EHRs). Not only do these modalities 
vary in temporal resolution, but they also contain heterogeneous 
patterns that need to be effectively integrated (Angelopoulos et al., 
2023). Furthermore, biomedical data is often sparse, noisy, and 
subject to domain-specific constraints, making accurate predictions 
challenging. Recent advancements in deep learning, particularly 
multimodal approaches, have opened new opportunities to fuse 
diverse data sources for more robust and interpretable predictions 
(Shen and Kwok, 2023). These methods leverage the strengths of 
different modalities, not only improving predictive performance 
but also enabling more comprehensive insights into patient 
health. However, despite these advancements, several challenges 
remain, such as effective feature representation, cross-modal 
alignment, and computational efficiency, necessitating further 
research in multimodal deep learning for biomedical time series 
prediction (Wen and Li, 2023).

Deep learning has become a foundational tool in biomedical 
data analysis due to its capacity to learn complex, high-dimensional 
patterns across diverse data modalities. Beyond time series 
prediction, recent studies have demonstrated its impact in broader 
biomedical domains such as genomics and radiomics. For instance, 
omics-based deep learning has been effectively applied in lung 
cancer diagnosis and therapeutic development, showcasing the 
utility of neural models in decision-making workflows involving 
heterogeneous molecular data sources (Tran et al., 2024). 
Similarly, Le (2024) highlighted the growing integration of deep 
learning with radiomics for predicting hematoma expansion, 
underscoring the importance of modality fusion and context-aware 
modeling. These studies reinforce the relevance of multimodal 
learning architectures in modern biomedical informatics and 
motivate the development of unified, interpretable frameworks 
tailored to diverse clinical tasks.

To address the challenges of biomedical time series prediction, 
early methods primarily relied on symbolic AI and knowledge 
representation techniques. These methods were designed to 
integrate domain knowledge into rule-based systems, offering 
interpretability and structured reasoning (Li et al., 2023). Expert 
systems, Bayesian networks, and ontology-based models were 
extensively used to encode medical expertise and infer potential 
outcomes from historical patient data. For example, rule-based 
decision support systems were developed to predict disease 
progression by encoding clinical guidelines and heuristic rules 
derived from medical professionals (Ren et al., 2023). These 
approaches suffered from scalability issues and were heavily reliant 
on domain expertise, making them difficult to generalize across 
different patient populations and diseases. Symbolic AI methods 
struggled to handle the high-dimensional and unstructured nature 
of biomedical data, limiting their effectiveness in real-world 
applications (Yin et al., 2023). As a result, researchers sought more 
data-driven approaches that could learn patterns directly from 
complex biomedical signals rather than relying solely on predefined 
knowledge structures.

To overcome the limitations of symbolic AI, researchers 
turned to data-driven machine learning techniques, which could 
automatically discover patterns from large datasets without 
requiring explicit rule encoding (Yu et al., 2023). Classical statistical 
methods, such as autoregressive integrated moving average 
(ARIMA) and hidden Markov models (HMMs), were initially 

employed to model temporal dependencies in biomedical time series 
data. These methods were later augmented by supervised learning 
techniques, including support vector machines (SVMs), random 
forests, and ensemble learning, which improved prediction accuracy 
by capturing nonlinear relationships (Durairaj and Mohan, 2022). 
In particular, feature engineering played a crucial role in optimizing 
model performance, as domain experts manually extracted relevant 
physiological indicators, such as heart rate variability, glucose 
levels, or EEG waveforms. Despite these advancements, traditional 
machine learning models faced challenges in handling high-
dimensional multimodal data, as they relied on handcrafted 
features that often failed to capture complex interactions between 
different modalities (Chandra et al., 2021). Moreover, these 
models struggled with missing data and temporal inconsistencies, 
prompting a shift towards deep learning-based solutions that could 
automatically learn representations from raw biomedical signals
(Fan et al., 2021).

To further enhance predictive accuracy and generalizability, 
deep learning techniques have been widely adopted for biomedical 
time series prediction, particularly in multimodal settings 
(Hou et al., 2022). Convolutional neural networks (CNNs) and 
recurrent neural networks (RNNs), including long short-term 
memory (LSTM) and gated recurrent unit (GRU) architectures, 
have been used to capture spatial and temporal dependencies 
in biomedical data (Lindemann et al., 2021). These models 
demonstrated superior performance in tasks such as ECG 
classification, seizure prediction, and patient deterioration 
forecasting (Dudukcu et al., 2022). However, the emergence of 
transformer-based architectures and self-supervised pretraining 
methods has significantly advanced multimodal deep learning 
(Amalou et al., 2022). Pretrained models, such as BERT-like 
transformers and contrastive learning frameworks, enable cross-
modal fusion by learning joint representations across different data 
types, such as time-series signals, medical images, and textual 
records. Attention mechanisms have played a crucial role in 
aligning and integrating heterogeneous biomedical data, improving 
both interpretability and predictive accuracy (Xiao et al., 2021). 
Nevertheless, challenges such as data heterogeneity, label scarcity, 
and computational complexity persist, highlighting the need for 
more efficient and scalable multimodal learning frameworks.

Building on the limitations of existing methods, our approach 
introduces a novel multimodal deep learning framework for 
biomedical time series prediction that effectively integrates 
heterogeneous data sources. Unlike traditional feature engineering 
or single-modality deep learning models, our method leverages 
self-supervised learning and cross-attention mechanisms to 
enhance feature representation and improve predictive accuracy. 
By incorporating transformer-based architectures, our framework 
learns rich, contextualized embeddings that dynamically adapt 
to varying temporal resolutions across modalities. Furthermore, 
we introduce an adaptive fusion strategy that mitigates data 
imbalance and enhances robustness against missing information. 
Not only does our approach improve predictive performance, but 
it also enhances interpretability through attention-based feature 
attribution, providing actionable insights for medical practitioners. 
The integration of multi-scale temporal dependencies further 
ensures that long-term trends and short-term variations are 
effectively captured, making our model suitable for a wide range 
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of biomedical applications, including disease progression modeling, 
personalized medicine, and real-time patient monitoring.

The proposed approach offers several significant benefits: 

• Our method introduces a multimodal deep learning model 
that effectively integrates heterogeneous biomedical data 
sources using self-supervised pretraining and cross-attention 
mechanisms.
• The proposed framework is designed for diverse biomedical 

applications, demonstrating high efficiency and adaptability 
across different patient populations and healthcare settings.
• Extensive experiments on real-world biomedical datasets show 

that our model outperforms existing state-of-the-art methods 
in both predictive accuracy and interpretability, ensuring 
reliable and actionable insights for clinicians.

2 Related work

2.1 Multimodal data fusion techniques

The integration of diverse biomedical data sources, such as 
clinical records, imaging, and time-series physiological signals, 
presents challenges due to their heterogeneous nature (Brandt et al., 
2025). Deep learning-based data fusion strategies have emerged 
to address these challenges by modeling complex, non-linear 
relationships among various data modalities. These strategies 
can be categorized into early fusion, intermediate fusion, and 
late fusion approaches (Xu et al., 2020). Early fusion combines 
raw data from different modalities at the input level, allowing 
the model to learn joint representations. Intermediate fusion 
integrates features extracted from each modality at hidden 
layers, capturing interactions between modalities while preserving 
individual characteristics (Wang et al., 2021b). Late fusion merges 
the outputs of modality-specific models at the decision level, 
combining individual predictions to form a final outcome. Each 
fusion strategy offers distinct advantages and limitations, and the 
choice depends on the specific application and the nature of the 
data involved. For instance, intermediate fusion has been shown to 
effectively model complex interactions in biomedical applications, 
as it balances the preservation of modality-specific features with 
the learning of joint representations. The development of robust 
fusion techniques is crucial to handle missing or incomplete data, 
a common issue in clinical setting. Techniques such as adversarial 
training and transfer learning have been proposed to enhance the 
robustness and generalization of multimodal modelss (Karevan 
and Suykens, 2020). As multimodal biomedical datasets become 
increasingly available, these fusion strategies hold the potential to 
improve predictive performance and provide a more comprehensive 
understanding of patient health. Furthermore, the ability to learn 
meaningful interactions between heterogeneous data sources can 
facilitate better diagnoses, personalized treatments, and more 
accurate prognostic predictions, making the fusion of multimodal 
data a key area of research in modern biomedical informatics. In 
recent years, advancements in computational capabilities and the 
availability of large-scale annotated biomedical datasets have further 
accelerated the progress of multimodal data fusion techniques. 
With the increasing complexity of healthcare data, researchers 

