Check for updates

OPEN ACCESS

EDITED BY Mário Cunha Espada, Instituto Politecnico de Setubal (IPS), Portugal

REVIEWED BY Yu Lun Tai, Texas A&M University Central Texas, United States Henhen Heryaman, Padjadjaran University, Indonesia

*CORRESPONDENCE Jinfa Gu, ⊠ gujinfa@student.usm.my

RECEIVED 09 April 2025 ACCEPTED 08 May 2025 PUBLISHED 20 May 2025

CITATION

Hu Z, Jiang S, Hu C, Shen B and Gu J (2025) The effects of circuit-based resistance training on blood pressure, arterial stiffness, and body composition in community-dwelling older adults: a systematic review and meta-analysis. *Front. Physiol.* 16:1609013. doi: 10.3389/fphys.2025.1609013

COPYRIGHT

© 2025 Hu, Jiang, Hu, Shen and Gu. This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. The effects of circuit-based resistance training on blood pressure, arterial stiffness, and body composition in community-dwelling older adults: a systematic review and meta-analysis

Zhongxu Hu¹, Shihua Jiang², Chenhao Hu³, Boao Shen⁴ and Jinfa Gu ^b ⁵*

¹Moray House School of Education and Sport, University of Edinburgh, Edinburgh, United Kingdom, ²School of Physical Education, Shanghai University of Sport, Shanghai, China, ³School of Physical Education, Henan University, Kaifeng, Henan Province, China, ⁴China Football College, Beijing Sport University, Beijing, China, ⁵School of Health Sciences, Universiti Sains Malaysia, Kubang Kerian, Kelantan, Malaysia

Background: The global aging population has led to a public health crisis, with cardiovascular disease, hypertension, arterial stiffness, and obesity becoming major concerns. Resistance training (RT) has been shown to improve cardiovascular health, but traditional RT has certain limitations.

Objective and data sources: The present systematic review and meta-analysis aims to assess the effects of circuit-based resistance training (CBRT) on blood pressure, arterial stiffness as well as body composition in community-dwelling older adults. PubMed, Cochrane library, Embase, Scopus, and Web of Science, five databases in total, were searched until January 2025. The analysis was restricted to randomized controlled trials.

Methods: A total of 14 studies, involving 704 participants, were included in the meta-analysis. The primary outcomes assessed were arterial stiffness, blood pressure, and body composition.

Results: Significant intervention effects were identified in systolic blood pressure (WMD = -6.10 mmHg, 95% CI: -8.07 to -4.12), diastolic blood pressure (WMD = -2.88 mmHg, 95% CI: -3.96 to -1.81), brachial-ankle pulse wave velocity (WMD = -101.81 cm/s, 95% CI: -136.92 to -66.70), percentage of body fat (WMD = -3.21%, 95% CI: -4.20 to -2.22), fat mass (WMD = -4.83 kg, 95% CI: -8.80 to -0.86), lean body mass (WMD = 1.36 kg, 95% CI: 0.83-1.89), and femoral neck bone mineral content (WMD = 0.27 g, 95% CI: 0.14-0.39). Subgroup analysis by training frequency showed that participants with high training frequency (>3 sessions/week) reduce systolic blood pressure more significantly compared to moderate to low training frequency (≤ 2 sessions/week) while diastolic blood pressure show no difference between subgroups.

Conclusion: CBRT interventions improve blood pressure, arterial stiffness, and body composition in community-dwelling older adults significantly. Additionally,

three sessions of CBRT per week show a superior systolic blood pressure lowering effect.

Systematic Review Registration: PROSPERO, identifier CRD42025646360.

KEYWORDS

community-dwelling, aging, resistance training, cardiovascular health, body composition

1 Introduction

By 2050, the population aged 60 and older worldwide is projected to double, reaching 22% of the global population in the world (Kanasi et al., 2016). The aging process is accompanied by elevated blood pressure and increased arterial stiffness, along with unfavorable changes in body composition (Steen, 1988; Wu et al., 2019). Along with insufficient physical activity, these factors exacerbate chronic health conditions such as hypertension, and cardiovascular disease (Merchant et al., 2021).

Hypertension in the older population is primarily attributed to a decline in arterial wall elasticity, characterized by increased SBP and decreased DBP in older adults (Westhoff et al., 2007). As large arteries progressively stiffen, DBP continues to decline, further elevating SBP and contributing to isolated systolic hypertension (ISH), the most prevalent subtype among the elderly (Asmar, 2003).

Pulse wave velocity (PWV) is widely recognized as the gold standard for assessing arterial stiffness (Laurent et al., 2006). It also serves as an independent indicator of cardiovascular disease in both individuals with existing conditions and in healthy ones (Blacher et al., 1999; Mattace-Raso et al., 2006). Given its strong association with cardiovascular events, PWV has become a key focus in chronic disease prevention among the elderly.

According to the report, 80%-92% of the elderly have at least one chronic illness, while 50%-77% experience multiple chronic conditions (Chiaranai et al., 2018). Additionally, more than 66% of adults aged 65 and older suffered from hypertension (Chobanian et al., 2003). Furthermore, chronic diseases have a significant impact on life expectancy. Eliminating deaths from major cardiovascular diseases could extend life expectancy by approximately 5.5 years (Arias et al., 2013), and alleviate significant burden on the medical system and on relevant departments (Control and Prevention, 2003). Moreover, after the age of 30 in women and 40 in men, bone mineral density begins to decline and continues to decrease throughout life (Santos et al., 2017). With aging, the progressive loss of bone mass and reduced bone strength make the skeleton increasingly susceptible to osteoporosis, thereby raising the risk of fragility fractures (Demontiero et al., 2012). The BMD of femoral neck measured by DXA is a strong predictive indicator of hip fractures (Johnell et al., 2005), which are associated with more than a threefold increase in 1-year motality risk (Klop et al., 2017). Bone mineral content (BMC) refers to the total mass of mineral content within the bone as measured by DXA, expressed in grams (g). BMD, on the other hand, indicates the mineral density per unit area, with the widely used unit being g/cm². From a clinical perspective, however, T-scores and Z-scores, which are derived from raw BMD values, are more commonly used. The T-score is primarily applied to older individuals and represents the number of SDs a person's BMD deviates from the mean BMD of a healthy young adult population. Defined by the WHO, the T-score is considered the gold standard for diagnosing osteoporosis: a T-score ≥ -1 SD is considered normal, between -1 and -2.5 SDs indicates osteopenia, and ≤ -2.5 SDs indicates osteoporosis. The Z-score, in contrast, reflects how much a person's BMD deviates from the average BMD of individuals of the same age and sex, and is used to evaluate whether a person's BMD is lower than expected for their age group (Dimai, 2017).

Substantial evidence suggests that exercise, as nonpharmacological interventions, can effectively benefit older adults on their cardiovascular fitness and body composition (Blair, 1996; Ryan et al., 1998; Chodzko-Zajko et al., 2009), enabling them to maintain independence, actively participate in their families and communities, and sustain overall health (Koopman and Van Loon, 2009). The chronic effect of traditional RT on blood pressure management has been widely recognized. However, traditional RT generally show limited improvement on arterial stiffness (Miyachi, 2013; Ashor et al., 2014; Ceciliato et al., 2020; Lopes et al., 2021). Therefore, comprehensive exercise interventions need to be further explored. CBRT is a time-efficient training model that integrates elements of both resistance and aerobic training (Gotshalk et al., 2004; Kolahdouzi et al., 2019). Consequently, CBRT offers various benefits, including enhanced cardiovascular fitness, decreased body fat, improved lean body mass (Gotshalk et al., 2004; Brentano et al., 2008; Camargo et al., 2008; Kolahdouzi et al., 2019). These lower training intensity can minimize muscle soreness and reduce rate of perceived exertion, thereby enhancing compliance and safety among aged individuals (Sparling et al., 1990; Waller et al., 2011).

Community-dwelling older adults, who maintain greater physical independence than hospitalized counterparts, can be wellsuited for exercise interventions. However, previous meta-analyses overlooked the effects of CBRT on blood pressure, arterial stiffness. To address this research gap, our systematic review with metaanalysis will evaluate the intervention effects of CBRT on those overlooked outcomes. Additionally, we will evaluate the effects of CBRT on key health indicators across participants with different BMI ranges, as BMI is the most widely used anthropometric measure in clinical practice and research, associating with cardiovascular disease-related mortality (Nuttall, 2015). By systematically evaluating the effects of CBRT on cardiovascular health and body composition in community-dwelling older adults, this study aims to fill the gap in existing knowledge with respect to the effects of this specific form of resistance training in older populations.

2 Methods

2.1 Protocol and guidance

Following Preferred Reporting Items for Systematic Reviews and Meta Analysis (PRISMA) (Liberati et al., 2009), this study has been registered with PROSPERO (CRD42025646360) to ensure transparency and rigor.

