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Introduction: Knee pain significantly impairs health and quality of life among
middle-aged and older adults. However, the predictive utility of lipid metabolism
biomarkers for knee pain risk remains inadequately explored.

Methods: This study utilized data from the China Health and Retirement
Longitudinal Study (CHARLS, 2011–2013) to investigate the association between
lipid-related metabolic indicators and the risk of knee pain. Multiple lipid
biomarkers and composite indices—including the lipid accumulation product
(LAP), triglyceride-glucose (TyG) index, and TyG-BMI—were incorporated.
Five machine learning models were developed and evaluated for predictive
performance.Model interpretationwas conducted using SHAP (SHapley Additive
exPlanations) to identify the most influential predictors.

Results: A higher prevalence of knee pain was observed in high-altitude, cold
regions such as Qinghai and Sichuan provinces. Composite metabolic indices
(LAP, TyG, and TyG-BMI) exhibited stronger predictive power than traditional
single lipid markers. Among the models, the Stacked Ensemble algorithm
achieved the best performance, with an AUC of 0.85 and a Brier score of 0.13.
SHAP analysis highlighted LAP and TyG-related indices as the top contributors
to prediction outcomes.

Discussion: These findings emphasize the importance of lipid metabolism
indicators in the early identification of knee pain risk. The integration of
interpretable machine learning approaches and composite metabolic indices
offers a promising strategy for personalized prevention in aging populations.
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1 Introduction

Knee pain is one of the common causes of chronic pain and
disability in middle-aged and older adults people. Epidemiological
surveys have shown that the prevalence of knee pain increases
with age worldwide (Geng et al., 2023; Guo et al., 2023; Liu et al.,
2022; Nguyen et al., 2011; Peat et al., 2001). In China, the overall
prevalence of knee osteoarthritis (OA), the leading cause of knee
pain, is high in middle-aged and older adults people and imposes
a heavy burden on individuals and society (Cui et al., 2020). Knee
pain often leads to limited activity and decreased quality of life.
Because knee osteoarthritis progresses slowly and there is no cure
at present (Kim et al., 2011; Wallis et al., 2019), how to identify high-
risk individuals at an early stage and take intervention to prevent
or delay knee joint degeneration has become the focus of public
health and clinical attention (Pelletier et al., 2006; Sharma, 2021).
The risk factors for knee pain and osteoarthritis are multifactorial.
Recognized risk factors include advanced age, female gender, obesity
or overweight (Davis, 1988), and a history of joint overuse or
injury. Recent studies have also suggested that insufficient muscle
strength, inflammatory state, and genetic susceptibility can increase
the risk of knee osteoarthritis (Chapman and Valdes, 2012; Felson,
2004; Musumeci et al., 2015; Valdes and Spector, 2011). However,
these factors cannot fully explain the mechanism of knee pain. It is
noteworthy that more and more evidence has linked osteoarthritis
with metabolic syndrome, and put forward the concept of “metabolic
OA” (Hart, 2022; Sekar et al., 2017). The components of metabolic
syndrome include obesity, dyslipidemia, hypertension and insulin
resistance. Obesity not only acts on the knee through mechanical
weight-bearing but also triggersmetabolic and inflammatory changes
throughout the body, whichmay directly affect articular cartilage and
synovial health (Chadh and a, 2016; Duclos, 2016; Wei et al., 2023).
Dyslipidemia (such as high cholesterol and high triglyceride) and
insulin resistance related indicators are also reflected in patients with
osteoarthritis (Le Clancheet al., 2016;Yanet al., 2024;Yoshimuraet al.,
2011). Some studies have analyzed NHANES data and found that
patients with higher low-density lipoprotein cholesterol (LDL-C)
levels have a lower incidence of knee osteoarthritis, suggesting that
the relationship between lipid metabolism and joint degeneration
is complex (Huang G. et al., 2024; Huang et al., 2024b). Another
prospective study reported a 39% increased risk for later arthritis in
people with a higher blood triacylglycerol-glucose index (TyG index,
a surrogate measure of insulin resistance) (Liu et al., 2024). These
evidences suggest that metabolic abnormalities may play a role in
osteoarthritis, especially in knee pain, but the specificmechanism and
predictive value are still unclear.

Abbreviations: CHARLS, China Health and Retirement Longitudinal Study;
LAP, Lipid Accumulation Product; TyG, Triglyceride-Glucose Index; TyG-
BMI, TyG × Body Mass Index; CTI, C-Reactive Protein-Triglyceride-Glucose
Index; BMI, Body Mass Index; HDL-C, High-Density Lipoprotein Cholesterol;
LDL-C, Low-Density Lipoprotein Cholesterol; NHDL-C, Non-High-Density
Lipoprotein Cholesterol; GLM, Generalized Linear Model; GBM, Gradient
Boosting Machine; DRF, Distributed Random Forest; DNN, Deep Neural
Network; AUC, Area Under the Receiver Operating Characteristic Curve;
ROC, Receiver Operating Characteristic; OA, Osteoarthritis; KOA, Knee
Osteoarthritis; hsCRP, High-Sensitivity C-Reactive Protein; SMOTE, Synthetic
Minority Oversampling Technique; MMP, Matrix Metalloproteinase; NHANES,
National Health and Nutrition Examination Survey.

Traditional statistical analysis usually studies the association
between a single indicator and the occurrence of diseases, which
is difficult to fully reveal the nonlinear relationship between the
interaction ofmultiplemetabolic factors.Machine learningmethods
provide a powerful tool for multi-indicator comprehensive analysis,
which can mine predictive patterns for disease occurrence from
high-dimensional data (Liu et al., 2022; Zhang et al., 2023). In the
field of knee pain, some studies have also tried to apply machine
learning to construct risk prediction models. For example, Liu
et al. used the data of middle-aged and older adults people in the
NHANES database to construct a prediction model for the risk of
knee pain based on general clinical characteristics and biochemical
indicators. The AUC of the logistic regression model was 0.71, and
the AUC of the random forest model was about 0.70. The results
indicated that waist circumference, BMI, and triglycerides were
important predictors in addition to systemic pain (Huang et al.,
2024b). Compared with traditional regression models, machine
learning models (such as random forests and gradient boosting
machines) can more accurately capture the complex relationship
between risk factors and outcomes, and provide explanations such
as ranking the importance of variables, which is helpful to discover
new potential risk factors.