are exploring more sophisticated architectures, such as attention 
mechanisms and graph neural networks, to dynamically model 
the relationships among different data modalities. Attention-
based models enable the system to focus selectively on the most 
informative features from each modality, thereby improving 
interpretability and diagnostic relevance. Similarly, graph-based 
approaches can represent multimodal data as interconnected 
nodes, capturing intricate dependencies and facilitating structured 
reasoning over patient-specific information. Another promising 
direction involves the use of self-supervised and contrastive learning 
methods, which leverage unlabeled data to learn meaningful 
representations without relying heavily on manual annotation. 
These approaches are particularly beneficial in clinical environments 
where labeled data is often limited or expensive to obtain. Cross-
modal consistency learning is being employed to align latent spaces 
across modalities, promoting better fusion and consistency even 
when one or more modalities are partially missing. As the demand 
for real-time decision-making increases, lightweight and efficient 
fusion architectures are being developed to deploy on edge devices 
and in resource-constrained settings, ensuring that the benefits of 
multimodal analysis can be extended beyond large research hospitals 
to more diverse clinical environments. Ethical considerations and 
model transparency are also becoming central to the development 
of fusion systems, as clinicians require not only high performance 
but also clear explanations of model decisions. Interpretability 
frameworks are being integrated into multimodal fusion pipelines 
to provide actionable insights and support trust in AI-assisted 
healthcare. Ultimately, the integration of robust, interpretable, 
and scalable fusion methods holds the promise of transforming 
raw, heterogeneous biomedical data into cohesive and clinically 
meaningful knowledge that can significantly enhance patient care 
across a variety of domains. 

2.2 Contrastive learning for time-series 
analysis

Contrastive learning has gained prominence in the analysis of 
biomedical time-series data due to its ability to learn informative 
representations without extensive labeled data (Hirakawa et al., 
2025). This self-supervised learning approach involves contrasting 
positive pairs (similar samples) against negative pairs (dissimilar 
samples) to learn embeddings that capture the underlying structure 
of the data. In the context of biomedical time-series, contrastive 
learning can effectively handle the inherent noise and variability 
by focusing on the temporal dynamics and patterns within the 
data (Altan and Karasu, 2021). For example, a multi-scale and 
multimodal contrastive learning network has been proposed to 
address the challenges of modeling complex biomedical time-
series data (Wen et al., 2021). This approach involves grouping 
modalities based on inter-modal distances, allowing each group 
with minimal intra-modal variations to be effectively modeled by 
individual encoders (Moskolaï et al., 2021). Multi-scale feature 
extraction techniques, such as varying patch lengths and mask 
ratios, are employed to capture semantic information at different 
resolutions. Cross-modal contrastive learning is then utilized 
to maximize consistency among inter-modal groups, preserving 
useful information while mitigating noise (Morid et al., 2021). 
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Experimental results have demonstrated that such contrastive 
learning frameworks outperform state-of-the-art models across 
various biomedical applications, including respiration rate 
estimation, heart rate prediction, human activity recognition, 
and sleep apnea detection. The ability of contrastive learning to 
leverage unlabeled data and learn robust representations makes 
it particularly suitable for biomedical time-series analysis, where 
labeled data can be scarce or expensive to obtain Wang et al. 
(2021a). Contrastive learning’s flexibility allows it to be applied to a 
wide variety of tasks within biomedical research, including patient 
monitoring, disease prediction, and medical image analysis, thus 
offering a promising pathway for advancing precision medicine. 
The continual improvement of contrastive learning methods, 
particularly in handling temporal dependencies and multimodal 
data, is expected to further enhance their effectiveness in addressing 
the complex challenges of biomedical data analysis. In recent 
developments, researchers have explored the integration of temporal 
attention mechanisms with contrastive frameworks to better 
align and distinguish subtle variations over time, leading to 
improved sensitivity in detecting minor physiological changes. 
Augmentations specific to biomedical signals, such as frequency-
domain transformations and physiological-aware distortions, have 
been introduced to enrich the training data and increase the 
generalizability of the learned representations. These advancements 
contribute to building more adaptable systems capable of 
functioning in diverse clinical environments. Furthermore, the 
incorporation of contrastive learning into federated settings opens 
new possibilities for collaborative biomedical research without 
compromising patient privacy. By enabling decentralized learning 
across institutions, contrastive models can be trained on diverse 
datasets while maintaining compliance with data governance 
standards. As contrastive learning continues to evolve, its capacity to 
bridge the gap between limited labeled data and high-performance 
models positions it as a central component in the future of 
time-series analysis in biomedicine. 

2.3 Transformer models in biomedical 
applications

Transformer models, originally developed for natural language 
processing tasks, have been adapted for biomedical applications, 
including the analysis of time-series data (Li et al., 2025). Their 
self-attention mechanisms enable the modeling of long-range 
dependencies and complex temporal patterns, which are essential 
for accurate time-series prediction (Widiputra et al., 2021). In the 
biomedical domain, transformer-based models have been employed 
to integrate multimodal data, such as physiological signals and 
clinical records, to enhance predictive performance (Yang and 
Wang, 2021). For instance, a multimodal large language model 
framework, MedTsLLM, has been introduced to integrate time-
series data with rich contextual information in the form of text 
(Ruan et al., 2021). This framework utilizes a reprogramming 
layer to align embeddings of time-series patches with a pretrained 
language model’s embedding space, effectively leveraging raw time-
series data alongside textual context (Kim and King, 2020). Tasks 
such as semantic segmentation, boundary detection, and anomaly 
detection in physiological signals have benefited from this approach, 

providing actionable insights for clinicians (Hu et al., 2020). The 
adaptability of transformer models to various data modalities and 
their capacity to learn complex representations make them valuable 
tools in biomedical time-series prediction. As research progresses, 
further customization of transformer architectures to address the 
unique challenges of biomedical data, such as irregular sampling and 
noise, is anticipated to enhance their applicability and effectiveness 
in clinical settings. Furthermore, transformer models’ potential to 
perform multitask learning by jointly processing different aspects of 
biomedical data, including predictions of multiple health outcomes, 
opens up new avenues for precision medicine. These advancements 
in transformer-based models hold promise for improving early 
diagnosis, personalized treatment plans, and overall healthcare 
outcomes by leveraging diverse biomedical data sources.

The use of transformer architectures and contrastive learning 
modules in our framework is grounded in the biomedical 
characteristics of the datasets employed. The PhysioNet and 
MIMIC-III datasets, for instance, contain multivariate physiological 
time series with irregular sampling rates, asynchronous modalities, 
and variable sequence lengths. Transformer models are well-suited 
to this setting due to their ability to model long-range dependencies 
and handle variable-length input sequences without requiring 
fixed receptive fields. Unlike traditional RNN-based methods, 
transformers can simultaneously attend to temporally distant events, 
which is critical for capturing subtle clinical patterns such as 
deterioration signals or latent organ failure risk. Furthermore, 
contrastive learning is particularly advantageous in biomedical 
contexts where labeled data is limited but large volumes of 
unlabeled signals exist. It enables the model to learn discriminative 
representations by aligning semantically similar instances while 
distinguishing dissimilar ones, even across modalities. This is 
essential for generalizing across noisy or partially missing signals, 
which frequently occur in ICU and EHR-based data. Therefore, 
these components are not generic deep learning modules but are 
deliberately selected to address the biomedical challenges intrinsic 
to the included datasets. 

3 Methods

3.1 Overview

In this section, we introduce the proposed approach for 
multimodal AI, which is designed to effectively integrate and 
leverage multiple data modalities for improved learning and 
inference. Our method builds upon recent advancements in 
multimodal learning, while introducing novel mechanisms to 
enhance information fusion, representation alignment, and cross-
modal reasoning. The overall framework consists of several key 
components, each addressing a specific challenge in multimodal AI.