2.2 Inclusion criteria

The inclusion criteria were established following the PICOS principles (Liberati et al., 2009). A study was considered eligible if it met the following criteria: all recruited participants were physically independent older adults aged 60 years or older and were community-dwelling rather than hospitalized or institutionalized; CBRT was the only intervention; the control group consisted of

Study	Group (n)	F%	Age	BMI	Summary of intervention details						
					Intervention	Duration	Exercises/ sets/reps	Outcomes			
Al-Mhanna et al.	TG(34)		62.60 ± 6.90	32.41 ± 4.30	12/3/36	20-60					
(2024)	CG(35)	55.7%	61.70 ± 5.20	32.81 ± 5.60	-	-	7/2-4/15-30	BMI			
	TG_AW(18)		66 ± 4	18.5-24.9	12/3/36	50					
	TG_OW(14)		64 ± 4	25.0-29.9	12/3/36	50					
	TG_O(9)		62 ± 2	>30.0	12/3/36	50					
Bocalini et al. (2012)	CG_AW(9)	100%	67 ± 9	18.5-24.9	-	-	12/NR/NR	%BF, FM, LBM			
	CG_OW(10)	-	63 ± 2	25.0-29.9	-	-					
	CG_O(9)	-	62 ± 1	>30.0	-	-					
	TG_N(17)		70.35 ± 3.37	24.82 ± 2.45	24/3/72	45					
Camacho- Cardenosa et al.	TG_H(13)	59%	68.46 ± 3.82	26.41 ± 3.46	24/3/72	45	9/3/12-15	BMD_{FN} , BMC_{FN}			
(2022)	CG(20)	-	70.55 ± 4.10	28.23 ± 3.06	-	-					
	TG(15)		75.1 ± 1.4	25.3 ± 0.5	12/3/36	60					
Choi et al. (2020)	CG(12)	NR	72.3 ± 1.4	25.5 ± 0.4	-	-	19/NR/10-12	SBP, DBP, MAP, PI			
	TG(13)		75.0 ± 3.9	21.8 ± 1.5	12/3/36	25-75		%BF, FM, LBM, BMI SBP, DBP, MAP, PF baPWV, %BF, LBM BMI			
Jung et al. (2019)	CG(13)	100%	74.9 ± 5.2	21.9 ± 1.5	-	-	PRO 10/1-3/NR				
	TG(13)		75.36 ± 4.50	22.50 ± 1.75	12/3/36	45-75					
Jung et al. (2022)	CG(13)	100%	74.64 ± 5.77	22.58 ± 1.69	-	-	PRO 10/1-3/NR				
			M: 69 ± 3.2	27.97 ± 3.74	12/3/36	Not fixed					
Marcos-Pardo et al.	TG(24)		F: 70 ± 4.1	26.67 ± 4.51	-	-					
(2019)		60%	M: 69 ± 3.2	27.57	12/3/36	Not fixed	6/NR/8-12	%BF, LBM, BMI, F.			
	CG(21)		F: 70 ± 4.1	26.09 ± 3.34	-	-					
	TG_1DW(29)		69.0 ± 6.5	22.8 ± 2.4	12/1/12	40					
Miura et al. (2008)	TG_2DW(25)	100%	69.5 ± 7.0	23.5 ± 2.7	12/2/24	40	8/3/8	SBP, DBP, baPWV BMI			
	CG(23)	-	68.9 ± 7.5	23.7 ± 3.0	-	-					
	TG_HTN(45)		72.0 ± 7.1	NR	12/2/24	90					
	CG_HTN(47)		71.8 ± 5.6	NR	-	-		SBP, DBP, baPWV			
Miura et al. (2015)	TG_NT(55)	100%	72.9 ± 5.7	NR	12/2/24	90	PRO 6-8/3-5/15-20	%BF			
	CG_NT(53)		69.7 ± 6.7	NR	-	-					
	TG(20)		68.8 ± 3.2	NR	52/3/156	60	- 4 - 5				
Rhodes et al. (2000)	CG(18)	100%	68.2 ± 3.5	NR	-	-	8/3/8	BMD_{FN} , BMC_{FN}			

TABLE 1 Main characteristics of included studies in the meta-analysis.

(Continued on the following page)

Study	Group (n)	F%	Age	BMI	S	Summary of	intervention details				
					Intervention	Duration	Exercises/ sets/reps	Outcomes			
D. h	TG(9)	72.20/	72 ± 3	33.0 ± 1.0	12/3/36	Not fixed	11/NTD/10				
Roberson et al. (2018)	CG(7)	73.3%	70 ± 3	31.1 ± 2.4	-	-	11/NR/12	SBP, DBP			
Romero-Arenas et al.	TG(16)	NID	62.1 ± 6.3	29.7 ± 4.1	12/2/24	35-47		PMD			
(2013)	CG(7)	NR	58.0 ± 5.0	29.9 ± 5.8	-	-	PRO 6/1-3/6-12	BMD _{FN}			
Simmert 1 (2024)	TG(11)	55.50	70.3 ± 5.7	NR	8/3/24	40-45	DDO 10/1 2/10 12				
Simms et al. (2024)	CG(7)	55.5%	71.6 ± 5.2	NR	-	-	PRO 10/1-3/10-12	SBP, DBP, MAP			
Martinelli et al. (2015)	TG(10)	500/	67 ± 4	27 ± 3	12/3/36	60		DM			
Venturelli et al. (2015)	CG(10)	50%	66 ± 7	27 ± 6	-	-	4/NR/NR	BMI			

TABLE 1 (Continued) Main characteristics of included studies in the meta-analysis.

"-" stands for not receiving intervention, TG, training group; CG, control group; NR, not reported; PRO, progressive training; AW, appropriate weight; OW, overweight; O, obese; 1DW, 1 day per week; 2DW, 2 days per week; N, normoxic training condition; H, hypoxic training condition; HTN, hypertensive population; NT, normotensive population; M, male; F, female.

individuals who had no exercise intervention; outcome variables included measures related to blood pressure, body composition, and functional autonomy; and only RCTs were included.

2.3 Exclusion criteria

Studies were excluded if they met any of the following conditions: Animal studies were used; the study was an abstract, review, or conference article; the study was published in a non-English language; the study contained incomplete data reporting; the study applied other interventions concurrently with CBRT.

2.4 Outcomes

The primary outcomes included systolic blood pressure (SBP), diastolic blood pressure (DBP), brachial-ankle pulse wave velocity (baPWV), percentage of body fat (%BF), fat mass (FM), lean body mass (LBM), body mass index (BMI), femoral neck bone mineral density and content (BMD_{FN} and BMC_{FN}).

2.5 Search strategy

In order to examine the effects of CBRT on cardiovascular and body composition in community-dwelling adults, One of the authors (JSH) conducted the search of several databases: PubMed, Cochrane library, Embase, Scopus, and Web of Science, from the inception of databases to 10 January 2025. The search strategy consists of both specific MESH terms and entry terms "Circuitbased," "Training" or "Exercise," and "older adults," which are combined with Boolean logic terms "AND," "OR," "NOT."

2.6 Data collection process

After removing duplicates, two independent reviewers (SBA and HCH) screened titles and abstracts to exclude ineligible studies. If an abstract lacked sufficient information to determine eligibility, the full text was retrieved and assessed. Data from all included studies were then extracted using a standardized data extraction form. Any disagreements were resolved through consensus.

FIGURE 3

Risk of bias summary: review authors' judgments about each risk of bias item for each of the 14 included studies.

Study or	Experi	imental			Control		Weight	Weight	Mean Difference	Mean Difference
Subgroup	Mean	SD	Total	Mean	SD	Total (common)	(random)	IV, Fixed + Random, 95% C	IV, Fixed + Random, 95% C
subgroup = High Frequency (3	3 session	s/week)								
Simms 2024	-9.80 1	0.7600	11	4.50	20.7600	7	0.8%	1.4%	-14.30 [-30.94; 2.34]	· · · · · · · · · · · · · · · · · · ·
Roberson 2018	-19.50 1	2.6100	9	0.40	14.5100	7	1.3%	2.1%	-19.90 [-33.44; -6.36]	
Jung 2022	-7.43 1	3.6200	14	-0.47	11.6900	14	2.6%	4.2%	-6.96 [-16.36; 2.44]	
Choi 2020	-5.50	7.7300	15	5.30	10.6700	12	4.5%	6.9%	-10.80 [-17.99; -3.61]	
Total (common effect, 95% CI))		49			40	9.2%		-11.27 [-16.29; -6.26]	◆
Total (random effect, 95% CI)								14.5%	-11.27 [-16.29; -6.26]	◆
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 2.5$	51, df = 3 ((P = 0.47	33); I ²	= 0%						
ubgroup = Moderate to Low I	Frequenc	v (1-2 s	essio	ns/wee	(k)					
Miura 2008 2DW		3.5500			14.3400	23	3.7%	5.8%	-4.60 [-12.51; 3.31]	
						23				
/liura 2008_1DW	-3.50 1	3.3600	29	-0.40	14.3400		4.0%	6.2%	-3.10 [-10.72; 4.52]	
/liura 2008_1DW /liura 2015_N	-3.50 1 -6.10	3.3600 9.3000	29 58	-0.40 0.60	14.3400 6.6000	57	4.0% 26.6%	6.2% 29.1%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76]	
Miura 2008_1DW Miura 2015_N Miura 2015_H	-3.50 1 -6.10 -5.00	3.3600 9.3000	29 58 53	-0.40 0.60 -0.40	14.3400 6.6000	57 53	4.0% 26.6% 56.5%	6.2% 29.1% 44.3%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58]	
Miura 2008_1DW Miura 2015_N Miura 2015_H Total (common effect, 95% CI)	-3.50 1 -6.10 -5.00	3.3600 9.3000	29 58	-0.40 0.60 -0.40	14.3400 6.6000	57	4.0% 26.6%	6.2% 29.1% 44.3%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58] -5.15 [-6.74; -3.56]	
Miura 2008_1DW Miura 2015_N Miura 2015_H	-3.50 1 -6.10 -5.00	3.3600 9.3000 5.6000	29 58 53 165	-0.40 0.60 -0.40	14.3400 6.6000	57 53	4.0% 26.6% 56.5%	6.2% 29.1% 44.3%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58]	
/liura 2008_1DW /liura 2015_N /liura 2015_H Fotal (common effect, 95% CI) Fotal (random effect, 95% CI) leterogeneity: Tau ² = 0; Chi ² = 1.6	-3.50 1 -6.10 -5.00) 65, df = 3 (3.3600 9.3000 5.6000	29 58 53 165 89); I ²	-0.40 0.60 -0.40	14.3400 6.6000	57 53	4.0% 26.6% 56.5% 90.8%	6.2% 29.1% 44.3%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58] -5.15 [-6.74; -3.56] -5.15 [-6.74; -3.56]	
/liura 2008_1DW /liura 2015_N /liura 2015_H Total (common effect, 95% CI) leterogeneity: Tau ² = 0; Chi ² = 1.6 Fotal (common effect, 95% CI)	-3.50 1 -6.10 -5.00) 65, df = 3 (3.3600 9.3000 5.6000	29 58 53 165	-0.40 0.60 -0.40	14.3400 6.6000	57 53 156	4.0% 26.6% 56.5%	6.2% 29.1% 44.3% 85.5%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58] -5.15 [-6.74; -3.56] -5.15 [-6.74; -3.56]	
/liura 2008_1DW /liura 2015_N /liura 2015_H Fotal (common effect, 95% Cl) Fotal (random effect, 95% Cl) leterogeneity: Tau ² = 0; Chi ² = 1.6 Fotal (common effect, 95% Cl) Fotal (random effect, 95% Cl)	-3.50 1 -6.10 -5.00) 65, df = 3 (3.3600 9.3000 5.6000 (P = 0.64	29 58 53 165 89); I ² 214	-0.40 0.60 -0.40 = 0%	14.3400 6.6000 5.0000	57 53 156	4.0% 26.6% 56.5% 90.8%	6.2% 29.1% 44.3%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58] -5.15 [-6.74; -3.56] -5.15 [-6.74; -3.56]	
Viura 2008_1DW Viura 2015_N Viura 2015_H Fotal (common effect, 95% CI) Fotal (random effect, 95% CI)	-3.50 1 -6.10 -5.00) 65, df = 3 () ² = 9.35, dt	3.3600 9.3000 5.6000 (P = 0.64	29 58 53 165 89); I ² 214 = 0.228	-0.40 0.60 -0.40 = 0%	14.3400 6.6000 5.0000	57 53 156 196	4.0% 26.6% 56.5% 90.8%	6.2% 29.1% 44.3% 85.5%	-3.10 [-10.72; 4.52] -6.70 [-9.64; -3.76] -4.60 [-6.62; -2.58] -5.15 [-6.74; -3.56] -5.15 [-6.74; -3.56]	-30 -20 -10 0 10 20 3

