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Trace elements are essential for a number of physiological functions including 
oxygen transfer, enzymatic reactions and antioxidant protection of the 
animal organism. Elevated concentrations outside the physiological optimum, 
on the other hand, can cause undesirable health complications, disrupt 
metabolic pathways, reproductive capacity, or oxidative balance. The negative 
anthropogenic impacts on the environment are alarming and the impacts on the 
aquatic environment have been increasing disproportionately in recent years. 
Against this background, all potential threats to biota need to be explained 
and better understood, the possible risks need to be better informed and 
understood, and a balance needs to be struck between the fundamental nature 
and the harmful effects of these metals. This mini-review examines the roles of 
potentially toxic metals including cobalt (Co), copper (Cu), iron (Fe), manganese 
(Mn), molybdenum (Mo) and zinc (Zn) in fish physiology. This document also 
elucidates the mechanisms underlying the assessment of regulatory processes, 
the potential negative consequences of overexposure, the interactions of these 
metals on fish health, and in the environmental context.
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 1 Introduction

Aquatic environment is complex system, however, human activities, such as industrial 
discharge, agricultural runoff, and urban wastewater, are increasingly disrupting this delicate 
balance. This leads to an accumulation of many types of environmental pollutants in the 
water and sediment (Edo et al., 2024; Khallaf et al., 2018; Kolarova and Napiórkowski, 
2021; Kumar et al., 2010). One group of these pollutants are metals, or trace elements. 
Heavy metals, or potentially toxic elements, are fairly well studied (Dash and Kalamdhad, 
2021; Deb and Fukushima, 1999; Kumar et al., 2010). On the other hand, we have 
the group of potentially toxic metals. These elements (e.g., cobalt, Co, copper, Cu, 
iron, Fe, manganese, Mn, molybdenum, Mo, or zinc, Zn) are essential for many basic 
physiological functions of organisms, such as oxygen transport, enzymatic reactions,
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GRAPHICAL ABSTRACT

and the maintenance of antioxidant defence mechanisms 
(Aliko et al., 2018; Inomata, 2024; Pouil et al., 2016; Wang et al., 
2024). They also play a critical role in maintaining the physiological 
health of fish and are involved in cellular processes and metabolic 
pathways (Bagheri et al., 2024; Lall, 2003; Zhao et al., 2014). The 
presence of potentially toxic metals alone does not determine 
their effects on aquatic animals; the concentration levels and 
types of interactions they experience in an ecological context 
also play a role. While some metals may be necessary in small 
amounts, excessive accumulation above a certain threshold can 
have adverse toxicological effects (Bury et al., 2003; Chen et al., 
2024; Clearwater et al., 2002; Naz et al., 2023). The situation is 
further complicated by the many interactions between different 
metals, which may be antagonistic or synergistic in their 
activities. Elevated metal concentrations can have cascading 
consequences, including bioaccumulation, oxidative stress, 
reproductive dysfunction, and impaired biochemical and/or 
immune systems in fish (de Oliveira et al., 2018; Helczman et al., 
2024; Kovacik et al., 2023; Passos et al., 2022; Kovacik et al., 
2019). One metal may affect the toxicity or uptake of another 
metal, creating a dynamic system whose effects on fish populations
are unpredictable.

This mini-review aims to summarize the current knowledge 
about the effects of potentially toxic metals on fish health, focusing 
on the following points.

• Physiological roles of potentially toxic metals in fish
• Mechanisms of absorption and regulation
• Possible adverse effects of overexposure

• Interactions of these metals the aquatic environment
• Implications for ecological risk assessment and management of 

aquatic ecosystems

By examining these variables, we can provide a comprehensive 
and up-to-date summary of recent research on the function of 
potentially toxic metals in fish health-a broader and more integrative 
approach than many previous studies, which have focused primarily 
on contamination levels or toxicological effects. We also aim to 
identify areas of current ignorance and suggest possible directions 
for future research based on data from multiple studies. Previous 
reviews have largely focused on heavy metals as toxic pollutants 
affecting fish physiology and on the human health risks associated 
with metal contamination in fish tissues. The emphasis of this 
review on the physiological functions and regulatory mechanisms 
of potentially toxic metals, together with an assessment of 
ecological risks, represents a significant and novel contribution
to the field. 

2 Sources of potentially toxic metals 
in fish

The accumulation of potentially toxic metals such in the aquatic 
environment and in fish can be attributed to both natural and 
anthropogenic sources. Understanding these sources is essential 
to mitigate the risks associated with metal bioaccumulation 
in fish and to ensure the sustainability of aquatic ecosystems. 
The reported concentrations of selected metals in freshwater 
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ecosystem and fish are presented in Supplementary Material
(Supplementary Table S1). 