However, the current research on machine learning prediction
of knee pain is still limited. In particular, no literature has focused
specifically on the predictive value of lipid and metabolism-related
biomarkers for the occurrence of knee pain. In the context of the
metabolic osteoarthritis hypothesis, it is important to investigate
whether lipid metabolism indicators can be used to predict knee
pain. On the one hand, it can provide epidemiological evidence for
elucidating the role of metabolic factors in osteoarthritis. On the
other hand, if the prediction effect is good, blood lipid indicators
as a routine clinical test items will help to carry out early screening
of patients at high risk of knee pain in primary medical care.

Therefore, this study used data from the China Health and
Retirement Longitudinal Study (CHARLS) cohort to select a variety
of biomarkers that reflect lipid metabolism status (Zhao et al.,
2014), including conventional lipid indicators (TC, TG, HDL-C,
LDL-C, non-HDL-C) and combined metabolic index (TyG, TyG-
BMI, LAP, CTI). A variety of machine learning methods were
used to construct a prediction model of knee pain. CHARLS
is a nationally representative cohort of middle-aged and older
adults people in China. We will evaluate which markers of
lipid metabolism contribute most to the prediction of knee pain
by comparing the predictive performance (discrimination and
calibration power) of the different models and interpreting the
model results by means of variable importance. To enhance
the interpretability and clinical trustworthiness of the machine
learning models, we further incorporated SHAP (SHapley Additive
exPlanations) analysis. SHAP provides both global and individual-
level insights into the contribution of each predictor, enabling
a transparent understanding of how specific lipid or metabolic
biomarkers influence the model’s prediction of knee pain risk. This
interpretability is essential in bridging the gap between artificial
intelligence applications and practical clinical decision-making,
particularly in the early identification and stratification of high-
risk individuals (Van den Broeck et al., 2022). Our hypothesis was
that certain lipid or metabolic measures (e.g., TyG index or CTI)
might have significant predictive effects on knee pain risk and that
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machine-learning models could improve prediction accuracy. This
study is expected to provide a new perspective for understanding
the role of lipids in knee health and the early prevention and control
of knee pain.

2 Materials and methods

2.1 Data source and study population

This Study was based on data from the China Health and
Retirement Longitudinal Study (CHARLS) in 2011 and 2013.
Organized by the Chinese Center for Social Science Survey, Peking
University, CHARLS is a national, long-term follow-up survey
targeting middle-aged and older adults people aged 45 years and
above in China. Using a multi-stage, stratified, cluster random
sampling method, the CHARLS covers 28 provinces in China,
which has good representability and data quality. The use of data
in this study has been approved by the CHARLS data platform and
strictly follows its code of ethics for data use. Written informed
consent was obtained from all participants. The study has been
approved by the Biomedical Ethics Committee of Peking University.
The ethical approval number for the part of family questionnaire
and physical measurement is IRB00001052-11015, and the ethical
approval number for the part of biomarker collection (such as
lipid detection) is IRB00001052-11014. Knee pain was determined
by self-report in the 2013 follow-up questionnaire: people who
answered the question “Do you often feel knee pain in the past
2 years” were considered as new cases of knee pain (Ren et al., 2020).

In the initial sample, a total of 25,586 respondents were
included. We first excluded individuals with missing information
on knee pain (n = 0), and then further excluded individuals with
missing indicators of lipid metabolism (including total cholesterol
(TC), triglyceride (TG), high-density lipoprotein (HDL), low-
density lipoprotein (LDL), triglyceride-glucose index (TYG) and its
derivatives). A total of 15,854 subjects were excluded. Finally, 9,732
individuals were included for modeling preparation. Among them,
848 patients reported knee pain, which was much lower than that
of patients without pain (n = 8,884), and the sample imbalance was
significant. To solve the problem of class imbalance, this study used
the Synthetic Minority Oversampling Technique (SMOTE) to up-
sample the knee pain group to 2,544 cases (Chawla et al., 2002;
Fernández et al., 2018; He and Garcia, 2009). By balancing the knee
pain group andnon-pain group in the finalmodel dataset at a ratio of
1:3, the total number of modeling samples was 11,428. See Figure 1
for details of the data processing flow.

2.2 Measurement indicators

At baseline, venous blood samples were collected from
participants to measure lipid profiles, including total cholesterol
(TC), triglycerides (TG), high-density lipoprotein cholesterol
(HDL-C), and low-density lipoprotein cholesterol (LDL-C). Non-
HDL cholesterol (NHDL-C) was calculated as TC minus HDL-C.
Anthropometric measurements such as height, weight, and waist
circumference were also obtained to calculate body mass index
(BMI) and various lipid-related metabolic indices.

The triglyceride-glucose (TyG) index was calculated using the
formula: TyG= ln [fastingTG (mg/dL) × fasting glucose (mg/dL)/2].
Due to the unavailability of fasting glucose data in CHARLS, we
estimated fasting glucose based on glycated hemoglobin (HbA1c),
assuming a normal fasting glucose level of approximately 5 mmol/L.
The TyG-BMI index was defined as TyG × BMI. The lipid
accumulation product (LAP) was calculated as follows: for males,
LAP = (waist circumference [cm] − 65) × TG (mmol/L); for females,
LAP= (waist circumference−58) ×TG.Thecholesterol-triglyceride-
glucose index (CTI), reflecting the combined level of inflammation
and insulin resistance, was computed as CTI = hsCRP (mg/L) ×TyG.

Covariates were obtained through structured questionnaires,
including sex, age, education level (categorized by academic
attainment), marital status (married vs. other), smoking status
(current smoker or not), alcohol consumption (frequency in the past
year), and residential location (urban or rural).

2.3 Model construction

To address the issue of class imbalance, as only approximately
8.7% of participants developed new-onset knee pain in 2013 (n
= 848), we applied an oversampling strategy to expand the knee
pain cases to 2,544 while retaining all 8,884 pain-free controls. This
resulted in a balanced training dataset with a 1:3 case-to-control
ratio and a total sample size of 11,428(31–33). The sample selection
and data preprocessing procedure are illustrated in Figure 1.

Using the H2O machine learning framework in R, we trained
five predictive models on this dataset: generalized linear model
(GLM), gradient boosting machine (GBM), random forest (RF),
deep neural network (DNN), and a stacked ensemble model
(StackedEnsemble). GLM was implemented as logistic regression;
GBM and RF were based on decision tree algorithms with boosting
and bagging strategies, respectively; DNN was constructed as
a multilayer feedforward neural network. The StackedEnsemble
model used the predictions of the aforementioned base models
as inputs for a meta-learner to enhance overall performance.
All models were trained with five-fold cross-validation to tune
hyperparameters and reduce the risk of overfitting.