Jung 2022 -4.14 6. Choi 2020 -3.40 7. Total (common effect, 95% Cl) - - Total (random effect, 95% Cl) - - Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency - Miura 2015_N -3.70 6. - - Miura 2015_H -3.30 4. - -	0.3900 11 3.4200 9 5.5600 14 7.0100 15 49 = 0.3911); I ² = y (1-2 session 5.1000 58	3.90 3.30 -0.79 1.60 0.1%	11.1900 10.0500 9.2900 9.6600 ek) 4.5000	7 7 14 12 40	1.1% 1.3% 3.3% 2.7% 8.4%	1.1% 1.3% 3.3% 2.7% 8.4% 30.2%	V, Fixed + Random, 95% Cl -7.50 [-17.82; 2.82] -12.80 [-22.06; -3.54] -3.35 [-9.31; 2.61] -5.00 [-11.52] -5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23] -2.90 [-4.86; -0.94]	V, Fixed + Random, 95% C
Simms 2024 -3.60 10. Roberson 2018 -9.50 8. Jung 2022 -4.14 6. Choi 2020 -3.40 7. Total (common effect, 95% CI) -3.40 7. Total (candom effect, 95% CI) -3.40 7. Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 6. Miura 2015_H -3.30 4. Miura 2008_2DW -4.00 8.	0.3900 11 3.4200 9 5.5600 14 7.0100 15 49 = 0.3911); I ² = y (1-2 session 5.1000 58	3.30 -0.79 1.60 0.1% ons/we	10.0500 9.2900 9.6600 ek) 4.5000	7 14 12 40	1.3% 3.3% 2.7% 8.4%	1.3% 3.3% 2.7% 8.4%	-12.80 [-22.06; -3.54] -3.35 [-9.31; 2.61] -5.00 [-11.52; 1.52] -5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23]	
Roberson 2018 -9.50 8. Jung 2022 -4.14 6. Choi 2020 -3.40 7. Total (common effect, 95% CI) Total (random effect, 95% CI) Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 Miura 2015_H -3.30 Miura 2008_2DW -4.00	8.4200 9 6.5600 14 7.0100 15 49 = 0.3911); I ² = y (1-2 session 6.1000 58	3.30 -0.79 1.60 0.1% ons/we	10.0500 9.2900 9.6600 ek) 4.5000	7 14 12 40	1.3% 3.3% 2.7% 8.4%	1.3% 3.3% 2.7% 8.4%	-12.80 [-22.06; -3.54] -3.35 [-9.31; 2.61] -5.00 [-11.52; 1.52] -5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23]	
Jung 2022 -4.14 6. Choi 2020 -3.40 7. Total (common effect, 95% CI) 7. Total (random effect, 95% CI) 1 Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 6. Miura 2015_H -3.30 4. Miura 2008_2DW -4.00 8.	5.5600 14 7.0100 15 49 = 0.3911); I ² = y (1-2 sessio 5.1000 58	-0.79 1.60 0.1%	9.2900 9.6600 ek) 4.5000	14 12 40	3.3% 2.7% 8.4%	3.3% 2.7% 	-3.35 [-9.31; 2.61] -5.00 [-11.52; 1.52] -5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23]	
Choi 2020 -3.40 7. Total (common effect, 95% Cl) Total (random effect, 95% Cl) 1 Heterogeneity: $Tau^2 = 0$; $Chi^2 = 3$, $df = 3$ (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 6. Miura 2015_H -3.30 4. Miura 2008_2DW -4.00 8.	7.0100 15 49 = 0.3911); I ² = y (1-2 sessic 5.1000 58	0.1%	9.6600 ek) 4.5000	12 40	2.7% 8.4%	2.7% 8.4%	-5.00 [-11.52; 1.52] -5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23]	*
Total (common effect, 95% CI) Total (random effect, 95% CI) Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 Miura 2015_H -3.30 Miura 2008_2DW -4.00	49 = 0.3911); I ² = y (1-2 sessio 5.1000 58	0.1% 0ns/we	ek) 4.5000	40	8.4%	8.4%	-5.93 [-9.64; -2.23] -5.93 [-9.64; -2.23]	*
Total (random effect, 95% Cl) Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 6, Miura 2015_H -3.30 4, Miura 2008_2DW -4.00 8,	= 0.3911); I ² = y (1-2 sessio 5.1000 58	0.1% ons/we	4.5000				-5.93 [-9.64; -2.23]	*
Total (random effect, 95% Cl) Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 6, Miura 2015_H -3.30 4, Miura 2008_2DW -4.00 8,	y (1-2 sessio 6.1000 58	ons/we	4.5000	57	30.2%		-5.93 [-9.64; -2.23]	•
Heterogeneity: Tau ² = 0; Chi ² = 3, df = 3 (P = subgroup = Moderate to Low Frequency Miura 2015_N -3.70 Miura 2015_H -3.30 4, Miura 2008_2DW -4.00	y (1-2 sessio 6.1000 58	ons/we	4.5000	57	30.2%			_
Miura 2015_N -3.70 6. Miura 2015_H -3.30 4. Miura 2008_2DW -4.00 8.	6.1000 58	-0.80	4.5000	57	30.2%	30.2%	-2.90 [-4.86; -0.94]	_
Ліura 2015_H -3.30 4. Ліura 2008_2DW -4.00 8.				57	30.2%	30.2%	-2.90 [-4.86; -0.94]	÷
Viura 2008_2DW -4.00 8.	1 2000 52	0.70						
	4.2000 53	-0.70	3.7000	53	50.9%	50.9%	-2.60 [-4.11; -1.09]	<u>₩</u>
Aiure 2009 4 DNA/ 4 E0 7	3.3800 25	-0.90	8.7700	23	4.9%	4.9%	-3.10 [-7.96; 1.76]	-+
Viura 2008_1DW -1.50 7.	7.7500 29	-0.90	8.7700	23	5.6%	5.6%	-0.60 [-5.16; 3.96]	
Total (common effect, 95% CI)	165			156	91.6%		-2.60 [-3.73; -1.48]	♦
Fotal (random effect, 95% CI)						91.6%	-2.60 [-3.73; -1.48]	•
Heterogeneity: $Tau^2 = 0$; $Chi^2 = 0.87$, df = 3 (F	P = 0.8328); I	² = 0%					• • • •	
Fotal (common effect, 95% Cl)	214	L.		196	100.0%		-2.88 [-3.96; -1.81]	
Total (random effect, 95% CI)						100.0%	-2.88 [-3.96; -1.81]	♦
leterogeneity: $Tau^2 < 0.0001$; $Chi^2 = 6.71$, df	f = 7 (P = 0.45	593); I ² :	= 0.0%				-	
Test for subgroup differences (common effect)				19)				-20 -10 0 10 2
Fest for subgroup differences (random effects)								Improvement of DBP

FIGURE 4

Forest plot of the pooled effects of CBRT versus control on SBP, DBP in older adults living in the community using both fixed-effects and random-effects model. "1DW" and "2DW" indicate training frequencies of 1 or 2 days per week, while "H" and "N" represent hypertensive and normotensive populations.

2.7 Assessment of risk of bias and publication bias

Two researchers independently assessed the quality of all included trials using the Cochrane Collaboration's Risk of Bias Tool (Higgins and Altman, 2008). The quality of the included articles was assessed using RevMan 5.4, which evaluates seven domains: random sequence generation, allocation concealment, participant blinding, assessor blinding, completeness of outcome data, selective reporting, and other potential biases.

Due to the limited number of studies per outcome (maximum of six studies), publication bias was not assessed using funnel

plots or Egger's test, as these methods require a minimum of 10 studies for reliable interpretation, according to Cochrane recommendations (Liberati et al., 2009). Any discrepancies were discussed among the three reviewers until a consensus was reached.