2.1 Natural sources

The main natural sources of metals in the aquatic environment 
include geological weathering of rocks, erosion and biological 
processes in ecosystems. These metals subsequently reach the water 
and sediments, from where they can naturally, through various 
forms of transport, enter the body of fish and accumulate there. 
Fe and Mn are widely distributed elements in the earth’s crust 
(Jia et al., 2018; Kumar et al., 2010). They are naturally and readily 
released into aquatic ecosystems by weathering of rocks and soil 
erosion. They are found mainly in sediments, along with Zn and 
Cu. Fish may accumulate metals through their diet and interactions 
with the environment. Some fish species feed on sediments and 
the organisms residing in them, which facilitates the transfer of 
metals such as Fe and Mn from sediments into the fish body 
(Campos et al., 2018; Rajkowska and Protasowicki, 2013). These 
metals also accumulate in phytoplankton and zooplankton from 
where they are further transferred to higher trophic levels, including 
fish (Dash and Kalamdhad, 2021; Kumar et al., 2010). Oxygen levels 
in water due to seasonal changes can affect the availability of metals 
in the aquatic environment. Under low O2 conditions, there is 
increased mobility of Fe and Mn in sediments, leading to higher 
bioaccumulation in fish (Boota et al., 2024). 

2.2 Anthropogenic sources

The main anthropogenic sources of metals in the aquatic 
ecosystem include industrial discharges, agricultural runoff, mining 
activities and wastewater. High levels of metals such as Cu, Zn, 
and Mn are often found in wastewater from industry. Numerous 
studies from the Indus River and Nile River channels have confirmed 
elevated concentrations of these metals in fish due to nearby 
industrial activities in the area (Boota et al., 2024; Khallaf et al., 
2018). The widespread use of fertilizers and pesticides contributes 
significantly to environmental pollution and the release of metals 
such as Zn, Cu and Mn into water. Fe, Zn and Cu are often found in 
high levels in wastewater whether as a result of corrosion of pipelines 
or processing of various materials in the metallurgical or electro 
technical industries. Waste and leachate from mining activities is 
one of the most significant contributors to pollution of watercourses. 
Metals such as Fe and Mn enter the aquatic ecosystem through mine 
water discharges. In the Xiang River in China, mining activities have 
been identified as the primary source of metal contamination, with 
fish species showing elevated levels of Zn, Fe and Cu (Jia et al., 2018). 

3 Biological role of potentially toxic 
metals in freshwater fish

Essential metals play specific and crucial roles in the fish 
organism. They are involved in the immune response, physiological 
processes, antioxidant protection, enzymatic activity as well as 
overall growth and development (Table 1).

Co is one of the less studied trace elements for fish health but 
plays several known functions. It is a key component of vitamin 
B12, which is essential for energy metabolism and proper nervous 
system function. Acts as a cofactor for enzymes involved in fatty 
acid synthesis and nucleic acid metabolism (Banerjee and Ragsdale, 
2003; Blust, 2011). Supports cell division and differentiation and is 
essential for normal growth and development of cyprinid fish Tor 
putitora, especially in the early stages of life (Younus et al., 2020).

Cu is a cofactor of several enzymes such as cytochrome-c 
oxidase and superoxide dismutase (Cu/Zn-SOD - in the cytosol), 
which play a role in energy production and antioxidant defence 
(Clearwater et al., 2002; Wang et al., 2024). It plays a role in cytokine 
production, and is involved in the activation of immune cells such as 
macrophages and lymphocytes (Bagheri et al., 2024). It is an essential 
component for the synthesis of elastin and collagen, critical for tissue 
integrity and wound healing (Wang et al., 2024). Participates in 
the nervous system health, neurotransmitter synthesis and synaptic 
function in stressed zebrafish (Green et al., 2024).

Fe is a vital element for various biological processes in fish, 
including oxygen transport, enzyme function, and immune response. 
As a key component of haemoglobin and myoglobin, Fe is essential 
for oxygen transport and energy metabolism in fish (de Oliveira et al., 
2018). It is involved in the regulation of immune cells and the 
production of reactive oxygen species (ROS) required for defence 
against pathogens (de Oliveira et al., 2018; Musharraf and Khan, 
2019). It is part of the antioxidant capacity, as a component of catalase 
(CAT), an iron-containing haemoprotein that breaks down hydrogen 
peroxide (H2O2) into water and oxygen, thereby protecting cells from 
oxidative damage (de Oliveira et al., 2018; Luo et al., 2017). Dietary 
Fe improves growth performance, haematology and gut health of fish 
Labeo rohita (Musharraf and Khan, 2019), especially when provided 
in a nanoform that increases bioavailability. 