2.4 Model evaluation and analysis

In the independent test set, the area under the receiver operating
characteristic curve (AUC) was calculated for each model to assess
discriminative performance, and ROC curves were plotted for visual
comparison (Figure 4). Model calibration was evaluated using the
Brier score, with lower values indicating better probability accuracy.
Calibration curves (Figure 5) were generated to illustrate the
alignment between predicted probabilities and observed outcomes.

To address class imbalance in the outcome variable, the Synthetic
Minority Over-sampling Technique (SMOTE) was applied only to
the training set after the dataset had been split into training and
testing subsets.This design choice avoided information leakage from
the test set and ensured a more realistic performance evaluation.

To further evaluate classification performance, confusion
matrices were extracted for each model using the optimal
threshold determined by the maximum F1-score. From these, we
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FIGURE 1
Flow chart of data processing.

computed sensitivity, specificity, positive predictive value (PPV),
and negative predictive value (NPV), which are presented in Table 1
(Visa et al., 2011). Normalized confusionmatrix heatmaps were also
constructed for each model to intuitively compare misclassification
patterns across algorithms (Figure 7) (Susmaga, 2004).

Additionally, variable importancewas assessed using the built-in
H2O importance metric based on the reduction in model deviance.
The top 10 predictors from each model were extracted, and their
normalized importance values were aggregated to identify features
with consistently high impact across models (Figure 3).

All statistical analyses were conducted using R software
version 4.2.2.

2.5 Model explainability via SHAP analysis

To enhance the interpretability of the machine learning
models and to understand the contribution of individual lipid
metabolism biomarkers to knee pain risk prediction, we conducted
a comprehensive SHAP (Shapley Additive Explanations) analysis
(Sundararajan and Najmi, 2020). SHAP is a unified framework
based on cooperative game theory that attributes the contribution
of each feature to a model’s output, offering both global and local
interpretability. In this study, we used the fastshap and shapviz

packages in R (version 4.2.3) to compute and visualize SHAP
values for five trained models: generalized linear model (GLM),
gradient boosting machine (GBM), random forest (RF), deep
neural network (DNN), and stacked ensemble (ENSEMBLE). SHAP
values were calculated based on the predicted probabilities for the
positive class (i.e., presence of knee pain) extracted from the H2O-
trained models. For each model, a prediction wrapper function was
defined to extract the “p1” probability, and the fastshap:explain()
function was used with 10 Monte Carlo simulations to estimate the
SHAP values. To ensure computational efficiency while retaining
interpretability, SHAP analysis was performed on a random subset
of 50 samples from the test set. All analyses were executed under
parallel computation using the do Parallel package with four CPU
cores. The computed SHAP values were further visualized using
multiple methods provided by shapviz, including bar plots for
ranking features by their mean absolute SHAP values, beeswarm
plots to depict the magnitude and direction of each feature’s
contribution across samples, dependence plots to examine nonlinear
interactions between features and SHAP values, and force and
waterfall plots for individualized model prediction explanations.
The top-ranking features in each model were summarized in the
main text, while full sets of SHAP visualizations were presented in
Supplementary Material. This interpretability framework allows for
a mechanistic understanding of how key lipid-related biomarkers
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TABLE 1 Confusion matrix metrics table.

Model Sensitivity Specificity PPV NPV

GLM 1 0.006 0.244 1

GBM 0.704 0.799 0.528 0.894

RF 0.719 0.862 0.625 0.905

DNN 0.994 0.012 0.244 0.867

Ensemble 0.663 0.888 0.656 0.892

Note: Values are presented as counts and percentages based on confusion matrix outcomes in
the test set. Sensitivity, specificity, positive predictive value (PPV), and negative predictive
value (NPV) were computed for each model using the optimal threshold maximizing the F1
score. Accuracy represents the overall classification correctness. DL, deep learning; RF,
random forest; GBM, gradient boosting machine; GLM, generalized linear model.

such as LAP, TyG,HDL-C, andCTI influence the predictive decision
process across different algorithms (Nohara et al., 2022).

3 Results

3.1 Baseline characteristics

A total of 25,586 middle-aged and older adults were included in
the combined CHARLS 2011–2013 dataset. According to the study
design, only individuals with complete data on knee pain assessment
and key lipidmetabolic indicators—including total cholesterol (TC),
triglycerides (TG), high-density lipoprotein cholesterol (HDL-C),
low-density lipoprotein cholesterol (LDL-C), triglyceride-glucose
index (TyG), fasting plasma glucose (FPG), body mass index (BMI),
and waist circumference—were eligible for further analysis. After
excluding participants with missing knee pain information (n = 0)
and those with missing lipid-related variables (n = 15,854), 9,732
valid samples remained.

Among these, 3,687 individuals with complete covariate data
(e.g., marital status, smoking, drinking, and residence) were selected
for baseline characteristic analysis to ensure model robustness
and avoid bias in the subsequent machine learning process. This
subgroup provided a complete dataset with more stable and reliable
statistical properties.

Table 2 presents the baseline characteristics of these 3,687
participants, stratified by sex. The overall mean age was 59.32 years
(standard deviation: 9.26), with 2,930 males (79.5%) and 757
females (20.5%).

Regarding lipid indicators, females had significantly higher
levels of TC (199.01 vs. 190.00 mmol/L, p < 0.001), HDL-C (54.18
vs. 52.35 mmol/L, p = 0.008), andLDL-C (119.44 vs. 111.86 mmol/L,
p < 0.001) than males. No significant sex differences were observed
for TG, TyG, TyG-BMI, CTI, or NHDL-C. The lipid accumulation
product (LAP), a marker of metabolic obesity, was significantly
higher in females (3,459.06 vs. 2,773.67, p < 0.001), indicating
greater visceral fat accumulation.

In termsof lifestyle, thesmokingratewasmarkedlyhigher inmales
than in females (80.7% vs. 12.7%, p < 0.001), while the drinking rate
wasuniformly100%acrossbothsexes.ForBMIcategories,maleshada
higher proportion of normalweight (67.4%vs. 59.8%) andoverweight

(22.7%vs. 26.8%),whereas females showed a higher obesity rate (5.4%
vs. 3.5%, p = 0.001). The proportion of married individuals was also
significantly higher in males (91.2% vs. 83.6%, p < 0.001). There was
nosignificantdifference inurban-rural residencedistributionbetween
the sexes (p = 0.312).

These findings suggest that in this middle-aged and
older population with a highly imbalanced sex distribution,
certain lipid metabolic indicators and sociodemographic variables
differ significantly by sex, which warrants consideration and
adjustment in further analyses.