2.8 Data synthesis

All the outcomes included in this meta-analysis were continuous, and we standardized all the outcomes into means \pm SD if they were demonstrated as means \pm SE, or means with 95% CI (Altman and Bland, 2005). For each study, effect sizes were

	Exp	erimental		Control		Weight	Weight	Mean Difference	Mean Difference
Study	Mean	SD	Total Mean	SD	Total	(common)	(random) I	V, Fixed + Random, 95% Cl	IV, Fixed + Random, 95% CI
Jung 2022	-65.30	207.6000	14 76.50	197.8600	14	2.0%	5.0%	-141.80 [-292.03; 8.43]	
Miura 2008_1DW	-27.10	204.8800	29 -8.20	264.8500	23	2.7%	6.4%	-18.90 [-150.34; 112.54]	
Miura 2008_2DW	-125.10	178.1000	25 -8.20	264.8500	23	2.8%	6.6%	-116.90 [-245.70; 11.90]	
Viura 2015_H	-72.50	81.3000	58 11.10	72.4000	57	58.3%	44.7%	-83.60 [-111.73; -55.47]	
/liura 2015_N	-131.50	107.3000	53 -1.60	84.3000	53	34.2%	37.2%	-129.90 [-166.64; -93.16]	-
Fotal (common effect, 95% Cl)			179		170	100.0%		-99.82 [-121.29; -78.34]	•
Γotal (random effect, 95% Cl) leterogeneity: Tau ² = 511.4924; C	$hi^2 = 5.68$	df = 4 (P)	= 0 2246) [.] 1 ² =	29.5%			100.0%	-101.81 [-136.92; -66.70]	
		, u i - (i	0.2240), 1	20.070					-200 -100 0 100 200 Reduction of baPWV

Forest plot of the pooled effects of CBRT versus control on baPWV in community-dwelling older individuals using both fixed-effects and random-effects model. "1DW" and "2DW" refer to training frequencies (1 or 2 days per week), while "H" and "N" indicate hypertensive and normotensive populations.

calculated for both the CBRT and control groups. A correlation coefficient of 0.50 was used, and effect sizes were computed using the following formula (Higgins et al., 2008):

$$SD_{change} = \sqrt{SD_{baseline}^2 + SD_{post}^2 - (2 \times Corr \times SD_{baseline} \times SD_{post})}$$

We conducted statistical analyses using R (version 4.4.3). I^2 test was used to assess heterogeneity, where I^2 values indicated the degree of heterogeneity (Higgins and Thompson, 2002). If any degree of heterogeneity was detected ($I^2 > 0\%$) and subgroup analyses failed to adequately explain the heterogeneity, both fixed-effect and random-effects models were applied. The results from both models were demonstrated in forest plots to ensure transparency. However, in line with a conservative approach, the random-effects model was adopted for reporting the main findings to account for potential heterogeneity across studies. This approach enhances the robustness and transparency of the meta-analysis by considering the model-based uncertainty.

2.9 Subgroup analysis

In order to further investigate the BP-lowering effect of CBRT with different training frequency, the studies were categorized into two subgroups: high training frequency (3 sessions/week) and moderate to low training frequency (≤ 2 sessions/week). The effect of the CBRT intervention was then analyzed separately for each subgroup.

2.10 Sensitivity analysis

To assess the robustness of our findings, we conducted a series of sensitivity analyses.

Leave-one-out analysis: Each study was systematically removed one at a time to determine its influence on the pooled effect size and heterogeneity; Comparison of fixed-effects and randomeffects models: To evaluate the consistency of our findings across statistical models, we compared the results obtained using fixedeffects and random-effects models. If any of these analyses resulted in substantial changes in the pooled effect size or statistical significance, these findings were documented and discussed.

3 Results

3.1 Eligible studies and study characteristics

The initial search identified 1,558 articles, with 591 duplicates were removed. The titles and abstracts of the remaining 967 articles were screened, leading to the exclusion of 919 articles. A full-text review for the 48 articles remained was conducted, identifying 14 studies that satisfy the inclusion criteria for this systematic review (Rhodes et al., 2000; Miura et al., 2008; Bocalini et al., 2012; Romero-Arenas et al., 2013; Miura et al., 2015; Venturelli et al., 2015; Roberson et al., 2018; Jung et al., 2019; Marcos-Pardo et al., 2019; Choi et al., 2020; Camacho-Cardenosa et al., 2022; Jung et al., 2022; Al-Mhanna et al., 2024; Simms et al., 2024). The meta-analysis was then conducted using outcome measures from these included studies (Figure 1).

Of the 14 included articles, a total of 704 participants aged 60–75 years were involved. There were 19 CBRT intervention groups (390 individuals) and 17 control groups (314 individuals). Table 1 summarizes the main characteristics of all included studies.

Due to data limitations, one study (Romero-Arenas et al., 2013) reported that the mean age of the control group was 58 years, while that of the experimental group was 62.1 years. Since their mean age met the inclusion criteria (\geq 60 years), we still considered the study eligible. Eight included studies focused exclusively on community-dwelling older female (100% female participants), while the remaining studies adopted a mixed-gender approach, and no study specifically examined older male.

3.2 Quality (risk of bias) assessment

Detailed risk of bias assessment results are provided (Figures 2, 3). In exercise intervention studies, blinding of participants is generally not feasible; therefore, this domain was assessed as unclear risk. Among the included studies, five did not provide information on the randomization method (unclear risk of bias), while two did not use randomization and were therefore rated as high risk. None of the included studies reported on allocation concealment (unclear risk of bias). Additionally, two studies did

