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1 Introduction

This contribution is to recognize the scientific contribution of Paul Siegel and explore
the report from Siegel and Honaker (2025) on sexual dimorphism of chicken. The present
discussion explores the putative physiological mechanisms for the consistency of sexual
dimorphism in growth rate across 67 generations. Paul Siegel has been conducting research
on chicken growth and its genetic control for over 60 years. He is one of the people who
established that the growth rate of chickens is highly heritable with the heritability of
growth calculated as 0.39 from a study by Siegel (1962) and 0.41 from 176 reports as 0.41
(Siegel, 1962). Recently, he published a paper on the effects of selection for growth over
67 generations (one generation per year) focusing on the effects on sexually dimorphism in
growth (Siegel andHonaker, 2025). Birdswere selected for either high growth or slowgrowth
(specifically body weight at 8 weeks old). Breeding employed 4 dams for each sire with
matings of full- and half-sibs being avoided. Sexually dimorphism of growth was stable over
67 generations selected for growth. This indicates that there is a strong selection constraint
for sexually dimorphism of growth and/or that it is a canalized genetic response. Sexually
dimorphism of growth was also markedly greater (2.17-fold in the high growth line and
2.51-fold in the slow growth line) at 8-weeks old compared to 4-weeks old (Table 1).

Experimentally, growth is measured as either weight or height/length at one or several
time points or the delta increase in weight or height/length (average daily gain or ADG)
or expressed as parameters in an equation for growth such as the Gompertz equation. In
livestock and poultry growth is most frequently expressed as weight or weight gain. In
contrast, human growth is assessed as height (e.g., Gasser et al., 2009). while studies in
reptiles employ length; the latter being the distance between snout–vent length in reptiles
(e.g., Cox and John-Alder, 2007). Siegel and Honaker (2025) employed body weight at
8 weeks old as their parameters of growth.

While growth is a change in weight or height/length, a confounding conceptual issue is
that there can be sexual dimorphism inmature weight or height/length at sexual maturity or
when epiphyseal plates fuse. It is noted that either adultmales or females can be larger even in
closely related species. For instance, there is opposite sexual adult size dimorphism in lizards
(Sceloporus virgatus: male < female; Sceloporus jarrovii: male > females) (Cox and John-
Alder, 2007).
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TABLE 1 Comparison of sexual dimorphism in 4- and 8 – week-old
chickens selected for 8-week-old body weight for 67 generations
(calculated from data in Siegel and Honaker, 2025).

Sexual dimorphism in growth
(males minus females) as % of

males
males

4 weeks-old 8-weeks old

Parental generation 11.1 19.1

Generations F57-F67

High growth line 8.4 18.2

Low growth line 7.5 18.8

2 Sexual dimorphism and growth

It is reasonable to assume that there has been tremendous
selection pressure for animals to have the optimal size/weight
and growth profile (delta size per unit time) for a specific
environment. The corollary is that there will be optimal
size/weight together with growth for the food available and other
environmental considerations such as predators, temperature, and
water availability.

In humans, sex differences in height are only small until puberty
(reviewed: Gasser et al., 2009). Similarly, there is greater sexual
dimorphism in body weight at 8- compared to 4–weeks of age
(Table 1) (Siegel and Honaker, 2025).

3 Genetic basis of sexual dimorphism
and growth

Sexual dimorphism of growth may have a simple genetic
basis. In eutherian mammals, females have two X chromosomes
and, consequently, two sets of genes. While one X chromosome
is inactivated, some genes escape inactivation and there can be
gene dosing (reviewed; Moeser et al., 2022). In birds having
ZZ (males) and ZW (females), there is dosage with the Z
chromosome gene, Z chromosome gene Doublesex and Mab-3-
Related Transcription factor 1 (DMRT1) (Ioannidis et al., 2021;
Li et al., 2025; reviewed: Zhang et al., 2023).

4 Physiological bases of sexual
dimorphism and growth

4.1 Sex steroids

It is frequently assumed that the overall mechanism for sexual
dimorphism in growth are sex steroids. Sex steroids promote
growth in cattle. Castration reduces growth rate in cattle (e.g.,
Lee et al., 1990; Marti et al., 2013; Li et al., 2022). Moreover,

castration depresses circulating concentrations of growth hormone
and thyroid hormones and is followed by shifts in microbial
fermentation (Li et al., 2022; Shi et al., 2024). Implanting a mixture
of androgens and estrogens (trenbolone acetate and estradiol
17β) in increases growth (average daily gain) in steers while
reducing protein turnover and the insulin response to glucose
(e.g., Ferguson et al., 2023).

There are markedly differences between the effects of androgens
on growth in chickens (negative) and turkeys (positive). Growth
is either unaffected or tended to be increased by castration in
chickens (Fennell and Scanes, 1992a; Chen et al., 2006; Symeon et al.,
2010). It is cautioned that body weight gain reflects the aggregate
of growth of multiple tissues some or all of which exhibit sexual
dimorphism but of different magnitudes and different directions.
For instance, while weights of adipose tissue were increased
following castration and decreased by androgen replacement, there
was no effect of castration on breast muscle but decreases with
androgen at physiological concentrations (Fennell and Scanes,
1992a). Moreover, testosterone depressed ADG with the effect
overcome by a peripheral androgen blocker (Fennell et al., 1996).
Similarly, in female-larger species of reptiles, testosterone reduces
growth but increase growth in male - larger species (Duncan et al.,
2020). In turkeys, growth and muscle development are enhanced by
exogenous androgens (Fennell and Scanes, 1992b) and castration
tends to decrease growth and muscle weight (Pierson et al., 1981;
Burke and Edwards, 1994).

4.2 Hypothalamo-pituitary (growth
hormone)-insulin-like growth factor axis

Another underlying assumption is the sexual dimorphism is
related to growth hormone-insulin-like growth factor. There are
sexually dimorphic patterns for growth hormone secretion, for
instance, in humans (e.g., Jessup et al., 2003), rats (e.g., Chowen et al.,
1996) andchickenswhere castration is followedby feminizationofGH
secretion (Pampori andShapiro, (1994).Thephysiologicalmechanism
for SSD involves IGF-1. For instance, castration increases hepatic IGF-
1 expression in male Sceloporus undulatus while testosterone having
no effect (Cox and John-Alder, 2007).

4.3 Hypothalamo-pituitary-adrenocortical
(HPA) axis

The HPA axis has been related to sexual dimorphism of growth
with SNPs in crhr1 that are associated with rates of growth in yellow
catfish (Wang et al., 2024). Moreover, there is sexual dimorphism
in the effects of corticosteroid-binding globulin (CBG) on hepatic
functioning (Toews et al., 2022).

4.3.1 Immune and gastro-intestinal functioning
The extent to which sexual dimorphism is secondary to other

sexual differences such as immune or gastro-intestinal is unclear
(reviewed; Moeser et al., 2022). For example, there tends to be a
larger immune response to E. coli or sheep red blood cells in young
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chickens receiving estradiol with this being blocked by estrogen
receptor antagonist (Leiner et al., 1996).

5 Discussion

It would be predicted there would be drift in sexual dimorphism
over the 67 generations, this was not the case (Table 1) (Siegel
and Honaker, 2025). And would suggest that growth and sexual
dimorphism are tightly linked. It is speculated that expression
of DMRT1 may be, at least partially, responsible for the sexual
dimorphism of growth in chickens. What is not known is whether
genetic female chickens (ZW) expressing male levels of DMRT1
will grow at male rates or that males with higher levels of DMRT1
expression grow at superior rates. These might be accomplished by
selection for DMRT1 expression early in embryonic development or
via transgenic approaches.
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