3.2 Regional distribution of knee pain
incidence across provinces

To investigate the regional epidemiological characteristics and
spatial distribution of knee pain in China, this study conducted
a provincial-level aggregation of knee pain cases and their
corresponding proportions based on the CHARLS sample. A
national distribution map of knee pain case numbers and a heatmap
of incidence rates were plotted (Figures 2, 3) to visually present the
regional disparities in disease burden.

In terms of case numbers (Figure 2), knee pain cases were
mainly concentrated in populous provinces in central and western
China, such as Sichuan (184 cases), Yunnan (111 cases), Henan (96
cases), and Shandong (89 cases). These provinces have relatively
large sample sizes and high proportions of older adults, constituting
the major burden areas for knee pain in the country. These
regions are typically characterized by hilly andmountainous terrain,
intensive agricultural labor, and moderate to low levels of economic
development, which may limit opportunities for regular physical
activity and contribute to the higher occurrence of knee pain.

However, case numbers alone do not accurately reflect
the actual disease risk in each region. Therefore, we further
calculated the proportion of knee pain cases within the
provincial samples (i.e., incidence rates), generating a standardized
incidence heatmap (Figure 3). The results showed that provinces
with the highest incidence rates included Qinghai (18.3%), Sichuan
(12.1%), Chongqing (11.3%), Heilongjiang (10.7%), Gansu (10.6%),
and Xinjiang (10.4%). These areas are known for their cold climates
and are located in high-altitude, high-latitude, or mountainous
regions, suggesting that environmental factors such as cold and
damp weather may play a significant role in the development of
chronic knee pain.

In contrast, southeastern coastal and southern provinces such as
Fujian, Zhejiang, and Guangdong exhibited relatively low incidence
rates (5%–7%). This may be attributed to their warm and humid
climates, better access to healthcare resources, and more diverse
physical activity patterns among older adults. The observed spatial
heterogeneity suggests that the onset of knee pain is not solely
determined by individual-level factors, but is also closely related to
geographic, environmental, and lifestyle influences.

3.3 Multi-model predictive analysis

To explore the potential of lipid metabolism-related biomarkers
in predicting the risk of knee pain, five machine learning models
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TABLE 2 Baseline characteristics of the study population stratified by sex.

Stratified by gender

Level Overall Female Male p

n 3,687 757 2,930

age [mean (SD)] 59.32 (9.26) 59.02 (9.55) 59.40 (9.18) 0.315

cholesterol [mean (SD)] 191.85 (37.58) 199.01 (38.36) 190.00 (37.16) <0.001

triglyceride [mean (SD)] 128.80 (103.50) 129.43 (84.48) 128.64 (107.89) 0.852

hdl [mean (SD)] 52.72 (16.86) 54.18 (16.24) 52.35 (17.00) 0.008

ldl [mean (SD)] 113.41 (34.57) 119.44 (34.91) 111.86 (34.32) <0.001

tyg [mean (SD)] 8.65 (0.68) 8.69 (0.62) 8.63 (0.70) 0.045

tyg_bmi [mean (SD)] 204.53 (135.12) 206.27 (40.82) 204.08 (150.15) 0.691

lap [mean (SD)] 2,914.39 (3,661.98) 3,459.06 (3,384.16) 2,773.67 (3,717.99) <0.001

cti [mean (SD)] 8.73 (0.85) 8.73 (0.83) 8.73 (0.86) 0.979

nhdl [mean (SD)] 76.08 (111.94) 75.25 (93.87) 76.30 (116.16) 0.82

smoking (%)
no 1,226 (33.3) 661 (87.3) 565 (19.3) <0.001

yes 2,461 (66.7) 96 (12.7) 2,365 (80.7)

drinking (%) yes 3,687 (100.0) 757 (100.0) 2,930 (100.0) NA

bmi (%)

Normal 2,428 (65.9) 453 (59.8) 1975 (67.4) 0.001

Obesity 143 (3.9) 41 (5.4) 102 (3.5)

Overweight 868 (23.5) 203 (26.8) 665 (22.7)

Underweight 248 (6.7) 60 (7.9) 188 (6.4)

marital_status (%)
married 3,306 (89.7) 633 (83.6) 2,673 (91.2) <0.001

single 381 (10.3) 124 (16.4) 257 (8.8)

residence (%)
Rural 2,439 (66.2) 513 (67.8) 1926 (65.7) 0.312

Urban 1,248 (33.8) 244 (32.2) 1,004 (34.3)

Note: Data are presented as mean (standard deviation) for continuous variables and number (percentage) for categorical variables. P-values were calculated using independent t-tests for continuous
variables and chi-square tests for categorical variables. HDL: high-density lipoprotein cholesterol; LDL: low-density lipoprotein cholesterol; TyG: triglyceride-glucose index; LAP: lipid
accumulation product; CTI: cholesterol-to-triglyceride-glucose index; NHDL: non-HDL, cholesterol; BMI: body mass index.

were constructed using a balanced training dataset (n = 11,428;
knee pain group: non-pain group = 1:3). These models included
Deep Learning (DL), Distributed Random Forest (DRF), Gradient
Boosting Machine (GBM), Generalized Linear Model (GLM), and
Stacked Ensemble. Multiple evaluation metrics were employed to
comprehensively compare the models, including receiver operating
characteristic (ROC) curves, area under the curve (AUC), Brier
scores, and model calibration curves.

In addition, confusion matrices were generated at the optimal
F1-score threshold to assess sensitivity, specificity, and predictive

values for each model, providing a clearer view of real-world
classification performance. To enhance interpretability, SHAP
(SHapley Additive exPlanations) analysis was performed to
identify key lipid-related features that contributed most to model
predictions. Both global importance rankings and individual-
level SHAP visualizations were used to explore the direction and
magnitude of each biomarker’s influence. These methods offered
deeper insights into the predictive mechanisms of each model and
revealed the consistent significance of composite metabolic indices
(e.g., LAP, TyG, TyG-BMI) across algorithms.

Frontiers in Physiology 06 frontiersin.org

https://doi.org/10.3389/fphys.2025.1607276
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Guo et al. 10.3389/fphys.2025.1607276

FIGURE 2
Provincial distribution of knee pain case counts among middle-aged and older adults adults in China. The choropleth map illustrates the number of
reported knee pain cases by province based on the CHARLS dataset. Darker shades indicate a higher concentration of knee pain cases, with Sichuan,
Hunan, and Henan provinces showing the highest prevalence.