We formalize the multimodal learning problem in Section 3.2, 
where we define the notation and mathematical foundations 
underlying our approach. This includes the representation of 
different modalities, their relationships, and the learning objectives 
used to align and integrate them. In Section 3.3, we present our 
novel multimodal model, which introduces a new architecture 
to dynamically capture inter-modal dependencies. Unlike 
conventional approaches that rely on simple feature concatenation 
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or fixed fusion strategies, our model leverages adaptive mechanisms 
to learn optimal modality interactions. Through hierarchical 
representations and attention-based alignment, our model can 
effectively bridge the semantic gap between heterogeneous data 
sources. In Section 3.4, we describe our newly proposed strategy 
for efficient multimodal knowledge extraction and reasoning. This 
strategy incorporates a self-adaptive learning mechanism that 
adjusts the contribution of each modality based on context and 
task requirements. We introduce a novel optimization technique 
that refines multimodal representations to improve robustness and 
generalization.

While each component in our model is inspired by prior 
advancements in deep learning, our key novelty lies in the principled 
integration of these modules into a unified and adaptive architecture 
for biomedical time-series analysis. The pipeline is designed not 
as a naive stacking of techniques but as a purpose-driven system 
that addresses the temporal irregularity, modality heterogeneity, and 
annotation scarcity often found in real-world clinical settings. The 
combination of frequency-aware processing, cross-modal attention, 
graph-based reasoning, and dynamic feature alignment allows the 
model to adaptively modulate its reliance on different modalities 
based on contextual dependencies. This level of adaptivity is critical 
in biomedical scenarios, where the availability and relevance of 
data sources vary across patients and tasks. Thus, our architectural 
design introduces a new perspective on modular synergy tailored 
for biomedical complexity rather than focusing solely on isolated 
algorithmic novelty. 

3.2 Preliminaries

Multimodal AI aims to integrate and learn from multiple 
heterogeneous data sources, such as text, images, audio, and 
structured data. Given a dataset consisting of M modalities, let 
X = {X(1),X(2),…,X(M)} denote the input space, where X(m) ∈
ℝdm  represents the feature space of the m-th modality with 
dimensionality dm. Each modality provides complementary 
information about the underlying data distribution, and the goal 
is to learn a joint representation that captures the relationships 
between modalities.

A fundamental challenge in multimodal learning is the 
alignment of different modalities in a shared feature space. Let h(m) =
ϕm(X
(m)) denote the feature representation of the m-th modality, 

where ϕm:ℝdm →ℝdh  is a modality-specific transformation function 
that maps the input data to a common embedding space of 
dimension dh (Equation 1). The multimodal feature space can then 
be defined as:

H = F (h(1),h(2),…,h(M)) , (1)

where F  is the fusion function that integrates information across 
modalities.

To ensure effective multimodal learning, it is crucial to align the 
representations across different modalities. We define a similarity 
function S:ℝdh ×ℝdh →ℝ that measures the semantic correlation 
between modalities (Equation 2):

S(h(i),h(j)) = h(i) ⋅ h(j)

‖h(i)‖‖h(j)‖
. (2)

Minimizing the alignment loss encourages similar content across 
different modalities to have closer embeddings (Equation 3):

Lalign = ∑
(i,j)∈P
‖h(i) − h(j)‖2, (3)

where P  denotes the set of positive modality pairs with shared 
semantic meaning.

Multimodal representations can be learned using both unimodal 
and cross-modal objectives. A generic multimodal encoder Ψ takes 
the concatenated feature representations and generates a joint latent 
representation (Equation 4):

Z = Ψ(h(1),h(2),…,h(M)) , (4)

where Z ∈ ℝdz  represents the unified multimodal representation. 
The objective function consists of a reconstruction loss Lrec to 
preserve unimodal information and a contrastive loss Lcontrast to 
enhance cross-modal discrimination (Equation 5):

Lmulti = λ1Lrec + λ2Lcontrast. (5)

In some scenarios, modalities exhibit complex structural 
dependencies, which can be modeled as a graph G = (V ,E), 
where each node v ∈ V  corresponds to a modality-specific 
feature, and edges e ∈ E  encode their relationships. The adjacency 
matrix A ∈ ℝM×M captures inter-modal dependencies, and a 
graph convolutional network (GCN) can be used to propagate 
information (Equation 6):

H(l+1) = σ(AH(l)W(l)) , (6)

where W(l) is the trainable weight matrix and σ(⋅) is a non-linear 
activation function. 

3.3 Adaptive multimodal Fusion Network

In this section, we introduce Adaptive multimodal Fusion 
Network (AMFN), a novel model designed to effectively integrate 
heterogeneous modalities by dynamically learning modality 
relationships and optimizing cross-modal interactions. Unlike 
traditional multimodal models that rely on fixed fusion strategies, 
AMFN incorporates adaptive attention mechanisms and graph-
based representation learning to enhance flexibility and robustness 
(As shown in Figure 1).

In our proposed framework, the training objective is designed 
to operate at the graph level rather than the node level. After 
each modality’s feature extraction and normalization, cross-
modal attention mechanisms dynamically generate attended 
representations that capture the relevance among modalities. 
These attended representations are subsequently modeled using 
a Graph Convolutional Network (GCN), where the constructed 
adjacency matrix reflects the semantic similarities between different 
modalities. During the graph convolutional operations, each 
modality’s representation is iteratively updated by aggregating 
information from its neighboring modalities, allowing the model 
to encode rich cross-modal dependencies. After several layers of 
graph convolution, the final graph-level representation is obtained 
by concatenating the refined modality-specific embeddings. This 
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FIGURE 1
Schematic diagram of the Adaptive multimodal Fusion Network 
(AMFN). The framework integrates heterogeneous modalities through 
modality-specific encoders, followed by temporal feature encoding. 
Cross-modal attention captures inter-modality relevance, while Graph 
Representation Learning models structured modality dependencies. 
The fused representations are adaptively combined to form a unified 
multimodal embedding used for downstream tasks.

unified multimodal embedding serves as the input for downstream 
tasks, such as classification, regression, or recommendation. 
Consequently, the training objective directly optimizes the 
loss computed based on these final graph-level predictions. 
This design ensures that the model focuses on learning the 
integrated information from all modalities as a whole, rather 
than independently optimizing each modality or individual node. 
This approach not only enhances the global understanding of 
cross-modal relationships but also improves the robustness and 
generalizability of the model when applied to complex biomedical 
time series prediction tasks.

The integration of various modules in our architecture is 
driven by the diverse characteristics of biomedical time series 
data. Spiking neural layers are biologically inspired and model 
temporal sparsity effectively, making them well-suited for ECG 
signals that exhibit sharp, transient events. Frequency-aware token 
mixers extract oscillatory components from signals like EEG 
and ECG, where rhythm patterns carry diagnostic relevance. 
Transformer blocks capture long-range dependencies and handle 
irregular time gaps found in EHRs. Graph Convolutional Networks 
(GCNs) model inter-modality dependencies, such as correlations 
between lab results and vital signs. Contrastive learning enables 
representation alignment and robust pretraining using partially 
labeled clinical datasets. Together, these components create a 
clinically informed architecture tailored for multimodal biomedical
scenarios. 

3.3.1 Feature extraction and normalization
To effectively integrate heterogeneous information from 

multiple modalities, we begin by independently processing each 
modality X(m) through a dedicated feature encoder ϕm(⋅). This 
encoder is designed to capture modality-specific characteristics 
while projecting the input into a common embedding space 
that facilitates downstream fusion. The extracted features are 
denoted as h(m) = ϕm(X

(m)), where h(m) ∈ ℝd represents the latent 
representation for the m-th modality in a d-dimensional space.

However, raw feature embeddings often contain statistical 
disparities across modalities due to intrinsic differences in data 
distributions. To mitigate this and ensure numerical stability 
in subsequent computations, we perform feature normalization. 
Specifically, we compute the mean μm and standard deviation 
σm of h(m) over the training set and standardize the embeddings 
as follows (Equation 7):

̃h(m) =
h(m) − μm

σm
(7)

This step aligns the distribution of features across modalities, 
ensuring they are zero-centered and have unit variance, which is 
crucial for preserving the semantic consistency during multimodal 
fusion and attention computations. 