	Experim		-		Control			Weight		Difference			n Diffe		
tudy	Mean	SD	Total	Mean	SD	Total (c	ommon)	(random)	IV, Fixed +	Random, 95% C	ci iv,	Fixed +	+ Rand	lom, 959	% C
ocalini 2012_AW	-1.00 4.	.5800	18	0.00	4.5800	9	2.6%	6.0%	-1.00 [-4.66; 2.66]		_	•		
ing 2019	-1.80 3.	.2200	13	1.20	2.6200	13	6.9%	12.4%	-3.00 [-5.26; -0.74]					
ing 2022	-2.87 3.	.1800	14	0.71	3.1900	14	6.3%	11.7%	-3.58 [-5.94; -1.22]			-		
ocalini 2012_OW	-3.00 3.	.4600	14	1.00	4.0000	10	3.7%	8.0%	-4.00 [-7.07; -0.93]					
arcos-Pardo 2019_Men	-2.32 0.	.8800	9	0.39	1.0600	9	43.2%	27.1%		-3.61; -1.81]			-		
arcos-Pardo 2019_Women	-2.14 1.		15		0.6900	12	33.1%	25.4%		-3.59; -1.53]			-		
omero-Arenas 2013	-2.30 5.	.2100	16		11.1500	10	0.6%	1.7%	-2.30 [-9.67; 5.07]			·		
ocalini 2012_O	-6.00 2.	.6500	9	2.00	4.0000	9	3.6%	7.7%	-8.00 [-	11.13; -4.87]		—			
otal (common effect, 95% Cl)			108			86	100.0%		-2.92 [-3.52; -2.33]					
otal (random effect, 95% Cl)	10.00		(D. 0.1		2 44 004		•	100.0%	-3.21 [-4.20; -2.22]			▶		
eterogeneity: Tau ² = 0.7261; Chi ²	= 12.63, 0	df = 7	(P = 0.0	J816); I	- = 44.6%						-10	-5	0	5	
													iction c		
	Experim				Control		Weight			Difference			n Diffe		
udy	Mean	SD	Total	Mean	SD	Total (c	common)	(random)	IV, Fixed +	Random, 95%	CI IV,	Fixed ·	+ Rand	lom, 95	% (
ocalini 2012_AW	-1.00 3	.6100	18	1.00	5.2900	9	11.9%	20.0%	-2.00	[-5.84; 1.84]					
ocalini 2012_OW	-3.00 3				3.0000	10	24.9%	22.2%		-6.65; -1.35]					
ng 2019	-1.80 3				2.6100	13	34.6%	22.8%		-5.25; -0.75]		4			
omero-Arenas 2013	-1.10 5				11.5500	10	2.9%	12.7%		-9.22; 6.22]					
		CEOO	9	2.00	3.0000	9	25.7%	22.2%		[-14.62; -9.38]					
ocalini 2012_O	-10.00 2	.0000	9	2.00	0.0000	0	20.170			[-14.02, -3.30]		- 1			
ocalini 2012_O otal (common effect, 95% Cl) otal (random effect, 95% Cl) terogeneity: Tau ² = 16.6598; Chi ²			70			51	100.0%		-5.39 [[-6.72; -4.07] [-8.80; -0.86]					7
- otal (common effect, 95% Cl) otal (random effect, 95% Cl)	² = 33.89,	df = 4	70 4 (P < 0	.0001);	l ² = 88.29	51	100.0%		-5.39 [-4.83 [-6.72; -4.07] -8.80; -0.86]			luction	of FM	ר 10
btal (common effect, 95% Cl) otal (random effect, 95% Cl) terogeneity: Tau ² = 16.6598; Chi [*]	² = 33.89, Exj	df = 4 perin	70 ↓ (P < 0	.0001);	l ² = 88.29	51 % Contro	100.0%	100.0%	-5.39 [-4.83 [Mean Diff	-6.72; -4.07] -8.80; -0.86]	Ме	Red an Dif	luction fferen	of FM ce	ר 10
- otal (common effect, 95% Cl) otal (random effect, 95% Cl)	² = 33.89, Exj	df = 4	70 ↓ (P < 0	.0001);	l ² = 88.29	51 % Contro	100.0%	100.0%	-5.39 [-4.83 [-6.72; -4.07] -8.80; -0.86]	Ме	Red	luction fferen	of FM ce	٦ 10
btal (common effect, 95% Cl) otal (random effect, 95% Cl) terogeneity: Tau ² = 16.6598; Chi [*]	² = 33.89, Exj Me	df = 4 perin	70 ↓ (P < 0	.0001); Tota	l ² = 88.29 I l Mean	51 % Contro	100.0% DI D Total	100.0% Weight	-5.39 [-4.83 [Mean Diff	-6.72; -4.07] -8.80; -0.86] ference 95% Cl	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
btal (common effect, 95% Cl) otal (random effect, 95% Cl) terogeneity: Tau ² = 16.6598; Ch ² Study Bocalini 2012_AW	² = 33.89, Exj Me	df = 4 perin an	70 ↓ (P < 0 hental SD	.0001); Tota	l ² = 88.29 I Mean 3 1.00	51 6 Contro 51 4.000	100.0% - D Total 0 9	100.0% Weight 2.5%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3	(-6.72; -4.07] -8.80; -0.86] ference 95% Cl	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
btal (common effect, 95% Cl) otal (random effect, 95% Cl) terogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O	² = 33.89, Ext Me 1. 5.	df = 4 perin an	70 4 (P < 0 hental SD 4.5800 5.2400	.0001); Tota	l ² = 88.29 Il Mean 3 1.00 9 1.00	51 6 Contro 51 4.0000 5.5700	100.0% 	100.0% Weight 2.5% 0.9%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4	[-6.72; -4.07] -8.80; -0.86] ference 95% Cl 6; 3.36] 6; 9.46]	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
ctal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_OW	² = 33.89, Ex I Me 1. 5. 0.	df = 4 perin an .00 4 .00 6	70 4 (P < 0 hental SD 4.5800 5.2400 4.5800	.0001); Tota	l ² = 88.29 I Mean 3 1.00 9 1.00 4 0.00	51 6 4.000 5.570 5.000	100.0% 	100.0% Weight 2.5% 0.9% 1.8%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9	[-6.72; -4.07] -8.80; -0.86] ference 95% Cl 6; 3.36] 6; 9.46] 2; 3.92]	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
Common effect, 95% Cl) stal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Bocalini 2012_OW Jung 2019	² = 33.89, Exj Me 1. 5. 0. 1.	odf = 4 perin an .00 4 .00 6 .00 4 .10 1	70 (P < 0 hental SD .5800 .2400 .5800 .9100	.0001); Tota	l ² = 88.29 ll Mean B 1.00 9 1.00 4 0.00 3 -0.20	51 6 4.000 5.570 5.000 2.280	100.0%	100.0% Weight 2.5% 0.9% 1.8% 10.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9 1.30 [-0.3	[-6.72; -4.07] -8.80; -0.86] ference 95% Cl 6; 3.36] 6; 9.46] 2; 3.92] 2; 2.92]	Ме	Red an Dif	luction fferen	of FM ce	つ 10
ctal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_OW Jung 2019 Jung 2022	² = 33.89, Exj Me 1. 5. 0. 1. 0.	df = 4 perin an .00 4 .00 6 .00 4 .10 1 .87 1	70 (P < 0 nental SD .5800 .2400 .5800 .9100 .8300	.0001); Tota 1; 1; 1; 1;	I ² = 88.29 II Mean B 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09	51 6 4.000 5.570 5.000 2.280 2.780	100.0%	100.0% Weight 2.5% 0.9% 1.8% 10.7% 9.2%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9 1.30 [-0.3 0.96 [-0.7	[-6.72; -4.07] [-8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80	Ме	Red an Dif	luction fferen	of FM ce	つ 10
Common effect, 95% Cl) stal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Bocalini 2012_OW Jung 2019	² = 33.89, Exj Me 1. 5. 0. 1. 0.	df = 4 perin an .00 4 .00 6 .00 4 .10 1 .87 1	70 (P < 0 hental SD .5800 .2400 .5800 .9100	.0001); Tota 1; 1; 1; 1;	I ² = 88.29 II Mean B 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09	51 6 4.000 5.570 5.000 2.280	100.0%	100.0% Weight 2.5% 0.9% 1.8% 10.7% 9.2%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9 1.30 [-0.3	[-6.72; -4.07] [-8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
ctal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_OW Jung 2019 Jung 2022	² = 33.89, Ext Me 1. 5. 0. 1. 0. 2.	df = 4 perin an .00 4 .00 4	70 (P < 0 nental SD .5800 .2400 .5800 .9100 .8300	.0001); Tota 1 1 1 1 1	I ² = 88.29 II Mean B 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04	51 6 4.000 5.570 5.000 2.280 2.780	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9	100.0% Weight 2.5% 0.9% 1.8% 10.7% 9.2% 27.9%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9 1.30 [-0.3 0.96 [-0.7	[-6.72; -4.07] -8.80; -0.86] ference 95% Cl 6; 3.36] 6; 9.46] 2; 3.92] 2; 2.92] 8; 2.70] 8; 2.98]	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
ctal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_OW Jung 2019 Jung 2022 Marcos-Pardo 2019_Men	² = 33.89, Exp Me 1. 5. 0. 1. 0. 2. nen 1.	df = 4 perin pan 00 4 00 6 00 4 10 1 .87 1 .02 0 .62 0	70 4 (P < 0 hental SD .5800 .2400 .5800 .9100 .8300 0.7500	.0001); Tota 1; 1; 1; 1; 1;	I ² = 88.29 II Mean B 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46	51 6 4.000 5.570 5.000 2.280 2.780 1.340	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 9.2% 27.9% 46.3%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-1.4 0.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9	[-6.72; -4.07] -8.80; -0.86] ference 95% Cl 6; 3.36] 6; 9.46] 2; 3.92] 2; 2.92] 8; 2.70] 8; 2.98] 8; 2.98] 8; 1.94]	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
chal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Jung 2019 Jung 2019 Jung 2022 Marcos-Pardo 2019_Men Marcos-Pardo 2019_Won Romero-Arenas 2013	² = 33.89, Exp Me 1. 5. 0. 1. 0. 2. nen 1.	df = 4 perin pan 00 4 00 6 00 4 10 1 .87 1 .02 0 .62 0	70 4 (P < 0 hental SD .5800 .2400 .5800 .9100 .8300 0.7500 0.7900	.0001); Tota 1; 1; 1; 1; 1; 1; 1; 1;	I ² = 88.29 I Mean B 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46 6 0.30	51 6 4.0000 5.5700 5.0000 2.2800 2.7800 1.3400 1.1800	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 27.9% 46.3% 0.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9 1.16 [0.3 1.10 [-5.4	[-6.72; -4.07] -8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80;	Ме	Red an Dif	luction fferen	of FM ce	つ 10 一
Study Study Socalini 2012_AW Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Jung 2019 Jung 2029 Marcos-Pardo 2019_Men Marcos-Pardo 2019_Won Romero-Arenas 2013 Total (95% CI)	² = 33.89, Ex Me 1. 5. 0. 1. 0. 2. nen 1. 1.	df = 4 perin an .00 4 .00 4	70 (P < 0 nental SD .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2500 .5500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .2500 .5500 .25000 .25000 .25000 .25000 .25000 .25000	.0001); Tota 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	$1^{2} = 88.29$ 1 Mean 3 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46 6 0.30 B	51 6 4.000 5.570 2.280 2.280 1.340 1.340 7.800	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 27.9% 46.3% 0.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9 1.16 [0.3	[-6.72; -4.07] -8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80;	Ме	Red an Dif	luction fferen	of FM ce	٦ 10
chal (common effect, 95% Cl) otal (random effect, 95% Cl) iterogeneity: Tau ² = 16.6598; Chi ² Study Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Jung 2019 Jung 2019 Jung 2022 Marcos-Pardo 2019_Men Marcos-Pardo 2019_Won Romero-Arenas 2013	² = 33.89, Ex Me 1. 5. 0. 1. 0. 2. nen 1. 1.	df = 4 perin an .00 4 .00 4	70 (P < 0 nental SD .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2500 .5500 .25000 .25000 .25000 .25000 .25000 .25000	.0001); Tota 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	$1^{2} = 88.29$ 1 Mean 3 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46 6 0.30 B	51 6 4.000 5.570 2.280 2.280 1.340 1.340 7.800	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 27.9% 46.3% 0.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9 1.16 [0.3 1.10 [-5.4	[-6.72; -4.07] -8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80;	Me IV,	an Dif Fixed	fferen , 95%	of FM	「 10 一
Study Study Socalini 2012_AW Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Jung 2019 Jung 2029 Marcos-Pardo 2019_Men Marcos-Pardo 2019_Won Romero-Arenas 2013 Total (95% CI)	² = 33.89, Ex Me 1. 5. 0. 1. 0. 2. nen 1. 1.	df = 4 perin an .00 4 .00 4	70 (P < 0 nental SD .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2500 .5500 .25000 .25000 .25000 .25000 .25000 .25000	.0001); Tota 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	$1^{2} = 88.29$ 1 Mean 3 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46 6 0.30 B	51 6 4.000 5.570 2.280 2.280 1.340 1.340 7.800	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 27.9% 46.3% 0.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9 1.16 [0.3 1.10 [-5.4	[-6.72; -4.07] -8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80;	Me IV, 	Red	fferen , 95%	of FM	つ 10 一
Study Study Socalini 2012_AW Bocalini 2012_AW Bocalini 2012_O Bocalini 2012_O Jung 2019 Jung 2029 Marcos-Pardo 2019_Men Marcos-Pardo 2019_Won Romero-Arenas 2013 Total (95% CI)	² = 33.89, Ex Me 1. 5. 0. 1. 0. 2. nen 1. 1.	df = 4 perin an .00 4 .00 4	70 (P < 0 nental SD .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2400 .5800 .2500 .5500 .25000 .25000 .25000 .25000 .25000 .25000	.0001); Tota 1; 1; 1; 1; 1; 1; 1; 1; 1; 1;	$1^{2} = 88.29$ 1 Mean 3 1.00 9 1.00 4 0.00 3 -0.20 4 -0.09 9 0.04 5 0.46 6 0.30 B	51 6 4.000 5.570 2.280 2.280 1.340 1.340 7.800	100.0% D Total D 9 D 9 D 10 D 13 D 14 D 9 D 12 D 12	100.0% Weight 2.5% 0.9% 1.8% 10.7% 27.9% 46.3% 0.7%	-5.39 [-4.83] Mean Diff IV, Fixed, 0.00 [-3.3 4.00 [-3.9 1.30 [-0.3 0.96 [-0.7 1.98 [0.9 1.16 [0.3 1.10 [-5.4	[-6.72; -4.07] -8.80; -0.86] [-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80; -0.86]\\[-8.80;	Me IV, 	an Dif Fixed	fferen , 95%	of FM	つ 10 一

not report their pre-registration information, leading to a high risk rating for selective reporting.

3.3 Results of the meta-analysis

3.3.1 Effect of circuit-based resistance training on blood pressure

After conducting the analysis of data from all included studies, we found that the CBRT group showed a significant reduction in SBP (WMD = -6.10 mmHg, 95% CI: -8.07 to -4.12, $I^2 = 25.2\%$), DBP (WMD = -2.88 mmHg, 95% CI: -3.96 to -1.81, $I^2 = 0\%$) compared to the control group (Figure 4).

3.3.2 Effect of circuit-based resistance training on arterial stiffness

The meta-analysis (Figure 5) of three included studies of baPWV revealed that CBRT reduces baPWV (WMD = -101.81 cm/s, 95% CI: -136.92 to -66.70, $I^2 = 29.5\%$).