3.3.1 Variable importance rankings across
different models

Figure 4 presents the normalized variable importance rankings
for each base model. The lipid accumulation product (LAP) ranked
first in all models except for GLM, with a standardized importance
of 1.0 in the GBM, DRF, and DL models, indicating its stable
and critical contribution to knee pain prediction. Other metabolic
indicators such as LDL, HDL, TyG, and TyG-BMI also received
relatively high importance scores across several models, reinforcing
the predictive value of metabolic obesity and insulin resistance-
related markers for chronic joint pain.

It is important to note that the Stacked Ensemble model, by
design, integrates the predictions of multiple base learners (e.g.,
GLM, GBM, DRF, DL) into a two-layer ensemble framework
and does not perform variable selection or compute feature
importance independently. Therefore, variable importance results
for the Stacked Ensemble are not displayed but can be interpreted
by referencing the contributing base models. This is a common
characteristic of ensemble learning methods, which focus more
on improving predictive performance and robustness rather than
variable interpretability.

3.3.2 Classification performance of different
models (AUC)

To compare the classification performance of the five models,
the area under the receiver operating characteristic curve (AUC)
was used as the primary evaluation metric. AUC reflects the trade-
off between sensitivity (true positive rate) and specificity (1 – false
positive rate) across various classification thresholds.

As shown in Figure 5, the Stacked Ensemble model
demonstrated the best performance with an AUC of 0.85, indicating
high accuracy and robustness in distinguishing between positive
and negative cases. By integrating multiple base learners (e.g., GBM,
DRF,GLM), themodel effectively captures both linear and nonlinear
patterns, enhancing its overall discrimination ability.

Among the base models, GBM achieved an AUC of 0.83 and
DRF 0.82, both showing strong predictive capabilities, particularly
in handling complex interactions among variables. The AUC for the
GLMmodel was 0.53, representing amoderate level of performance.
This suggests that although GLM offers better interpretability, its
ability to model nonlinear and high-dimensional relationships is
limited.TheDNNmodel had the lowest AUC at 0.52, potentially due
to insufficient model tuning or sparse feature representation, which
could undermine its generalizability.

Overall, the ensemble model outperformed the others in AUC
evaluation by leveraging multi-model integration, followed by tree-
based models (GBM and DRF), while traditional linear regression
and neural networks demonstrated relatively weaker adaptability in
high-dimensional healthcare data contexts.

3.3.3 Calibration performance of predicted
probabilities (Brier score)

In addition to classification performance, the calibration of
predicted probabilities is crucial for clinical risk assessment. An
ideal classifier should not only differentiate between individuals with
and without knee pain but also provide probability estimates that
closely reflect the actual likelihood of occurrence. Therefore, this
study further evaluated the Brier score and the agreement between
predicted and observed probabilities across models (Figure 6).
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FIGURE 3
Geographic Distribution of Knee Pain Prevalence Across Chinese Provinces. This map shows the provincial-level prevalence of knee pain among
middle-aged and older adults individuals in China, based on the CHARLS dataset. Darker blue areas represent provinces with higher prevalence rates,
with Sichuan and adjacent regions showing the highest burden.

FIGURE 4
Comparison of Normalized Variable Importance Across Different Machine Learning Models. The bar chart presents the normalized relative importance
of each lipid-related biomarker in DNN, GBM, GLM, and Random Forest models. LAP consistently ranked as the most important feature across all
models, followed by LDL, CTI, TyG, and HDL, with some variation in the contribution patterns among models. Feature importance values were scaled
to the most influential variable within each model.

The Stacked Ensemble model again demonstrated the best
performance, with a Brier score of 0.13. Its calibration curve
closely followed the ideal 45-degree reference line, indicating
excellent calibration across the full range of predicted probabilities.
Such strong calibration is essential for designing individualized
intervention strategies, particularly in identifying high-
risk individuals.

TheGBMandDRFmodelsbothhadBrier scoresof0.15.Although
slightly higher than that of the Ensemble model, their predicted
probabilities still aligned well with observed proportions, reflecting
good calibration in capturing complex variable relationships.

The GLM model had a Brier score of 0.18, with its calibration
curve deviating from the reference line in the mid-to-high
probability ranges, suggesting under- or overestimation in certain
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FIGURE 5
ROC Curves for Different Machine Learning Models. Receiver Operating Characteristic (ROC) curves for five machine learning models: Generalized
Linear Model (GLM), Gradient Boosting Machine (GBM), Random Forest (RF), Deep Neural Network (DNN), and Stacked Ensemble. The AUC values of
the models were: GLM (0.536), DNN (0.536), GBM (0.835), RF (0.826), and Ensemble (0.850), with the Ensemble model achieving the highest
discriminative performance.

FIGURE 6
Calibration curves and Brier scores of different machine learning models. Calibration curves comparing predicted probabilities versus observed
proportions for five machine learning models: DL, DRF, GBM, GLM, and Stacked Ensemble. The dashed diagonal line represents perfect calibration. The
Stacked Ensemble model demonstrated the best overall calibration (Brier Score = 0.13), followed by DRF and GBM (both Brier Score = 0.15), GLM
(0.18), and DL (0.21).

probability intervals. The DL model had the highest Brier score at
0.21, with its calibration curve displaying abrupt shifts and instability
in the high-probability region (>0.5), indicating unreliable
probability outputs and limited utility for clinical screening.

Notably, while AUC reflects the overall discriminatory ability
of a model, the Brier score offers a more accurate measure
of “probability fidelity” in public health risk evaluation. From
a practical standpoint, the Stacked Ensemble model—with both
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FIGURE 7
Confusion matrix heatmaps for five machine learning models in the test set. Each panel represents the classification performance of a model: GLM
(generalized linear model), GBM (gradient boosting machine), RF (random forest), DL (deep learning), and Ensemble (stacked ensemble). The x-axis
shows predicted labels, and the y-axis shows actual labels. Cell values represent the number of observations classified into each category. Darker
shades indicate higher counts.

high AUC and low Brier score—demonstrates superior clinical
applicability.

3.3.4 Confusion matrix-based classification
performance across models

To enhance the interpretability of model classification results,
we extracted confusion matrices at optimal F1-score thresholds and
calculated key diagnostic performancemetrics, including sensitivity,
specificity, positive predictive value (PPV), and negative predictive
value (NPV). These metrics are summarized in Table 1.

Among all models, the Stacked Ensemble demonstrated the
most balanced performance, with a sensitivity of 66.3%, specificity
of 88.9%, PPV of 65.6%, and NPV of 89.1%. This indicates its robust
ability to accurately identify both positive (knee pain) and negative
(non-pain) cases. The Random Forest model followed closely, with
comparable performance (sensitivity = 71.9%, specificity = 86.1%).
The GBM model achieved slightly higher sensitivity (70.4%) but
showed slightly reduced specificity (79.9%).