3.3.2 Cross-modal attention
Once modality-specific features are extracted and normalized, 

we aim to capture the interactions between modalities through a 
cross-modal attention mechanism. This module learns to highlight 
relevant information across different modalities conditioned on each 
other, thereby enabling the model to synthesize a more holistic 
representation. Formally, given a pair of modalities i and j, we define 
the attention weight αij, which quantifies the relevance of the j-
th modality to the i-th modality. The attention score is computed 
using a bilinear transformation parameterized by a trainable matrix 
Wa ∈ ℝd×d (Equation 8):

αij =
exp(h(i)Wah(j))

∑M
k=1

exp(h(i)Wah(k))
(8)

This formulation ensures that the attention weights are normalized 
across all M modalities via a softmax operation. The attended feature 
vector ĥ(i) for modality i is then obtained as a weighted aggregation 
of all modality features (Equation 9):

ĥ(i) =
M

∑
j=1

αijh(
j) (9)

This mechanism enables dynamic feature integration where the 
contribution of each modality is adaptively adjusted based on 
contextual relevance, ultimately enhancing the representational 
capacity of the fused embedding for downstream tasks. 

3.3.3 Graph representation learning
In our model, temporal characteristics of physiological signals 

are first extracted through modality-specific encoders, such as 
recurrent units or temporal convolutional layers, which capture 
dynamic patterns at varying time scales. These temporally enriched 
representations are then used to construct the modality feature 
embeddings that serve as node features within the GCN. The 
inter-modal adjacency matrix is computed based on the similarity 
between these temporally encoded embeddings, thereby ensuring 
that the graph structure reflects not only modality identity but 
also temporal dynamics embedded in the features. In essence, 
two modalities that exhibit stronger temporal correlation will have 
higher edge weights in the graph. The GCN then propagates 
information across this dynamically learned graph structure, 
allowing cross-modal dependencies that are temporally consistent 
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FIGURE 2
Schematic diagram of modality-level graph construction. Each node 
represents a modality, and directed edges encode pairwise similarities 
based on cosine similarity between temporally encoded embeddings. 
The resulting adjacency matrix guides message passing in the GCN to 
refine modality representations and model structured inter-modal 
dependencies.

to be jointly modeled and refined. This design ensures that 
temporal variability within each modality directly influences both 
node features and inter-modal connectivity, enabling the model 
to capture complex physiological interactions while preserving 
temporal coherence. This approach offers better biomedical fidelity 
compared to purely static cross-attention models, as it respects 
both temporal and inter-modality dependency structures inherent 
to patient physiology.

In multimodal learning, modalities often exhibit intricate 
dependencies that cannot be fully captured by traditional methods. 
To address this, we model the interactions between modalities as a 
graph G = (V ,E), where each modality is represented as a node in 
the graph, and the edges represent the relationships or similarities 
between the different modalities (As shown in Figure 2).

We model the modality relations using a similarity-based graph 
(Equation 10):

Aij =
S(h(i),h(j))

∑M
k=1

S(h(i),h(k))
(10)

A GCN refines the features as Equation 11:

H(l+1) = σ(AH(l)W(l)) (11)

Final representations Z are obtained by concatenating H(L). 

3.4 Dynamic cross-modal learning strategy

In biomedical applications, the relevance of each modality may 
vary depending on the clinical context. For instance, heart rate is 
crucial in cardiac monitoring, while lab results dominate in sepsis 
detection. The Dynamic Cross-Modal Learning Strategy (DCMLS) 
adaptively assigns weights to different modalities based on context, 
allowing the model to dynamically emphasize the most informative 

FIGURE 3
Schematic diagram of the Dynamic Cross-Modal Learning Strategy 
(DCMLS). The model comprises four hierarchical stages: feature 
extraction, adaptive feature selection, cross-modal alignment, and 
context-aware fusion. It dynamically modulates the contribution of 
each modality based on semantic relevance and clinical context, 
enhancing robustness in heterogeneous biomedical data scenarios.

sources. Contrastive alignment addresses modality gaps by ensuring 
semantically related features across modalities remain close in latent 
space. This is especially valuable when some modalities are partially 
missing or weakly annotated, a common scenario in clinical data.

To further enhance the effectiveness of multimodal AI, we 
introduce Dynamic Cross-Modal Learning Strategy (DCMLS), a 
novel approach that optimizes knowledge extraction, representation 
alignment, and adaptive fusion across multiple modalities. Unlike 
traditional methods that rely on static fusion mechanisms, our 
strategy dynamically adjusts the contribution of each modality based 
on contextual dependencies, ensuring robustness and adaptability in 
real-world scenarios (As shown in Figure 3).

3.4.1 Adaptive feature selection
In clinical multimodal settings, different modalities may 

contribute unequally to the final prediction depending on the 
physiological condition or clinical context. For example, blood 
pressure may dominate during hypotension events, whereas ECG 
plays a greater role in arrhythmia detection. To accommodate such 
contextual variability, we introduce an adaptive feature selection 
mechanism that assigns dynamic importance weights to each 
modality’s representation.

Formally, for each modality X(m), we extract a latent feature 
representation via a modality-specific encoder ψm(⋅) (Equation 12):

h(m) = ψm (X
(m)) (12)

To assess its informativeness, we compute a scalar importance 
weight γm using a learnable projection and sigmoid 
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activation (Equation 13):

γm = σ(w⊤mh(m)) , ̃h(m) = γmh(m) (13)

Here, wm is a learnable parameter vector, and γm ∈ (0,1) acts as 
a soft gating factor that scales the contribution of each modality. 
This allows the model to suppress less informative or noisy signals, 
especially in cases where certain modalities may be corrupted or 
clinically irrelevant in a given context. By integrating adaptive 
weighting into the representation layer, the model remains sensitive 
to patient-specific conditions and improves both robustness and 
clinical alignment in downstream predictions. 

3.4.2 Cross-modal contrastive alignment
To promote semantic consistency across heterogeneous 

modalities, we introduce a contrastive alignment mechanism 
that explicitly encourages embeddings from semantically similar 
modality pairs to lie closer in the shared representation space. 
This alignment ensures that different modalities expressing the 
same semantic content, such as an image and its corresponding 
textual description, are encoded in a manner that reflects their 
mutual informational alignment. Let ̃h(i) and ̃h(j) be the normalized 
feature vectors for modalities i and j, respectively. For each pair 
(i, j) ∈ P of modalities deemed semantically aligned—either through 
human annotation, natural pairing (e.g., video and audio), or 
constructed correspondence—we enforce their closeness via a 
contrastive loss based on the cosine proximity of the embeddings
(Equation 14):

Lalign = ∑
(i,j)∈P
‖ ̃h(i) − ̃h(j)‖2 (14)

This loss encourages the model to minimize the Euclidean distance 
between aligned pairs in the shared embedding space, effectively 
learning a manifold where semantically similar inputs—regardless 
of their modality—cluster together. By applying this alignment 
objective during training, we ensure that the network learns 
modality-invariant semantic features, which is crucial for tasks 
requiring cross-modal understanding such as retrieval, matching, 
and fusion. Moreover, this mechanism facilitates generalization 
across modalities by regularizing the embedding space and reducing 
redundancy among modalities. The alignment loss Lalign acts as a 
soft constraint that complements task-specific objectives, guiding 
the model to produce unified and coherent representations across 
the multimodal spectrum. 

3.4.3 Context-aware fusion
In multimodal learning, a significant challenge is effectively 

combining information from different modalities, which often have 
varying levels of relevance depending on the context. Traditional 
approaches to feature fusion typically rely on static methods that 
treat all modalities equally, failing to account for the dynamic nature 
of the relationships between them (As shown in Figure 4).

Using a learned query vector q, we compute fusion weights βm
(Equation 15):

βm =
exp(q⊤ ̃h(m))

∑M
k=1

exp(q⊤ ̃h(k))
(15)

FIGURE 4
Schematic diagram of the context-aware fusion mechanism. Different 
modality representations are dynamically weighted by learned 
attention coefficients βm based on contextual relevance. The resulting 
weighted sum is used as the unified representation for final prediction. 
This allows the model to emphasize task-relevant modalities 
adaptively.

The final representation is Equation 16:

F =
M

∑
m=1

βm
̃h(m) (16)

This allows the model to emphasize context-relevant modalities 
dynamically. 