3.3.3 Effect of circuit-based resistance training on body composition

The meta-analysis revealed a significant overall effect of CBRT in decreasing %BF (WMD = -3.21%, 95% CI: -4.20 to -2.22, I^2 = 44.6%), FM (WMD = -4.83 kg, 95% CI: -8.80 to -0.86, I^2 = 88.2%), BMI (WMD = 0.03 kg/m², 95% CI: -0.71 to -0.76, I^2 = 0%), and increasing LBM (WMD = 1.36 kg, 95% CI: 0.83-1.89, I^2 = 0%),

Study	Experi Mean	mental SD	Total	Mean	Control SD	Total	Weight (common)		Mean Difference IV, Fixed + Random, 95% CI	Mean Difference IV, Fixed + Random, 95% C
Al-Mhanna 2024	1.65	1.1500	34	-0.30	1.3100	35	8.3%	16.3%	1.95 [1.37; 2.53]	
lung 2019	-0.30	1.2500	13	0.00	1.3100	13	2.9%	13.7%	-0.30 [-1.28; 0.68]	
lung 2022	-0.70	1.5300	13	0.03	1.6500	13	1.9%	12.1%	-0.73 [-1.95; 0.49]	
larcos-Pardo 2019_Men	-0.02	0.2800	9	0.31	0.1900	9	57.4%	17.9%	-0.33 [-0.55; -0.11]	
larcos-Pardo 2019_Women	0.00	0.5900	15		0.2100	12	27.1%	17.6%	-0.47 [-0.79; -0.15]	
/liura 2008_1DW		2.4500	29		3.0000	23	1.2%	10.3%	0.00 [-1.52; 1.52]	
/liura 2008_2DW		2.7000			3.0000	23	1.1%	9.7%	-0.20 [-1.82; 1.42]	
/enturelli 2015	0.00	3.6100	10	0.00	6.0000	10	0.1%	2.5%	0.00 [-4.34; 4.34]	
Fotal (common effect, 95% Cl)	1		148			138	100.0%		-0.18 [-0.35; -0.01]	•
Total (random effect, 95% CI)								100.0%	0.03 [-0.71; 0.76]	
leterogeneity: Tau ² = 0.7781; Chi ²	² = 57.39	9, df = 7	(P < 0.	0001);	l ² = 87.8	%				
										-4 -2 0 2 Improvement of BMI
Study	Experi Mean	mental SD	Total	Mean	Control SD	Total	Weight (common)		Mean Difference IV, Fixed + Random, 95% CI	Mean Difference IV, Fixed + Random, 95% C
-									, ,	
Camacho-Cardenosa 2022_H		0.0900	21		0.1000	20	31.3%	30.8%	0.00 [-0.06; 0.06]	
Camacho-Cardenosa 2022_N		0.1400			0.1000	20	18.8%	19.2%	-0.03 [-0.11; 0.05]	_
Rhodes 2000		0.1200			0.1000	22	25.0%	25.1%	0.06 [-0.01; 0.13]	
Romero-Arenas 2013	0.01	0.1000	16	0.00	0.0700	10	24.9%	25.0%	0.01 [-0.06; 0.08]	
Total (common effect, 95% Cl)	í.		79			72	100.0%		0.01 [-0.02; 0.04]	
Total (random effect, 95% Cl)	2 0.44	16 0 //		000	40.70		•	100.0%	0.01 [-0.02; 0.05]	
Heterogeneity: Tau ² < 0.0001; Chi	= 3.44,	df = 3 (I	= 0.3	292); 1	= 12.7%)				-0.1 -0.05 0 0.05 0.1
										Improvement of BMD
Study	Experi Mean	mental SD	Total	Mean	Control SD	Total	Weight (common)		Mean Difference IV, Fixed + Random, 95% CI	Mean Difference IV. Fixed + Random, 95% C
•	0.07	4 0 0 0 0		0.00			. ,	. ,	, , , ,	
Camacho-Cardenosa 2022_H		1.0000			0.7300	20	5.8%	5.8%	0.29 [-0.24; 0.82]	
Camacho-Cardenosa 2022_N		1.2600			0.7300	20	4.1%	4.1%	-0.09 [-0.73; 0.55]	
Rhodes 2000	0.05	0.2200	22	-0.23	0.2400	22	90.1%	90.1%	0.28 [0.14; 0.42]	
			63			62	100.0%		0.27 [0.14; 0.39]	•
Total (common effect, 95% CI)				2				100.0%	0.27 [0.14; 0.39]	
Total (random effect, 95% CI)			5369):	1 = 0.0)%					1 1
Total (random effect, 95% CI)	24, df = 2	2(P = 0.)	,,							
Total (common effect, 95% CI) Total (random effect, 95% CI) Heterogeneity: Tau ² = 0; Chl ² = 1.2	24, df = 2	2 (P = 0.	,							-0.5 0 0.5 Improvement of BMC
Total (random effect, 95% CI)	24, df = :	2 (P = 0.	,							

frequencies; "H" and "N" represent interventions under hypoxic and normoxic conditions.

BMD_{FN} (WMD = 0.01 g/cm², 95% CI: -0.02 to 0.05, I^2 = 12.7%), BMC_{FN} (WMD = 0.27 g, 95% CI: 0.14–0.39, I^2 = 0%) (Figure 6).

3.4 Sensitivity analyses

We conducted leave-one-out sensitivity analyses for outcomes of BMI (Supplementary Figure S1), %BF (Supplementary Figure S2), and FM (Supplementary Figure S3), to explore potential sources of heterogeneity. The analyses demonstrated that the exclusion of this study significantly reduced heterogeneity (from $I^2 = 87.8\%-0\%$) and changed the overall effect estimate from a non-significant mean difference of 0.03 (95% CI: -0.71 to 0.76) to a significant reduction of -0.37 (95% CI: -0.55 to -0.20). Given the determinant influence of this single study, the conclusion should be interpreted with caution. Leave-one-out sensitivity analysis for %BF and FM identified the experimental arm "Obese group" from Bocalini et al. (2012) as a potential contributor to the observed moderate-to-high heterogeneity ($I^2 = 44.6\%$ and 88.2%). However, the exclusion of this study or any other single study from both outcomes, did not substantially alter the overall effect size or change the statistical significance of the pooled results. Therefore, all studies were retained in the main analysis. Given the presence of moderate heterogeneity, a random-effects model was adopted to provide a more conservative and robust estimate of the effect size.

3.5 Subgroup analysis

In order to further investigate the BP-lowering effect of CBRT with different training frequency, the studies were categorized into

two subgroups: high training frequency (3 sessions/week) and moderate to low training frequency (≤ 2 sessions/week). Subgroup analyses demonstrated that high-frequency CBRT was significantly more effective in reducing systolic blood pressure (SBP) compared to moderate-to-low frequency CBRT (*p* for subgroup differences <0.05). Although high-frequency CBRT also showed greater reductions in diastolic blood pressure (DBP), the difference between the two subgroups was not statistically significant (*p* = 0.09).

4 Discussion

To the best of our knowledge, this is the first meta-analysis systematically evaluating the effects of CBRT on blood pressure, arterial stiffness, and bone health in community-dwelling older adults.

Our findings suggest that CBRT can be safely applied to improve cardiovascular health and body composition in older populations. Notably, seven studies included participants aged 70 years or more, yet still demonstrated beneficial effects. Among the 14 studies included in this meta-analysis, 11 focused on the effects of exercise interventions on cardiovascular health and body composition. The intervention period for these studies was uniformly 12 weeks, except for Simms et al. (2024), which lasted 8 weeks. In contrast, studies targeting bone health typically required longer intervention durations of 12, 24, or 52 weeks (Rhodes et al., 2000; Romero-Arenas et al., 2013; Camacho-Cardenosa et al., 2022). Therefore, discussions regarding the improvements in cardiovascular function are based solely on short-to medium-term interventions. CBRT, as an "optimal combination" of training modalities, led to a significant reduction in SBP (-6.10 mmHg), DBP (-2.88 mmHg), and baPWV $(-101.81 \text{ cm s}^{-1})$. This may be due to the nature of CBRT, where lighter weights are lifted with shorter recovery time between sets and result in greater cardiovascular stimulation (Gotshalk et al., 2004).

Our meta-analysis demonstrated that CBRT significantly improves both blood pressure and arterial stiffness at the same time. In consistent with ours, a meta-analysis reported that lowintensity short-rest resistance training significantly reduces baPWV by improving endothelial function (Okamoto et al., 2011). Moreover, resistance training, regardless of intensity, has been shown to effectively improve blood pressure, including both peripheral and central blood pressure (Figueroa et al., 2019). In contrast, traditional resistance training with heavy weights has no significant effect on arterial stiffness in middle-aged and older adults (Miyachi, 2013; Ashor et al., 2014; Lopes et al., 2021). One potential mechanism potentially interpreting the effect of CBRT is that the CBRT-induced muscle hypoxia stimulates nitric oxide (NO) production, enhances endothelial function, and subsequently reduces arterial stiffness, whereas high-intensity resistance training with longer recovery periods does not improve this function (Okamoto et al., 2009). It is suggested that lower-intensity resistance training with shorter rest intervals may be more effective in simultaneously improving baPWV and blood pressure. In terms of training organization, CBRT inherently possesses these characteristics.

It is reported that 10 mmHg reduction in SBP or SBP decrease to lower than 130 mmHg can greatly lower the risk of major cardiovascular disease and coronary heart disease (Ettehad et al., 2016). Additionally, a meta-analysis stated that every 1 m/s increase in baPWV can compound the risk of developing cardiovascular increases by 12% (Vlachopoulos et al., 2012). In this meta-analysis, CBRT significantly lower the baPWV by around 1 m/s, which can be interpreted as a significant lowered risk of cardiovascular disease. However, Since the included studies in this meta-analysis reported blood pressure-related outcomes only lasted 8–12 weeks, the longterm sustainable effect of CBRT-induced cardiovascular fitness improvements in community-dwelling older adults remains unclear. Furthermore, the significant reduction in baPWV observed in this study were restricted to suggest that CBRT may improve peripheral arterial elasticity, while its effects on central aortic compliance remain to be elucidated. Future studies should incorporate carotidfemoral pulse wave velocity (cfPWV) assessments to further investigate the effect of CBRT on lowering central arterial stiffness.

Body composition primarily includes fat, muscle, bone, and water. These components together constitute the total body mass. The relative proportion of body composition can reflect the physiological status and overall health of an individual (Heymsfield et al., 2005). The present meta-analysis indicates that CBRT has positive effects in reducing body fat and improving LBM. This effect may be attributed to the CBRT model, which enhances glucose uptake by skeletal muscle, reduces fat storage in adipose tissue, and helps maintain or increase basal metabolic rate (Donnelly et al., 2009).