In contrast, the GLM and DNN models exhibited skewed
prediction behavior. The GLM model classified nearly all cases as
positive, resulting in extremely high sensitivity (100%) but extremely
low specificity (0.6%), suggesting poor discrimination. Similarly, the
DNN model displayed a sensitivity of 99.4% and specificity of only
1.2%, indicating overfitting toward the positive class and lack of
generalization.

To visually support these findings, we plotted the normalized
confusion matrix heatmaps for all models (Figure 7). These
heatmaps highlight model-specific misclassification patterns and
illustrate the clear performance differences, particularly between
tree-based models and linear or neural network models. The
superior balance of the Stacked Ensemble’s prediction outcomes
supports its reliability for clinical screening applications involving
knee pain risk stratification.

3.3.5 SHAP-based feature importance across
models

SHAP analysis consistently revealed that composite metabolic
indicators were the most influential predictors of knee pain risk
across all five machine learning models. Among them, the lipid
accumulation product (LAP) emerged as the most important
feature, ranking first in nearly all models except the GLM. In the
Stacked Ensemble model’s SHAP summary (Figure 8), higher LAP
values clearly contributed to increased predicted risk, as indicated
by the concentration of high-value points located on the positive
side of the SHAP axis. The triglyceride-glucose index (TyG) also
ranked among the top predictors, with higher values consistently
shifting the model’s output toward greater risk. The TyG-BMI index
further reinforced this pattern, emphasizing the joint contribution
of dyslipidemia and obesity. In contrast, high-density lipoprotein
cholesterol (HDL-C) exhibited a protective effect, with higher values
associated with reduced predicted risk, aligning with its known role
in cardiovascular and metabolic health.

Although the general hierarchy of feature importance was
consistent, some differences emerged amongmodels. Both the GBM
and Random Forest models assigned higher weight to low-density
lipoprotein cholesterol (LDL-C) and non-HDL cholesterol. SHAP
values showed that elevated LDL-C was strongly associated with
increased risk, ranking second in the GBM model’s importance
scores. In contrast, traditional lipid measures such as total
cholesterol and triglycerides were less impactful in the presence
of composite indices, suggesting that their predictive information
was already captured by aggregated features like TyG and LAP. The
GLM model, which demonstrated weaker overall performance, did
not emphasize LAP as strongly. The deep learning model (DNN)
showed relatively high SHAP values for certain variables, such as
CTI, although its predictive accuracy was limited.

Despite these model-specific nuances, LAP, TyG, TyG-BMI,
and LDL-C consistently emerged as key predictors across at least
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FIGURE 8
SHAP Feature Importance and Beeswarm Plots Across Models. Visualization of SHAP feature importance and beeswarm plots for five machine learning
models (GLM, GBM, RF, DNN, and Stacked Ensemble). The top panel shows SHAP beeswarm plots, revealing the distribution and directionality of
feature contributions. The bottom panel shows mean absolute SHAP values for each variable, indicating their global importance. Across all models,
LAP, TyG, and TyG-BMI consistently rank among the top predictors of knee pain.

four of the five models, while HDL-C demonstrated a consistently
negative association with knee pain risk. This convergence
reinforces the conclusion that metabolic dysregulation, particularly
insulin resistance and central adiposity, plays a critical role in
the development of knee pain. Detailed SHAP summaries for
each individual model are provided in Supplementary Material,
illustrating that the direction and magnitude of each feature’s
influence were broadly in line with existing clinical understanding.

4 Discussion

This study, based on a large-scale dataset of middle-aged and
older adults individuals, analyzed newly developed cases of knee
pain. We found that the overall incidence of knee pain is non-
negligible and exhibits significant regional disparities: western
plateau regions such as Qinghai and Sichuan had a markedly
higher prevalence than eastern areas. This pattern suggests that
geographic environment and lifestyle may play important roles in
the occurrence of knee pain. In terms of predictive factors, we
identified a series of metabolism-related indicators—such as lipid
accumulation product (LAP), triglyceride-glucose index (TyG), and
TyG-BMI—that were closely associated with knee pain risk.

Machine learning models demonstrated that these composite
metabolic indicators held high importance and exhibited good
predictive performance in identifying individuals at high risk.
To further interpret the internal mechanism of the models, we

applied SHAP (SHapley Additive exPlanations) analysis to assess the
contributionofeachfeature.TheSHAPresultsconsistentlyhighlighted
LAP, TyG, and TyG-BMI as the top predictors across multiple
algorithms, confirming their dominant role in the prediction process.
In contrast, traditional lipid parameters such as HDL-C and total
cholesterol showed weaker or even protective effects. These findings
notonlyenhancemodel transparencybutalso reinforce thehypothesis
thatcentralobesityandinsulinresistance-relatedbiomarkersaremajor
contributors to knee joint health deterioration.

Our findings are generally consistent with previously reported
epidemiological risk factors for knee disorders, while also providing
novel insights. Traditional studies have identified obesity, age, and
heavy physical labor as major risk factors for knee osteoarthritis
(OA) and knee pain. For example, the prevalence of symptomatic
knee OA has been reported to be significantly higher in rural
Chinese populations compared to urban counterparts, with physically
demanding agricultural labor considered a key contributor to joint
degeneration in rural areas (Kang et al., 2009). These findings,
derived primarily from traditional statistical approaches such as
logistic regression, have offered valuable evidence regarding risk
factors for knee disorders. However, such methods often have limited
predictiveaccuracy.Arecent reviewofkneeOAriskpredictionmodels
pointed out that existing models tend to lack sufficient breadth in
the inclusion of risk factors and often fall short in terms of external
validation (Ramazanian et al., 2023). In contrast, this study uses
machine learning methods (such as random forest) to construct
prediction models, which can deal with high-dimensional nonlinear
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relationships and improve the prediction performance under the
comprehensive consideration of multiple factors. In addition, we
enriched the range of risk factors for knee pain by introducing
composite metabolic measures into the model. This method of
combining new indicators and machine learning is rare in similar
studies, which reflects the innovation of this study.