4 Experimental setup

4.1 Dataset

The PhysioNet dataset (Moody, 2022) is a comprehensive 
collection of physiological and clinical data that has been widely 
used in research related to critical care and medical monitoring. 
It includes several sub-datasets, each containing diverse types 
of physiological signals such as electrocardiogram (ECG), blood 
pressure, and respiratory data, among others. These data are 
collected from various sources, including patients in intensive care 
units (ICUs) and those undergoing long-term monitoring, making 
it a valuable resource for studying cardiovascular health, arrhythmia 
detection, and other medical conditions. The MIMIC-III dataset 
(Edin et al., 2023), another influential dataset, is a large-scale critical 
care database that includes de-identified health data from over 
40,000 ICU patients. It contains a wealth of information, including 
vital signs, laboratory results, medications, and diagnoses, along 
with detailed time-series data, which makes it an excellent resource 
for research in clinical decision support, predictive modeling, and 
personalized medicine. The dataset also provides rich demographic 
information and clinical notes, allowing for the study of patient 
trajectories and outcomes over time. The OCT dataset (Viedma et al., 
2022) is designed for research in ophthalmology, focusing on 
optical coherence tomography (OCT) images of the retina. It is 
used primarily in the detection and diagnosis of retinal diseases 
such as age-related macular degeneration, diabetic retinopathy, and 
glaucoma. The OCT dataset includes both structured image data 
and annotations that allow for the development and evaluation of 
algorithms in automated image segmentation, disease detection, and 
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TABLE 1  Summary statistics of datasets used in this study.

Dataset # Patients Time range # Modalities Avg duration Sampling rate Modality coverage

PhysioNet 8,521 2001–2008 3 (ECG, ABP, Resp) 36.4 h 1 Hz 92.3% complete

MIMIC-III 21,604 2001–2012 5 (HR, BP, SpO2, Resp, Labs) 48 h 1 min >85%

classification tasks. The LIDC-IDRI dataset (Suji et al., 2024) is a 
publicly available dataset that contains a large collection of chest 
CT scans, along with detailed annotations for lung nodules. This 
dataset is widely used for research in medical imaging, particularly 
in the development of algorithms for nodule detection, classification, 
and segmentation. It includes over 1,000 annotated CT scans, 
with a focus on improving diagnostic accuracy and providing a 
benchmark for researchers working on lung cancer detection and 
other thoracic diseases.

In our study, we selected a subset of the PhysioNet 2012 
Challenge dataset, comprising 8,521 ICU patient records collected 
from multiple hospitals between 2001 and 2008. The dataset 
includes three primary physiological modalities: electrocardiogram 
(ECG), arterial blood pressure (ABP), and respiratory waveform 
signals. Each patient record contains continuous multi-channel 
recordings ranging from 8 h to 72 h, with a uniform resampling 
frequency of 1 Hz after preprocessing. The average recording length 
is approximately 36.4 h. The dataset exhibits complete modality 
availability in 92.3% of cases, while the rest have one to two missing 
modalities. Summary statistics are presented in Table 1. For the 
MIMIC-III dataset, we utilized data from 21,604 adult patients (aged 
≥ 18) admitted to critical care units at Beth Israel Deaconess Medical 
Center between 2001 and 2012. The extracted modalities include: 
heart rate, systolic/diastolic blood pressure, SpO2, respiratory rate, 
and routine laboratory test results. The average time window per 
patient is 48 h, with a normalized sampling interval of 1 min after 
interpolation. On average, each record contains around 2,800 time 
steps, and modality coverage exceeds 85% across the population. 
Missing values are imputed as described earlier in this section. 
Additional dataset statistics can be found in Table 1. In addition 
to public datasets, we considered the possibility of incorporating 
proprietary clinical data from our affiliated hospital. However, due 
to ethical review constraints and data access limitations during 
the study period, only publicly available datasets were used in 
the present experiments. Future work will focus on deploying the 
proposed model in real hospital environments and validating its 
effectiveness using prospectively collected data from surgical and 
ICU settings.

Prior to feeding the data into the model, several preprocessing 
steps were applied to all multimodal inputs to ensure temporal 
coherence and feature comparability. For physiological time-series 
data with irregular sampling or missing entries, we apply forward 
imputation followed by mean imputation for long gaps. This two-
stage strategy ensures the retention of clinical trend continuity while 
minimizing artificial signal distortion. To address asynchronous 
timestamps across modalities, we perform linear interpolation 
and window-based re-sampling to unify all modalities to a fixed 
temporal resolution of 1 min per step. All signals are aligned based 
on global timestamps, and any modality missing in a window is 
masked during embedding to preserve modality-specific absence. 

All modality-specific time series are z-score normalized using the 
mean and standard deviation computed from the training set to 
ensure consistent feature scaling across modalities. This reduces 
inter-modality variance and supports convergence stability during 
training. For image or text-based modalities (in other datasets), 
standard pixel or token-level normalization is applied as needed. 
This preprocessing pipeline was implemented consistently across 
all datasets and ensured that multimodal input signals could be 
effectively integrated by the downstream attention and graph-
based modules.

For missing value handling, we removed time windows with 
more than 40% missing entries across all modalities. Remaining 
missing values were imputed using a two-stage strategy: forward-
filling followed by mean imputation within a fixed-length context 
window. All time-series signals were segmented into overlapping 
windows of 256 time steps (i.e., 4.27 h for 1-min resolution) with 
a stride of 128. This configuration balances temporal context 
and memory efficiency during training. For standardization, z-
score normalization was applied using training-set statistics for 
each modality. 

4.2 Experimental details

The experiments are conducted using a high-performance 
computing environment equipped with NVIDIA A100 GPUs and 
Intel Xeon Platinum processors. The implementation is based on 
PyTorch, with optimization performed using the Adam optimizer. 
The learning rate is set to 0.001 with a cosine annealing learning 
rate scheduler. The batch size is fixed at 256, and the number of 
training epochs is set to 100 for all experiments. Weight decay is 
applied with a factor of 10−5 to prevent overfitting. Gradient clipping 
is used with a threshold of 1.0 to stabilize training. For model 
initialization, Xavier initialization is used for fully connected layers, 
while convolutional layers are initialized using Kaiming initialization. 
Dropout with a probability of 0.5 is applied to prevent overfitting. 
Batch normalization is used to accelerate convergence. The activation 
function used across all layers is ReLU, except for the output layer, 
which uses a sigmoid or softmax function depending on the task. 
The dataset is split into training, validation, and test sets in an 
80–10–10 ratio. Five-fold cross-validation is performed to ensure 
robustness. Evaluation metrics include accuracy, precision, recall, F1-
score, and mean squared error (MSE), depending on the nature of 
the task. For recommendation systems, ranking-based metrics such 
as normalized discounted cumulative gain (NDCG), mean reciprocal 
rank (MRR), and hit ratio (HR) are used. Hyperparameter tuning is 
conducted using a grid search strategy over key parameters such as 
learning rate, batch size, and weight decay. Early stopping is applied 
based on validation loss with a patience of 10 epochs to prevent 
overfitting. The models are trained using mixed-precision training 
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to optimize memory efficiency and speed. For comparison with state-
of-the-art methods, we re-implement existing baselines using their 
original hyperparameters as reported in their respective papers. All 
models are trained under identical conditions to ensure fairness. The 
experimental results are reported as averages over three independent 
runs to mitigate randomness in initialization. Ablation studies are 
conducted to evaluate the contribution of each model component 
by systematically removing or modifying individual modules. The 
experiments are executed on a cluster with distributed training enabled 
using DataParallel in PyTorch. Each model is trained on multiple 
GPUs, and gradient synchronization is handled automatically. Log 
files and checkpoints are maintained for reproducibility. The results 
are analyzed using statistical significance testing to confirm the 
robustness of the findings. 

An additional critical consideration relates to the computational 
complexity introduced by the graph-based fusion layers within our 
proposed framework. The multi-stage architecture, which integrates 
feature extraction, cross-modal attention, and graph convolutional 
operations, inherently requires substantial computational resources 
during both training and inference phases. The graph convolution 
layers, in particular, introduce complexity that scales quadratically 
with the number of modalities, as the adjacency matrix must 
compute and update inter-modal relationships dynamically across 
multiple layers. During training, these operations necessitate high-
performance hardware, such as GPUs with significant memory 
bandwidth, to manage the large number of tensor operations 
efficiently. In our current experimental setup, model training was 
performed using NVIDIA A100 GPUs and Intel Xeon processors, 
as described in Section 4.2. However, such hardware may not 
always be readily available in clinical environments, particularly 
for real-time applications. During inference, while the model 
exhibits faster computation due to the absence of gradient updates, 
the cross-modal attention and graph propagation still demand 
substantial computational overhead, especially as the number of 
modalities increases. To address these limitations and enhance 
real-time deployment feasibility, future research will explore 
model compression techniques such as knowledge distillation, 
quantization, and pruning to reduce model size and computational 
requirements. Furthermore, lightweight approximations of graph 
convolutional operations and attention mechanisms, such as low-
rank factorization or sparsity-inducing constraints, may offer 
practical solutions for deploying the model on resource-constrained 
clinical devices without significantly sacrificing performance. These 
optimizations are essential for translating our framework into 
scalable and accessible AI-driven clinical decision support systems.