Although the meta-analysis revealed a significant improvement in BMC_{FN}, no significant change was observed in BMD_{FN}. The increase in BMC_{FN} suggests a potential enhancement in bone quality at the femoral neck; however, due to the absence of clinically diagnostic indicators such as T-scores, this finding can only be interpreted as evidence of the physiological potential of CBRT to improve bone mineral content. Its clinical relevance in terms of osteoporosis prevention or treatment remains unclear. This is in line with previous findings suggesting that low-impact resistance training may not produce significant changes in BMD_{FN} or BMD at lumber spine in older adults (Marques et al., 2012). In contrast, a 6-month high-intensity resistance training intervention has shown that BMD_{FN} could be improved significantly (Vincent and Braith, 2002). This may be attributed to the relatively light weights used in CBRT, which may not impose the mechanical stress to stimulate BMD increases, thereby limiting the potential for BMD improvement.

5 Limitation

Although this study provides important evidence. Some limitations in the present meta-analysis also need to be acknowledged.

Firstly, the included studies showed overall low quality with quite a few unclear or unreported risk of bias, which may have compromised the robustness of our findings and limited the generalizability of the results. Secondly, only a few studies reported on several outcomes variables, such as baPWV, which restricted our ability to conduct more comprehensive subgroup analyses. Another potential limitation of this meta-analysis is the inability to assess publication bias due to the small number of included studies. Future studies with sufficient number of included study could confirm the robustness of these findings and further evaluate possible publication bias.

6 Conclusion

This meta-analysis suggests that CBRT is a safe and effective intervention in community-dwelling older adults, which can significantly improve elevated blood pressure, stiffened arteries, and exacerbated body composition with age. An 8–12-week CBRT program can effectively improve systolic and diastolic blood pressure, as well as body fat percentage and lean body mass in communitydwelling older adults. A higher training frequency (three sessions per week) appears to exert a more pronounced effect on blood pressure management in this population. Exercise prescriptions based on the modality of CBRT can be designed for community-dwelling older adults to promote public health in communities.

Data availability statement

The raw data supporting the conclusions of this article will be made available by the authors, without undue reservation.

Author contributions

ZH: Formal Analysis, Conceptualization, Writing – original draft. SJ: Writing – review and editing, Conceptualization. CH: Writing – review and editing, Investigation, Conceptualization. BS: Conceptualization, Writing – review and editing, Investigation. JG: Writing – review and editing, Conceptualization.

References

Al-Mhanna, S. B., Batrakoulis, A., Mohamed, M., Alkhamees, N. H., Sheeha, B. B., Ibrahim, Z. M., et al. (2024). Home-based circuit training improves blood lipid profile, liver function, musculoskeletal fitness, and health-related quality of life in overweight/obese older adult patients with knee osteoarthritis and type 2 diabetes: a randomized controlled trial during the COVID-19 pandemic. *BMC Sports Sci. Med. Rehabilitation* 16 (1), 125. doi:10.1186/s13102-024-00915-4

Altman, D. G., and Bland, J. M. (2005). Standard deviations and standard errors. *BMJ* 331 (7521), 903. doi:10.1136/bmj.331.7521.903

Arias, E., Heron, M. P., and Tejada-Vera, B. (2013). United States life tables eliminating certain causes of death, 1999-2001.

Ashor, A. W., Lara, J., Siervo, M., Celis-Morales, C., and Mathers, J. C. (2014). Effects of exercise modalities on arterial stiffness and wave reflection: a systematic review and meta-analysis of randomized controlled trials. *PLoS One* 9 (10), e110034. doi:10.1371/journal.pone.0110034

Asmar, R. (2003). Benefits of blood pressure reduction in elderly patients. J. Hypertens. 21, S25–S30. doi:10.1097/00004872-200307006-00005

Blacher, J., Asmar, R., Djane, S., London, G. R. M., and Safar, M. E. (1999). Aortic pulse wave velocity as a marker of cardiovascular risk in hypertensive patients. *Hypertension* 33 (5), 1111–1117. doi:10.1161/01.hyp.33.5.1111

Blair, S. N., Kampert, J. B., Kohl, H. W., 3rd, Barlow, C. E., Macera, C. A., Paffenbarger, R. S., Jr, et al. (1996). Influences of cardiorespiratory fitness and other precursors on cardiovascular disease and all-cause mortality in men and women. *JAMA J. Am. Med. Assoc.* 276 (3), 205–210. doi:10.1001/jama.1996.03540030039029

Bocalini, D. S., Lima, L. S., de Andrade, S., Madureira, A., Rica, R. L., dos Santos, R. N., et al. (2012). Effects of circuit-based exercise programs on the body composition of elderly obese women. *Clin. Interventions Aging* 7, 551–556. doi:10.2147/CIA.S33893

Funding

The author(s) declare that no financial support was received for the research and/or publication of this article.

Conflict of interest

The authors declare that the research was conducted in the absence of any commercial or financial relationships that could be construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the creation of this manuscript.

Publisher's note

All claims expressed in this article are solely those of the authors and do not necessarily represent those of their affiliated organizations, or those of the publisher, the editors and the reviewers. Any product that may be evaluated in this article, or claim that may be made by its manufacturer, is not guaranteed or endorsed by the publisher.

Supplementary material

The Supplementary Material for this article can be found online at: https://www.frontiersin.org/articles/10.3389/fphys.2025. 1609013/full#supplementary-material

Brentano, M. A., Cadore, E. L., Da Silva, E. M., Ambrosini, A. B., Coertjens, M., Petkowicz, R., et al. (2008). Physiological adaptations to strength and circuit training in postmenopausal women with bone loss. *J. Strength Cond. Res.* 22 (6), 1816–1825. doi:10.1519/jsc.0b013e31817ae3f1

Camacho-Cardenosa, A., Camacho-Cardenosa, M., Martinez-Guardado, I., Leal, A., Andrada, J. M. V., and Timon, R. (2022). Resistance circuit training combined with hypoxia stimulates bone system of older adults: a randomized trial. *Exp. Gerontol.* 169, 111983. doi:10.1016/j.exger.2022.111983

Camargo, M. D., Stein, R., Ribeiro, J. P., Schvartzman, P. R., Rizzatti, M. O., and Schaan, B. D. (2008). Circuit weight training and cardiac morphology: a trial with magnetic resonance imaging. *Br. J. Sports Med.* 42 (2), 141–145. doi:10.1136/bjsm.2007.038281

Ceciliato, J., Costa, E. C., Azevêdo, L., Sousa, J. C., Fecchio, R. Y., and Brito, L. C. (2020). Effect of resistance training on arterial stiffness in healthy subjects: a systematic review and meta-analysis. *Curr. Hypertens. Rep.* 22 (8), 51. doi:10.1007/s11906-020-01065-x

Chiaranai, C., Chularee, S., and Srithongluang, S. (2018). Older people living with chronic illness. *Geriatr. Nurs.* 39 (5), 513–520. doi:10.1016/j.gerinurse.2018.02.004

Chobanian, A. V., Bakris, G. L., Black, H. R., Cushman, W. C., Green, L. A., Izzo, J. L., et al. (2003). Seventh report of the joint national committee on prevention, detection, evaluation, and treatment of high blood pressure. *Hypertension* 42 (6), 1206–1252. doi:10.1161/01.hyp.0000107251.49515.c2

Chodzko-Zajko, W. J., Proctor, D. N., Fiatarone Singh, M. A., Minson, C. T., Nigg, C. R., Salem, G. J., et al. (2009). American college of sports medicine position stand. Exercise and physical activity for older adults. *Med. Sci. Sports Exerc.* 41 (7), 1510–1530. doi:10.1249/mss.0b013e3181a0c95c

Choi, H. M., Hurr, C., and Kim, S. (2020). Effects of elastic band exercise on functional fitness and blood pressure response in the healthy elderly. *Int. J. Environ. Res. Public Health* 17 (19), 7144. doi:10.3390/ijerph17197144

Control, C. F. D., and Prevention (2003). Trends in aging–United States and worldwide. *MMWR. Morb. Mortal. Wkly. Rep.* 52 (6), 101–106. Available online at: https://stacks.cdc.gov/view/cdc/11397https://beta.cdc.gov/mmwr/preview/mmwrhtml/mm5206a2.htm.

Demontiero, O., Vidal, C., and Duque, G. (2012). Aging and bone loss: new insights for the clinician. *Ther. Adv. Musculoskelet. Dis.* 4 (2), 61–76. doi:10.1177/1759720x11430858

Dimai, H. P. (2017). Use of dual-energy X-ray absorptiometry (DXA) for diagnosis and fracture risk assessment; WHO-criteria, T- and Z-score, and reference databases. *Bone* 104, 39–43. doi:10.1016/j.bone.2016.12.016

Donnelly, J. E., Blair, S. N., Jakicic, J. M., Manore, M. M., Rankin, J. W., Smith, B. K., et al. (2009). American college of sports medicine position stand. Appropriate physical activity intervention strategies for weight loss and prevention of weight regain for adults. *Med. Sci. Sports Exerc.* 41 (2), 459–471. doi:10.1249/mss.0b013e3181949333

Ettehad, D., Emdin, C. A., Kiran, A., Anderson, S. G., Callender, T., Emberson, J., et al. (2016). Blood pressure lowering for prevention of cardiovascular disease and death: a systematic review and meta-analysis. *Lancet* 387 (10022), 957–967. doi:10.1016/s0140-6736(15)01225-8

Figueroa, A., Okamoto, T., Jaime, S. J., and Fahs, C. A. (2019). Impact of highand low-intensity resistance training on arterial stiffness and blood pressure in adults across the lifespan: a review. *Pflügers Archiv - Eur. J. Physiology* 471 (3), 467–478. doi:10.1007/s00424-018-2235-8

Gotshalk, L. A., Berger, R. A., and Kraemer, W. J. (2004). Cardiovascular responses to a high-volume continuous circuit resistance training protocol. *J. Strength Cond. Res.* 18 (4), 760–764. doi:10.1519/14954.1

Heymsfield, S., Lohman, T., Wang, Z., and Going, S. B. (2005). *Human body composition*. Champaign, IL: Human Kinetics.