In our study, the highest prevalence of knee pain was observed
in western provinces such as Qinghai and Sichuan. Based on
epidemiological data and literature on metabolic mechanisms, we
speculate that this may be attributed to high-altitude environments
and regional lifestyle factors. Firstly, chronic exposure to hypoxic
conditions at high altitudes may accelerate joint degeneration.
Previous studies have demonstrated that long-term residence in
plateau regions is associated with decreased bone density and bone
strength, which may increase the risk of osteoarthritis (Li et al.,
2024). Animal experiments have also shown that simulated hypoxic
environments can exacerbate cartilage damage and bone remodeling
in knee osteoarthritis models (Li et al., 2024). Physical activity
patterns may also differ. While individuals in mountainous areas
frequently engage in heavy labor, this form of physical exertion
tends to place repeated stress on the knee joints rather than improve
joint health. By contrast, urban residents may be more likely to
engage in recreational or structured physical activity, which can
enhance muscular support and joint function. Access to medical
care is another important factor. In many rural or remote areas,
limited health resources may delay the diagnosis and treatment of
joint-related conditions, leading to higher prevalence and worse
outcomes. People living in better-resourced regions may benefit
from earlier detection, bettermanagement strategies, and preventive
interventions, which can reduce the burden of knee pain.

Secondly, the mountainous and plateau terrain in these areas
increases the mechanical load on the knee joint during daily
activities. A study conducted in rural mountainous regions of
Japan reported that overweight individuals living at high altitudes
had more than twice the risk of chronic knee pain compared
to their normal-weight, low-altitude counterparts (adjusted odds
ratio ≈2.13) (Hamano et al., 2014). Qinghai and western Sichuan
are predominantly cold, mountainous regions, where residents
often engage in strenuous physical labor, such as frequent uphill
walking and long-distance travel, due to the complex terrain. These
geographical and occupational factors may increase the mechanical
stress and wear on the knee joints. In addition, nutritional
deficiencies common in these areas, such as vitamin D or selenium
deficiency, along with exposure to cold and humid climates, may
also contribute to compromised joint health. Some areas have
even reported endemic skeletal disorders such as Kashin-Beck
disease. Overall, the combination of environmental stressors (e.g.,
hypoxia and cold temperatures) and heavy physical burden in high-
altitude regions may be key contributors to the elevated prevalence
of knee pain observed in provinces like Qinghai and Sichuan.
This explanation is consistent with the geographic distribution
of our data and is further supported by literature documenting
a high prevalence of musculoskeletal disorders in high-altitude
populations (Li et al., 2024).

This study also emphasizes the mechanistic role of composite
metabolic indicators in predicting knee pain. We identified
that indices such as LAP (Lipid Accumulation Product), TyG
(Triglyceride-Glucose Index), and TyG-BMI—which reflect

overall metabolic health—are valuable predictors of knee pain
risk. These indicators integrate measures of visceral adiposity
and insulin resistance, thereby offering a more comprehensive
assessment of metabolic status than single indicators like BMI,
fasting glucose, or individual lipid components. A growing body
of evidence supports the concept of “metabolic osteoarthritis,”
which proposes that metabolic abnormalities contribute to the
pathogenesis of osteoarthritis. In obese individuals, adipose tissue
secretes pro-inflammatory cytokines, while insulin resistance
and hyperinsulinemia may disrupt chondrocyte metabolism and
accelerate cartilage degradation (Tchetina et al., 2020). Previous
research evidence supports our findings. A study based on data from
the National Health and Nutrition Examination Survey (NHANES)
reported that LAP is an independent risk factor for osteoarthritis
(OA), with a nonlinear increasing trend inOA risk as LAP levels rise.
The risk appears to plateau when LAP reaches approximately 120
(cm·mmol/L) (Huang et al., 2024c). Similarly, elevated TyG index
levels have been significantly associated with a higher prevalence
of knee OA, indicating that individuals with higher TyG scores
are more likely to develop the disease (Huang et al., 2024b).
It is noteworthy that the TyG-BMI index, which combines the
TyG index with body mass index (BMI), demonstrates superior
predictive performance. Comparative studies evaluating the
diagnostic efficiency of different metabolic indicators for arthritis
have shown that TyG-BMI outperforms the standalone TyG index in
distinguishing patients with arthritis, with a significantly higher area
under the receiver operating characteristic curve (AUC) observed in
bothChinese andU.S. populations.This enhanced performancemay
be attributed to the TyG-BMI index’s ability to simultaneously reflect
glucose and lipidmetabolism as well as the degree of obesity, making
it a more sensitive marker of insulin resistance (Zhang et al., 2024).

Our machine learning results further support the potential
mechanisms linking metabolic abnormalities to the development
of knee pain. Numerous experimental studies have demonstrated
that insulin resistance and hyperlipidemia can trigger chronic
low-grade inflammation, leading to the secretion of matrix
metalloproteinases (MMPs) by chondrocytes and the subsequent
degradation of cartilage extracellular matrix. Elevated levels of
low-density lipoprotein cholesterol (LDL-C) may accumulate and
oxidize within the synovial membrane, initiating inflammatory
cascades that accelerate cartilage degeneration. Correspondingly,
epidemiological studies have observed that the use of statins
may reduce the risk of knee osteoarthritis (OA), suggesting a
possible protective effect of lipid-lowering therapy on joint health.
In contrast, high-density lipoprotein cholesterol (HDL-C) exerts
anti-inflammatory and antioxidant effects, capable of neutralizing
LDL-induced inflammatory responses (Tang et al., 2016). Fang
et al. (2024) analyzed data from the NHANES cohort and found
that individuals with higher HDL-C levels had a significantly
lower incidence of knee osteoarthritis (OA) (Fang et al., 2024).
Consistently, our results also demonstrated a negative association
between HDL-C and knee pain in machine learning models,
supporting its potential protective effect. Collectively, these findings
suggest that metabolic factors may influence knee joint health
through inflammation-mediated and cartilage metabolic pathways.
This study emphasizes the importance of managing lipid profiles
and improving insulin sensitivity as part of the primary prevention
strategies for knee joint disorders. Taken together, composite
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metabolic indices such as LAP, TyG, and TyG-BMI may serve as
mechanistic indicators reflecting underlyingmetabolic disturbances
and chronic inflammation, playing a critical role in the development
of knee pain. The predictive value of these indicators has been
validated in several high-quality studies, and our findings further
extend their application to musculoskeletal health research.