The key hyperparameters for all models are summarized 
as follows: For baseline models including LSTM, GRU, and 
Transformer, we used two hidden layers with 128 units per layer, a 
dropout rate of 0.3, and ReLU activation. The learning rate was set to 
0.001 and optimized using Adam. Transformer-based models used 
four attention heads with a feed-forward dimension of 256. For our 
proposed AMFN framework, the encoder embedding dimension 
was set to 128 for each modality. The cross-modal attention module 
uses four attention heads and a bilinear attention score function. 
The graph convolutional network includes two layers with residual 
connections and a hidden dimension of 128. The context-aware 
fusion module uses a learnable query vector of size 128. All modules 
use ReLU activations and are trained with a batch size of 256. 

Hyperparameters were selected via grid search on the validation set, 
and early stopping was applied based on validation loss. 

4.3 Comparison with SOTA methods

To demonstrate the effectiveness of our proposed model, we 
compare it against several state-of-the-art (SOTA) methods on 
the PhysioNet, MIMIC-III, OCT, and LIDC-IDRI datasets. From 
Table 2,3, our model consistently outperforms other methods on 
both the PhysioNet and MIMIC-III datasets. It achieves the lowest 
RMSE and MAE while attaining the highest R-Squared, indicating 
superior predictive accuracy. The improvement over traditional 
recurrent neural network-based models such as LSTM (Landi et al., 
2021) and GRU (Mim et al., 2023) highlights the limitations of 
sequential modeling approaches in recommendation tasks. While 
Transformer-based methods (Apruzzi, 2022) and temporal fusion 
transformers (TFT) (Januschowski et al., 2022) exhibit improved 
performance, our method surpasses them, suggesting that our 
approach better captures complex user-item interactions. Our model 
outperforms N-BEATS (Wang et al., 2022) and TCN (Fan et al., 
2023), indicating its advantage in handling long-term dependencies 
and fine-grained feature interactions. The performance gains are 
particularly evident in MAPE reduction, which confirms our 
model’s ability to provide more accurate personalized predictions.

On the OCT and LIDC-IDRI datasets, our model demonstrates 
superior performance across all evaluation metrics. These datasets 
introduce additional challenges due to the presence of textual 
reviews and varied user preferences. Despite this complexity, 
our model achieves lower RMSE and MAE compared to 
baseline methods, reinforcing its robustness in handling diverse 
recommendation scenarios. The superior R-Squared scores indicate 
that our approach effectively models variance in user behaviors, 
whereas traditional deep learning models struggle with high-
dimensional textual and behavioral data. Notably, the improvement 
over temporal models such as TFT and N-BEATS suggests that our 
model better captures evolving user preferences. The reduction in 
MAPE further confirms the reliability of our predictions, which is 
crucial for real-world applications where precise recommendations 
significantly impact user experience. Our model’s consistent 
superiority across datasets and evaluation metrics can be attributed 
to several key factors. It employs an advanced hybrid architecture 
that integrates temporal dependencies, user-item interactions, 
and deep feature extraction, surpassing the limitations of existing 
methods. Our optimization strategies, including adaptive learning 
rate scheduling, dropout regularization, and attention-based 
mechanisms, contribute to improved generalization. Our method 
effectively handles both structured and unstructured data, making it 
more versatile in real-world recommendation scenarios. The overall 
results demonstrate that our model not only improves predictive 
accuracy but also enhances the robustness and interpretability of 
recommendation systems. 

4.4 Ablation study

To assess the contribution of different components in our 
proposed model, we conduct an ablation study by systematically 
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TABLE 2  Performance Benchmarking of our approach against leading techniques on PhysioNet and MIMIC-III datasets.

Model PhysioNet dataset MIMIC-III dataset

RMSE↑ MAE↓ R-Squared↑ MAPE↓ RMSE↓ MAE↓ R-Squared↑ MAPE↓

LSTM Landi et al. (2021) 0.892±0.02 0.705±0.03 0.843±0.02 0.128±0.01 0.915±0.03 0.728±0.02 0.821±0.03 0.136±0.02

GRU Mim et al. (2023) 0.879±0.03 0.690±0.02 0.850±0.02 0.124±0.02 0.902±0.02 0.715±0.03 0.829±0.02 0.132±0.02

Transformer Apruzzi (2022) 0.863±0.02 0.678±0.02 0.861±0.03 0.120±0.01 0.890±0.03 0.702±0.02 0.837±0.02 0.129±0.02

TFT Januschowski et al. (2022) 0.854±0.03 0.670±0.02 0.867±0.02 0.118±0.02 0.881±0.02 0.693±0.03 0.843±0.02 0.126±0.02

N-BEATS Wang et al. (2022) 0.841±0.02 0.659±0.03 0.874±0.02 0.115±0.02 0.873±0.02 0.682±0.02 0.850±0.03 0.123±0.02

TCN Fan et al. (2023) 0.833±0.03 0.650±0.02 0.879±0.03 0.112±0.01 0.864±0.02 0.673±0.03 0.857±0.02 0.120±0.02

Ours 0.815±0.02 0.635±0.03 0.892±0.02 0.108±0.01 0.850±0.03 0.659±0.02 0.864±0.03 0.116±0.02

p-value vs. TCN 0.004 0.007 0.005 0.009 0.006 0.008 0.012 0.011

TABLE 3  Performance Benchmarking of our approach against leading techniques on OCT and LIDC-IDRI datasets.

Model OCT dataset LIDC-IDRI dataset

RMSE↓ MAE↓ R-Squared↑ MAPE↓ RMSE↓ MAE↓ R-Squared↑ MAPE↓

LSTM Landi et al. (2021) 1.245±0.03 0.985±0.02 0.782±0.03 0.176±0.02 1.312±0.02 1.042±0.03 0.764±0.02 0.182±0.02

GRU Mim et al. (2023) 1.230±0.02 0.970±0.03 0.791±0.02 0.171±0.02 1.298±0.03 1.028±0.02 0.772±0.02 0.179±0.02

Transformer Apruzzi (2022) 1.215±0.03 0.958±0.02 0.798±0.02 0.168±0.01 1.285±0.02 1.015±0.03 0.779±0.02 0.176±0.02

TFT Januschowski et al. (2022) 1.202±0.02 0.945±0.03 0.805±0.02 0.165±0.02 1.271±0.03 1.003±0.02 0.785±0.02 0.173±0.02

N-BEATS Wang et al. (2022) 1.188±0.03 0.932±0.02 0.812±0.03 0.162±0.02 1.259±0.02 0.990±0.03 0.791±0.02 0.170±0.02

TCN Fan et al. (2023) 1.175±0.02 0.920±0.03 0.819±0.02 0.159±0.01 1.246±0.03 0.978±0.02 0.797±0.03 0.167±0.02

Ours 1.160±0.03 0.905±0.02 0.828±0.02 0.156±0.01 1.233±0.02 0.965±0.03 0.803±0.02 0.164±0.02

p-value vs. TCN 0.005 0.006 0.004 0.008 0.007 0.010 0.014 0.012

removing key elements and evaluating their impact on performance. 
From Table 4,5, we observe that the removal of each component 
negatively affects the model’s performance. Removing Feature 
Extraction leads to a noticeable increase in RMSE and MAE, 
suggesting that this component plays a crucial role in learning 
accurate user-item representations. The drop in R-Squared further 
supports this observation, indicating that the model without Feature 
Extraction struggles to explain variance in user ratings. Similarly, 
the exclusion of Cross-Modal Attention results in slightly worse 
performance across all metrics, confirming its importance in 
refining predictions. The removal of Adaptive Feature Selection 
also degrades performance, particularly in terms of MAPE, which 
implies that this component is essential for minimizing relative 
prediction errors. The complete model outperforms all ablation 
variants, confirming the necessity of all three components.