Higgins, J. P., and Altman, D. G. (2008). "Assessing risk of bias in included studies," in *Cochrane handbook for systematic reviews of interventions: Cochrane book series*, 187–241. doi:10.1002/9780470712184.ch8

Higgins, J. P., Deeks, J. J., and Altman, D. G. (2008). "Special topics in statistics," in *Cochrane handbook for systematic reviews of interventions: Cochrane book series*, 481–529. doi:10.1002/9780470712184.ch16

Higgins, J. P., and Thompson, S. G. (2002). Quantifying heterogeneity in a metaanalysis. *Statistics Med.* 21 (11), 1539–1558. doi:10.1002/sim.1186

Johnell, O., Kanis, J. A., Oden, A., Johansson, H., De Laet, C., Delmas, P., et al. (2005). Predictive value of BMD for hip and other fractures. *J. Bone Mineral Res.* 20 (7), 1185–1194. doi:10.1359/jbmr.050304

Jung, W. S., Kim, Y. Y., Kim, J. W., and Park, H. Y. (2022). Effects of circuit training program on cardiovascular risk factors, vascular inflammatory markers, and insulinlike growth factor-1 in elderly obese women with sarcopenia. *Rev. Cardiovasc. Med.* 23 (4), 134. doi:10.31083/j.rcm2304134

Jung, W. S., Kim, Y. Y., and Park, H. Y. (2019). Circuit training improvements in Korean women with sarcopenia. *Percept. Mot. Ski.* 126 (5), 828–842. doi:10.1177/0031512519860637

Kanasi, E., Ayilavarapu, S., and Jones, J. (2016). The aging population: demographics and the biology of aging. *Periodontol 2000* 72 (1), 13–18. doi:10.1111/prd.12126

Klop, C., Van Staa, T. P., Cooper, C., Harvey, N. C., and De Vries, F. (2017). The epidemiology of mortality after fracture in England: variation by age, sex, time, geographic location, and ethnicity. *Osteoporos. Int.* 28 (1), 161–168. doi:10.1007/s00198-016-3787-0

Kolahdouzi, S., Baghadam, M., Kani-Golzar, F. A., Saeidi, A., Jabbour, G., Ayadi, A., et al. (2019). Progressive circuit resistance training improves inflammatory biomarkers and insulin resistance in obese men. *Physiol. Behav.* 205, 15–21. doi:10.1016/j.physbeh.2018.11.033

Koopman, R., and Van Loon, L. J. C. (2009). Aging, exercise, and muscle protein metabolism. J. Appl. Physiol. 106 (6), 2040–2048. doi:10.1152/japplphysiol.91551.2008

Laurent, S., Cockcroft, J., Van Bortel, L., Boutouyrie, P., Giannattasio, C., Hayoz, D., et al. (2006). Expert consensus document on arterial stiffness: methodological issues and clinical applications. *Eur. Heart J.* 27 (21), 2588–2605. doi:10.1093/eurheartj/ehl254

Liberati, A., Altman, D. G., Tetzlaff, J., Mulrow, C., Gøtzsche, P. C., Ioannidis, J. P., et al. (2009). The PRISMA statement for reporting systematic reviews and meta-analyses of studies that evaluate health care interventions: explanation and elaboration. *Ann. Intern. Med.* 151 (4), W65–W94. doi:10.7326/0003-4819-151-4-200908180-00136

Lopes, S., Afreixo, V., Teixeira, M., Garcia, C., Leitão, C., Gouveia, M., et al. (2021). Exercise training reduces arterial stiffness in adults with hypertension: a systematic review and meta-analysis. *J. Hypertens.* 39 (2), 214–222. doi:10.1097/hjh.00000000002619

Marcos-Pardo, P. J., Orquin-Castrillón, F. J., Gea-García, G. M., Menayo-Antúnez, R., González-Gálvez, N., Vale, R. G. D., et al. (2019). Effects of a moderate-tohigh intensity resistance circuit training on fat mass, functional capacity, muscular strength, and quality of life in elderly: a randomized controlled trial. *Sci. Rep.* 9, 7830. doi:10.1038/s41598-019-44329-6

Marques, E. A., Mota, J., and Carvalho, J. (2012). Exercise effects on bone mineral density in older adults: a meta-analysis of randomized controlled trials. *AGE* 34 (6), 1493–1515. doi:10.1007/s11357-011-9311-8

Mattace-Raso, F. U., van der Cammen, T. J., Hofman, A., van Popele, N. M., Bos, M. L., Schalekamp, M. A., et al. (2006). Arterial stiffness and risk of coronary heart disease and stroke: the Rotterdam Study. *Circulation* 113 (5), 657–663. doi:10.1161/circulationaha.105.555235

Merchant, R. A., Morley, J. E., and Izquierdo, M. (2021). Editorial: exercise, aging and frailty: guidelines for increasing function. *J. Nutr. health aging* 25 (4), 405–409. doi:10.1007/s12603-021-1590-x

Miura, H., Nakagawa, E., and Takahashi, Y. (2008). Influence of group training frequency on arterial stiffness in elderly women. *Eur. J. Appl. Physiol.* 104 (6), 1039–1044. doi:10.1007/s00421-008-0860-1

Miura, H., Takahashi, Y., Maki, Y., and Sugino, M. (2015). Effects of exercise training on arterial stiffness in older hypertensive females. *Eur. J. Appl. Physiol.* 115 (9), 1847–1854. doi:10.1007/s00421-015-3168-y

Miyachi, M. (2013). Effects of resistance training on arterial stiffness: a meta-analysis. Br. J. Sports Med. 47 (6), 393–396. doi:10.1136/bjsports-2012-090488

Nuttall, F. Q. (2015). Body mass index: obesity, BMI, and health: a critical review. *Nutr. Today* 50 (3), 117–128. doi:10.1097/nt.00000000000092

Okamoto, T., Masuhara, M., and Ikuta, K. (2009). Effects of muscle contraction timing during resistance training on vascular function. *J. Hum. Hypertens.* 23 (7), 470–478. doi:10.1038/jhh.2008.152

Okamoto, T., Masuhara, M., and Ikuta, K. (2011). Effect of low-intensity resistance training on arterial function. *Eur. J. Appl. Physiol.* 111 (5), 743–748. doi:10.1007/s00421-010-1702-5

Rhodes, E. C., Martin, A. D., Taunton, J. E., Donnelly, M., Warren, J., and Elliot, J. (2000). Effects of one year of resistance training on the relation between muscular strength and bone density in elderly women. *Br. J. Sports Med.* 34 (1), 18–22. doi:10.1136/bjsm.34.1.18

Roberson, K. B., Potiaumpai, M., Widdowson, K., Jaghab, A. M., Chowdhari, S., Armitage, C., et al. (2018). Effects of high-velocity circuit resistance and treadmill training on cardiometabolic risk, blood markers, and quality of life in older adults. *Physiol. Appliquee Nutr. metabolisme Appl. Physiol. Nutr. Metab.* 43 (8), 822–832. doi:10.1139/apnm-2017-0807

Romero-Arenas, S., Blazevich, A. J., Martínez-Pascual, M., Pérez-Gómez, J., Luque, A. J., López-Román, F. J., et al. (2013). Effects of high-resistance circuit training in an elderly population. *Exp. Gerontol.* 48 (3), 334–340. doi:10.1016/j.exger.2013.01.007

Ryan, A. S., Nicklas, B. J., and Dennis, K. E. (1998). Aerobic exercise maintains regional bone mineral density during weight loss in postmenopausal women. *J. Appl. Physiol.* 84 (4), 1305–1310. doi:10.1152/jappl.1998.84.4.1305

Santos, L., Elliott-Sale, K. J., and Sale, C. (2017). Exercise and bone health across the lifespan. *Biogerontology* 18 (6), 931–946. doi:10.1007/s10522-017-9732-6

Simms, A. G., Signorile, J. F., Gameiro, G. R., Allaf, A. M., Wang, J., and Jiang, H. (2024). Choriocapillaris perfusion after 8 Weeks of high-speed circuit training in older healthy adults. *Curr. Eye Res.* 49 (8), 888–894. doi:10.1080/02713683.2024.2346538

Sparling, P. B., Cantwell, J. D., Dolan, C. M., and Niederman, R. K. (1990). Strength training in a cardiac rehabilitation program: a six-month follow-up. *Archives Phys. Med. Rehabilitation* 71 (2), 148–152. Available online at: https://pubmed-ncbi-nlm-nih-gov. eux.idm.oclc.org/2302049/.

Steen, B. (1988). Body composition and aging. Nutr. Rev. 46 (2), 45-51. doi:10.1111/j.1753-4887.1988.tb05386.x

Venturelli, M., Cè, E., Limonta, E., Schena, F., Caimi, B., Carugo, S., et al. (2015). Effects of endurance, circuit, and relaxing training on cardiovascular risk factors in hypertensive elderly patients. *Age (Dordr)* 37 (5), 101. doi:10.1007/s11357-015-9835-4

Vincent, K. R., and Braith, R. W. (2002). Resistance exercise and bone turnover in elderly men and women. *Med. Sci. Sports Exerc.* 34 (1), 17–23. doi:10.1097/00005768-200201000-00004

Vlachopoulos, C., Aznaouridis, K., Terentes-Printzios, D., Ioakeimidis, N., and Stefanadis, C. (2012). Prediction of cardiovascular events and all-cause mortality with brachial-ankle elasticity index: a systematic review and meta-analysis. *Hypertension* 60 (2), 556–562. doi:10.1161/hypertensionaha.112.194779

Waller, M., Miller, J., and Hannon, J. (2011). Resistance circuit training: its application for the adult population. *Strength Cond. J.* 33 (1), 16–22. doi:10.1519/ssc.0b013e3181f45179

Westhoff, T. H., Franke, N., Schmidt, S., Vallbracht-Israng, K., Meissner, R., Yildirim, H., et al. (2007). Too old to benefit from sports? The cardiovascular effects of exercise training in elderly subjects treated for isolated systolic hypertension. *Kidney Blood Press. Res.* 30 (4), 240–247. doi:10.1159/000104093

Wu, S., Jin, C., Li, S., Zheng, X., Zhang, X., Cui, L., et al. (2019). Aging, arterial stiffness, and blood pressure association in Chinese adults. *Hypertension* 73 (4), 893–899. doi:10.1161/hypertensionaha.118.12396