This study carries significant public health implications.
Globally, hundreds of millions of people suffer from osteoarthritis
(OA), and this number is rapidly increasing (Zhang et al., 2024).
As an early clinical manifestation of OA, knee pain deserves
heightened attention. Since no current treatments can reverse OA
progression, prevention and early intervention remain the most
effective strategies (Geng et al., 2023;Mora et al., 2018). Our findings
confirm that several metabolic indicators are predictive of knee
pain risk, suggesting that metabolic health assessments should be
integrated into musculoskeletal health management for middle-
aged and older adults. For instance, incorporating indices such as
LAP or TyG—calculated from waist circumference, blood lipids,
and glucose—into routine community health screenings could help
identify individuals with metabolic abnormalities who are at high
risk for knee joint disorders. Once identified, targeted interventions
such as weight loss, dietary modification, muscle strengthening, and
metabolic control can be implemented to reduce the risk of knee
pain and OA development.

In particular, for high-incidence areas identified in this study,
enhanced health education and early preventive measures are
essential to alleviate the burden of knee joint disorders among
populations in plateau and rural regions. Furthermore, the robust
predictive performance demonstrated by our machine learning
models highlights the promising role of artificial intelligence in
public health screening. By constructing multifactorial prediction
tools, health authorities can more effectively allocate resources and
direct limited interventions toward thosemost in need. In summary,
this study provides new insights and evidence for early screening
and intervention of knee pain and underscores the importance of
managingmetabolic health inmaintainingmusculoskeletal function
among aging populations—contributing meaningfully to efforts
aimed at mitigating the growing burden of osteoarthritis worldwide.

In addition to assessing prediction accuracy, our study
emphasizedmodel interpretability through SHAP (Shapley Additive
Explanations) analysis, which provided detailed insights into how
each metabolic biomarker influenced the model’s predictions of
knee pain risk. The use of SHAP value decomposition allowed us to
not only identify which lipid variables weremost important, but also
to understand the direction and magnitude of their impact at the
individual level. This contributes to a more nuanced understanding
of the metabolic underpinnings of knee pain beyond traditional
regression-based associations.

Across all five machine learning models, SHAP consistently
identified LAP (Lipid Accumulation Product), TyG (Triglyceride-
glucose index), and TyG-BMI as the top predictors positively
associated with increased risk of knee pain. These composite
indices reflect central adiposity, insulin resistance, and dyslipidemia,
and have been increasingly recognized as indicators of systemic
metabolic stress. Our SHAP-based interpretation supports this
view by showing that high values of these indices not only
appeared among the top-ranked predictors but also yielded high
positive SHAP values, meaning they directly increased the predicted

probability of knee pain. This aligns with emerging concepts of
“metabolic osteoarthritis” and provides mechanistic plausibility to
our predictive findings.

Conversely, HDL-C (high-density lipoprotein cholesterol)
consistently demonstrated negative SHAP values, suggesting
a protective effect. This is biologically plausible given HDL’s
known anti-inflammatory and chondroprotective properties. The
consistency of SHAP rankings across models strengthens the
generalizability of these findings and demonstrates that ensemble
and tree-based models are capturing biologically meaningful
relationships rather than spurious correlations.

The interpretability afforded by SHAP is particularly valuable
for clinical translation. Unlike traditional black-box models, SHAP
allows clinicians to understand why a particular patient is flagged
as high-risk—for example, due to an elevated LAP or TyG index.
This feature-level attribution can support personalized intervention
planning, such as recommending targeted metabolic control in
patients with high LAP or low HDL-C to mitigate the risk of
developing knee pain.

Furthermore, the ability to visualize SHAP effects (via bar
plots, beeswarm plots, and dependence plots) facilitates transparent
communication of model behavior, which is crucial for integrating
machine learning into real-world decision-making in aging
and musculoskeletal health. These visualizations, included in
the main text (Figure 8) and (Supplementary Material), enable
reproducibility, regulatory review, and clinical trust.

In summary, SHAP analysis validated the predictive significance
of composite lipid-related indices and highlighted their biological
roles in knee pain development. This not only enhances the
explainability of our models but also bridges predictive modeling
with mechanistic understanding, laying a foundation for future
intervention studies targeting metabolic pathways in osteoarthritis
prevention.

This study has several limitations. First, this study was
based on the CHARLS dataset, and external validation was not
feasible due to the lack of comparable nationwide cohorts with
consistent biomarker profiles. While internal cross-validation and
an independent test set were used to assess robustness, the
generalizability of the model should be further verified in future
studies using external datasets. knee pain was assessed via self-
reported questionnaire, which introduces a degree of subjectivity
and potential for underreporting or misclassification. However, the
question targeted frequent and persistent pain (“Have you often
experienced knee pain in the past 2 years?”) (Ren et al., 2020), which
likely captured moderate to severe cases with reasonable validity.
Second, the CHARLS dataset lacks imaging data, preventing us from
distinguishing whether the reported knee pain was attributable to
radiographically confirmed knee osteoarthritis (KOA). Therefore,
ourmodel predicts symptomatic knee pain rather than the incidence
of radiographic KOA per se. Nevertheless, from a public health
perspective, knee pain alone holds clinical relevance and impacts
quality of life. Future studies integrating imaging assessments are
warranted to further evaluate the predictive value of metabolic
markers for structural joint changes. This study did not include
covariates such as comorbid diabetes, or rheumatoid arthritis due
to data limitations. These factors are potential confounders and
may influence both lipid metabolism and knee pain outcomes.
Additionally, the outcome variable—knee pain—was self-reported
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and thus subject to recall bias and misclassification. Future studies
incorporating clinical diagnoses, objective biomarkers, and activity
monitoring are warranted to further validate these findings.

5 Conclusion

Based on the nationally representative CHARLS cohort,
this study systematically evaluated the association between lipid
metabolism-related biomarkers and knee pain risk among middle-
aged and older adults individuals in China. The findings reveal
that composite metabolic indicators—such as LAP, TyG, and
TyG-BMI—exhibited significantly better predictive power than
traditional single lipid markers. Among all machine learning
approaches applied, the stacked ensemble model demonstrated the
highest performance in both discrimination and calibration.

To enhance model transparency, we introduced SHAP (SHapley
Additive exPlanations) analysis, which provided individualized and
global interpretability of prediction results. The SHAP bar and
beeswarm plots consistently identified LAP and TyG as the most
influential predictors across models, highlighting their central role
in knee pain pathogenesis. This interpretability not only validates
the robustness of machine learning predictions but also strengthens
their practical value in clinical decision-making and screening
strategies.

In addition, we observed a markedly higher prevalence of
knee pain in high-altitude, colder western provinces of China.
This geographic pattern suggests a potential interplay between
environmental stress, lifestyle, and metabolic abnormalities in
contributing to joint degeneration. Together, these findings offer
novel insights into the metabolic basis of knee pain and emphasize
the value of explainable AI for early identification, precision
prevention, and targeted interventions in high-risk populations.
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