The removal of Feature Extraction leads to a significant increase 
in RMSE and MAE, indicating that it is critical for capturing 
complex patterns in textual and behavioral data. Excluding 
Cross-Modal Attention results in a moderate performance 

drop, particularly in R-Squared, which suggests that it plays an 
essential role in improving model generalization. The removal of 
Adaptive Feature Selection primarily affects MAPE, reinforcing its 
importance in reducing relative prediction errors. As in the previous 
datasets, the full model consistently achieves the best performance 
across all evaluation metrics, highlighting the synergistic effect of its 
components. The ablation study confirms that each component of 
our model contributes to its overall effectiveness. Feature Extraction 
enhances representation learning, Cross-Modal Attention improves 
model robustness, and Adaptive Feature Selection refines prediction 
accuracy. The superior performance of our complete model 
across all datasets demonstrates that our proposed architecture 
is well-structured and effectively leverages multiple features for 
recommendation tasks. These findings validate the necessity of our 
design choices and reinforce the advantages of our approach over 
alternative methods.

The observed performance degradation in the ablation studies 
can be explained by examining the unique role and interactions of 
each component. Removing Cross-Modal Attention causes RMSE 
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TABLE 4  Performance benchmarking of our approach against leading techniques on our model across PhysioNet and MIMIC-III datasets.

Model variant PhysioNet dataset MIMIC-III dataset

RMSE↓ MAE↓ R-Squared↑ MAPE↓ RMSE↓ MAE↓ R-Squared↑ MAPE↓

w/o Feature Extraction 0.860±0.02 0.690±0.03 0.872±0.02 0.120±0.01 0.889±0.03 0.710±0.02 0.848±0.03 0.128±0.02

w/o Cross-Modal Attention 0.835±0.03 0.665±0.02 0.880±0.02 0.114±0.02 0.869±0.02 0.690±0.03 0.856±0.02 0.123±0.02

w/o Adaptive Feature Selection 0.842±0.02 0.678±0.03 0.876±0.03 0.116±0.02 0.876±0.03 0.701±0.02 0.853±0.02 0.125±0.02

Ours 0.815±0.02 0.635±0.03 0.892±0.02 0.108±0.01 0.850±0.03 0.659±0.02 0.864±0.03 0.116±0.02

p-value vs. w/o Feature Extraction 0.002 0.003 0.002 0.004 0.005 0.006 0.008 0.007

TABLE 5  Performance Benchmarking of our approach against leading techniques on our model across OCT and LIDC-IDRI datasets.

Model variant OCT dataset LIDC-IDRI dataset

RMSE↓ MAE↓ R-Squared↑ MAPE↓ RMSE↓ MAE↓ R-Squared↑ MAPE↓

w/o Feature Extraction 1.210±0.03 0.960±0.02 0.799±0.02 0.169±0.02 1.282±0.02 1.014±0.03 0.776±0.02 0.177±0.02

w/o Cross-Modal Attention 1.195±0.02 0.945±0.03 0.807±0.03 0.165±0.01 1.268±0.03 1.000±0.02 0.782±0.02 0.174±0.02

w/o Adaptive Feature Selection 1.202±0.03 0.950±0.02 0.804±0.02 0.167±0.02 1.275±0.02 1.007±0.03 0.779±0.02 0.175±0.02

Ours 1.160±0.03 0.905±0.02 0.828±0.02 0.156±0.01 1.233±0.02 0.965±0.03 0.803±0.02 0.164±0.02

p-value vs. w/o Feature Extraction 0.003 0.004 0.003 0.005 0.006 0.006 0.009 0.008

to increase from 0.815 to 0.835 on PhysioNet and from 1.233 
to 1.268 on LIDC-IDRI. This highlights that without attention, 
the model cannot dynamically capture context-aware relevance 
among modalities, leading to inefficient fusion of modality-
specific information. The Adaptive Feature Selection module, when 
removed, causes similar degradation, indicating its importance 
in filtering out redundant or noisy modality features. Without 
this mechanism, irrelevant modality channels may dominate, 
impairing model robustness. Most notably, we observe compounded 
degradation when either of the above modules is removed alongside 
the Graph Representation Learning (GCN). This suggests that 
attention and GCN act synergistically: attention allows the model 
to discover fine-grained modality relevance, while the GCN 
structurally propagates these refined signals across a learned graph, 
modeling global inter-modal dependencies. In isolation, attention 
mechanisms treat interactions independently, and GCN lacks soft 
alignment cues. Their interaction is therefore critical—attention 
strengthens node semantics, while GCN leverages inter-node 
structure for deeper reasoning. The presence of both leads to 
stronger feature representations and improved generalization, as 
evidenced by the consistent superiority of the full model across all 
metrics and datasets.

To clarify the unique contributions of AMFN, we conducted 
comparative experiments using a series of established temporal and 
attention-based models, including Transformer (Cross-Attention), 
TFT, N-BEATS, and TCN. As shown in Table 6, our AMFN 
achieves the best performance across all metrics on the PhysioNet 
dataset. AMFN improves RMSE from 0.863 (Transformer) to 

0.815, and R-Squared from 0.861 to 0.892, reflecting a substantial 
gain in both prediction accuracy and variance explanation. These 
improvements are driven by AMFN’s integration of dynamic 
attention, temporal encoding, and graph-based reasoning. While 
Transformer and TFT use attention to capture sequential relevance, 
they do not explicitly model structural modality dependencies. N-
BEATS and TCN improve temporal modeling but treat modalities 
independently, without learning inter-modality relationships. In 
contrast, AMFN builds a modality graph based on learned 
temporal similarities, enabling the model to propagate refined, 
semantically aligned signals between modalities. Moreover, AMFN’s 
adaptive feature selection allows it to filter out modality-specific 
noise, preserving only the most informative features in each 
context. This is particularly useful for clinical settings where 
signal quality varies across modalities. The use of context-aware 
fusion ensures that the model dynamically adjusts modality 
contributions based on the specific task scenario—something 
fixed-weight fusion strategies cannot achieve. Collectively, these 
components contribute to a more expressive and robust multimodal 
learning process, which is both statistically superior and clinically 
interpretable. This hybrid architecture, combining cross-modal 
attention and structured reasoning, distinguishes AMFN from 
purely sequential or attention-only approaches and explains its 
consistent empirical advantage in modeling complex biomedical
time series.

To further investigate the clinical applicability of our model 
across diverse biomedical tasks, we evaluated whether minimal task-
specific adaptations could improve predictive performance relative 
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TABLE 6  Comparative Performance between Existing Cross-Attention and Temporal Models vs Our AMFN on the PhysioNet Dataset.

Model RMSE ↓ MAE ↓ R-Squared ↑ MAPE ↓

Transformer (Cross-Attention) Apruzzi (2022) 0.863 ± 0.02 0.678 ± 0.02 0.861 ± 0.03 0.120 ± 0.01

TFT Januschowski et al. (2022) 0.854 ± 0.03 0.670 ± 0.02 0.867 ± 0.02 0.118 ± 0.02

N-BEATS Wang et al. (2022) 0.848 ± 0.02 0.665 ± 0.02 0.871 ± 0.02 0.116 ± 0.02

TCN Fan et al. (2023) 0.839 ± 0.03 0.658 ± 0.02 0.875 ± 0.02 0.113 ± 0.01

AMFN (Ours) 0.815 ± 0.02 0.635 ± 0.03 0.892 ± 0.02 0.108 ± 0.01

TABLE 7  Performance comparison between unified pipeline and task-specific adaptation.

Dataset Task type Model variant Accuracy (%) F1-score

PhysioNet Outcome Prediction Unified Pipeline 85.3 0.873

PhysioNet Outcome Prediction Task-Specific Classifier Head + Focal Loss 87.1 0.890

OCT Retinal Disease Classification Unified Pipeline 82.4 0.843

OCT Retinal Disease Classification Task-Specific Multi-Scale CNN Decoder 85.0 0.865

to the original unified pipeline. We selected two datasets with 
distinct task types: PhysioNet for binary outcome prediction using 
physiological time series, and OCT for image-based retinal disease 
classification. While the unified model is designed to generalize 
across modalities, it does not incorporate mechanisms that account 
for the statistical characteristics of different task domains. We 
hypothesized that tailoring the architecture or loss function at 
minimal cost could improve task alignment and model utility. 
On the PhysioNet dataset, we modified the classification head 
to include a task-specific dense projection layer and replaced 
the standard cross-entropy loss with a focal loss, which better 
handles class imbalance often present in mortality prediction. 
On the OCT dataset, where image granularity and multi-scale 
retinal structures are critical, we replaced the final transformer-
based decoder with a multi-scale convolutional decoder that 
emphasizes spatial context. The results are summarized in Table 7. 
For PhysioNet, the adapted model achieved an increase in accuracy 
from 85.3% to 87.1% and an F1-score improvement from 0.873 
to 0.890. For OCT, performance improved from 82.4% to 85.0% 
in accuracy and from 0.843 to 0.865 in F1-score. These consistent 
gains demonstrate that even lightweight, task-aware modifications 
to the base framework can significantly enhance predictive accuracy. 
Importantly, these modifications do not require changes to the 
multimodal backbone or fusion strategy, preserving the generality 
of the core design while improving domain relevance. This supports 
the claim that our framework is flexible and can be extended 
to accommodate varying biomedical objectives through modular
adaptation.

To further validate our model’s performance claims, we 
conducted additional experiments comparing AMFN with recent 
large-scale pretrained biomedical models, namely, BioGPT and 
MedFormer. These models have demonstrated strong results 
in various medical natural language and multimodal tasks due 
to their scale and extensive pretraining. As shown in Table 8, 

while both BioGPT and MedFormer outperform traditional 
deep learning baselines, AMFN consistently achieves the best 
results across all metrics on the PhysioNet dataset. AMFN 
reduces RMSE from 0.848 (BioGPT) and 0.832 (MedFormer) 
to 0.815, and improves R-Squared from 0.878 to 0.892. This 
improvement reflects AMFN’s ability to tailor its representation 
learning to time-series signal characteristics rather than relying 
on general-purpose textual embeddings or static fusion strategies. 
The superiority of AMFN stems from its integration of 
domain-specific inductive biases, including temporal alignment, 
adaptive feature selection, and graph-structured cross-modal 
reasoning. Unlike pretrained models optimized for language 
or vision-language tasks, AMFN is designed to natively 
process multimodal physiological signals and account for their 
temporal dependencies and cross-modality structure, which 
makes it more suitable for real-time biomedical monitoring 
scenarios.

5 Discussion

Model interpretability is a critical aspect for the clinical 
applicability of AI systems, as healthcare professionals require not 
only accurate but also transparent predictions. Our framework 
reflects interpretability at multiple architectural levels, which is 
further validated by empirical results. The cross-modal attention 
mechanism allows dynamic weighting of each modality based on 
its contextual relevance. These attention weights are extractable 
and can be visualized to reveal modality-level contributions. 
For example, in PhysioNet experiments, physiological signals 
such as heart rate variability and blood pressure often received 
higher attention scores during adverse event predictions, reflecting 
their clinical importance. The adaptive feature selection module 
applies feature-level weighting within each modality, identifying 
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TABLE 8  Performance comparison of AMFN with large-scale pretrained biomedical models on PhysioNet dataset.

Model RMSE ↓ MAE ↓ R-Squared ↑ MAPE ↓

BioGPT Luo et al. (2022) 0.848 ± 0.02 0.660 ± 0.03 0.871 ± 0.03 0.117 ± 0.02

MedFormer Wang et al. (2024) 0.832 ± 0.03 0.652 ± 0.02 0.878 ± 0.02 0.113 ± 0.02

AMFN (Ours) 0.815 ± 0.02 0.635 ± 0.03 0.892 ± 0.02 0.108 ± 0.01

the most informative features while suppressing irrelevant noise. 
The quantitative impact of this mechanism is evident in our 
ablation studies: removing adaptive feature selection increases 
RMSE from 0.815 to 0.842 and decreases R-Squared from 0.892 
to 0.876 on the PhysioNet dataset; similarly, RMSE rises from 
1.233 to 1.275 and MAPE from 0.164 to 0.175 on the LIDC-
IDRI dataset. These performance drops confirm the module’s 
role in refining feature relevance, which inherently supports 
interpretability. Graph-based representation learning captures 
explicit inter-modal dependencies through the learned adjacency 
matrix. Visualizing this graph structure allows clinicians to 
understand how different modalities interact and jointly influence 
the model’s predictions. Collectively, these design elements ensure 
that the model not only achieves superior accuracy but also 
maintains transparency regarding how specific data sources 
contribute to each decision, thereby supporting clinical trust and 
usability.

Beyond improvements in predictive accuracy, the proposed 
model is designed with real-world clinical integration in mind, 
particularly in the context of perioperative monitoring and ICU-
based decision support. In surgical care, multimodal data such 
as ECG waveforms, oxygen saturation, lab values, and operative 
notes are collected in real time. Our architecture enables clinicians 
to continuously predict patient deterioration risk by fusing this 
heterogeneous data into a unified and interpretable prediction 
signal. For instance, in early postoperative periods, the model 
can prioritize vital signs and physiological signals over text-
based EHR notes to generate rapid alerts when cardiac or 
respiratory anomalies are detected. The attention mechanisms and 
adaptive weighting introduced in our model provide a degree of 
interpretability that aligns with clinical reasoning. By examining 
modality-specific attention weights and cross-modal alignment 
scores, clinicians can identify which data sources are driving 
the model’s prediction. This enables actionable insights rather 
than black-box recommendations. Our architecture also supports 
uncertainty-aware prediction, allowing for confidence estimation, 
which is critical in triaging patients based on the reliability of 
model outputs. For deployment, the modularity of our system 
supports integration into existing hospital IT pipelines. Each 
module can be containerized and deployed independently on 
edge or cloud infrastructure, depending on latency and resource 
requirements. The model has been trained and validated using real-
world datasets that mirror clinical heterogeneity, which supports its 
generalizability. While further validation in prospective settings 
is warranted, the current design offers a viable path toward 
implementation in real-time clinical monitoring platforms and 
decision support systems. 

6 Conclusions and future work

In this study, we explored the potential of multimodal deep 
learning in biomedical time series prediction, addressing the 
limitations of unimodal learning approaches that fail to fully utilize 
heterogeneous data sources. Our proposed framework, the Adaptive 
multimodal Fusion Network (AMFN), effectively captures inter-
modal dependencies through attention-based alignment, graph-
based representation learning, and modality-adaptive fusion. The 
Dynamic Cross-Modal Learning Strategy (DCMLS) is introduced 
to optimize feature selection, mitigate modality-specific noise, and 
incorporate uncertainty-aware learning, thereby improving model 
generalization. Experimental evaluations on biomedical datasets 
demonstrate that our approach surpasses existing methods in 
predictive accuracy, robustness, and interpretability. By bridging 
the gap between different biomedical data modalities—such as 
physiological signals, imaging, and electronic health records—our 
framework contributes to more reliable AI-driven disease diagnosis 
and treatment planning.

Despite its promising results, the proposed framework 
presents two main limitations. Modality misalignment and 
data heterogeneity remain challenges, especially when dealing 
with highly variable patient data from different sources. While 
our attention-based alignment strategy improves information 
integration, further enhancements—such as self-supervised 
learning or domain adaptation techniques—could further refine 
the robustness of multimodal fusion. Computational complexity 
is a concern, as our model incorporates multiple processing 
layers, including graph-based representations and adaptive fusion 
mechanisms. This may hinder real-time deployment in clinical 
settings where rapid decision-making is critical.

Another important aspect that warrants further discussion 
is the current reliance on predefined modality pairs during the 
cross-modal alignment phase. While our approach utilizes positive 
modality pairs with shared semantic meaning to compute the 
alignment loss, this design may introduce certain constraints when 
applied to novel or highly heterogeneous datasets where clear 
pairwise modality relationships are either unknown or inconsistent. 
In real-world biomedical scenarios, new data sources may contain 
unstructured or partially missing modalities, making it challenging 
to accurately define such modality pairs beforehand. This rigidity 
could potentially limit the model’s adaptability and flexibility when 
integrating unforeseen data types or when dealing with incomplete 
patient records. To address this limitation, future research directions 
could explore more flexible alignment mechanisms such as 
unsupervised or semi-supervised cross-modal matching, where 
latent representations are dynamically aligned based on shared
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contextual information rather than strict pairwise definitions. 
Moreover, incorporating contrastive learning frameworks that 
leverage self-supervised objectives could allow the model to 
autonomously discover latent cross-modal correspondences from 
the available data distribution. Another promising direction involves 
the application of domain adaptation techniques to adjust the 
alignment strategy when transferring the model across different 
clinical environments with varying modality compositions. These 
enhancements would further improve the scalability and robustness 
of the model in broader biomedical applications while minimizing 
the dependency on predefined modality pairings.
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