Mn is a cofactor of enzymes involved in carbohydrate 
metabolism, lipid metabolism. Plays role in antioxidant protection 
as part of the superoxide dismutase (Mn-SOD) (de Oliveira et al., 
2018; Musharraf and Khan, 2021). Mn could impact bone 
mineralization and connective tissue protein synthesis in salmonids 
(Baeverfjord et al., 2019). It is important for the growth 
performance, fatty acid uptake or triglycerides deposition. Mn 
also could reduce inflammation, increased antioxidant capacity 
and enzyme activity in Carassiud auratus or Pelteobagrus fulvidraco
(Aliko et al., 2018; Xu J. J. et al., 2023).

Mo is a cofactor of enzymes involved in sulphur metabolism and 
detoxification processes (Inomata, 2024; Lall, 2003). It is essential 
for the metabolism of amino acids and other biomolecules (Lall, 
2003). Recent studies suggest a significant biological relevance, 
namely in the context of nitric oxide production from nitrate and 
nitrite by increasing the activity of the molybdoenzymes xanthine 
oxidase (XO) and aldehyde oxidase (AO) in the liver in Silurus glanis
(Aubakirova et al., 2023). Another study provides important insights 
into the ability of a Mo cofactor (Mo-co) isolated from the protein 
fraction of fish liver extract to restore NADPH-nitrate reductase 
(NADPH-NR) activity (Satkanov et al., 2025).

Zn is one of the best-studied elements in fish nutrition and 
physiology. It is critical for the activation and function of T-
lymphocytes and macrophages and is involved in the production 
of antibodies. Participates in the regulation of immune response-
related gene expression in Oreochromis niloticus (El-Sayed et al., 
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TABLE 1  Summary of sources, key roles in the organism and negative effects of selected metals on fish health.

Metal Main sources Key role in fish 
organism

Negative impact on 
fish health in 
exceeded 
concentrations

References

Fe Geological weathering, 
industrial and mining 
effluents, pipeline corrosion

Oxygen transport 
(haemoglobin, myoglobin); 
Immune system regulation 
(ROS production); 
Antioxidant defence (CAT)

Oxidative stress, ↓ antioxidant 
enzymes (SOD, CAT); Lipid 
peroxidation; Gut and liver 
damage; ↑ susceptibility to 
pathogens

Cano-Viveros et al. (2021), 
Chen et al. (2024), 
Gürkan et al. (2021), Luo et al. 
(2017), Musharraf and Khan 
(2019), Singh et al. (2019), 
Zhao et al. (2014)

Cu Mining, electrical industry, 
pesticides

Energy production 
(cytochrome-c oxidase); 
Immune system activation 
(cytokines, macrophages); 
Tissue integrity maintenance 
(collagen, elastin synthesis)

Anaemia (↓ RBC, HCT, Hb); 
Lipid peroxidation, ↓ 
antioxidant enzymes; 
Inflammation and tissue 
degeneration (gills, liver, 
kidneys, brain); DNA damage; 
LC50 ∼3.4 mg/L

Bagheri et al. (2024), 
Clearwater et al. (2002), 
Fırat et al. (2022), 
Gheorghe et al. (2017), 
Kumar M et al. (2023), 
Liao et al. (2023), Naz et al. 
(2023), Wang et al. (2024), 
Zhao et al. (2014)

Zn Fertilizers, galvanized metals, 
batteries, sewage effluents

Immune response 
(T-lymphocytes, 
macrophages); Antioxidant 
protection (SOD); Growth and 
tissue development (growth 
hormone, IGF-1, DNA repair)

Moderate toxicity (LC50 
∼20.8 mg/L); Enzyme 
disruption (GST, CAT); 
Oxidative stress → lipid 
peroxidation and tissue 
damage

Banni et al. (2011), 
Clearwater et al. (2002), 
Dawood et al. (2022), 
Gheorghe et al. (2017), 
Kumar et al. (2017), 
Wang et al. (2020), 
Xu X. W. et al. (2023), 
Zhao et al. (2014)

Mn Metallurgical industry, natural 
geological weathering

Carbohydrate and lipid 
metabolism (Mn-SOD); Bone 
mineralization and connective 
tissue formation; Reduce 
inflammation; Increased 
antioxidant capacity and 
enzyme activity

Genotoxicity (DNA damage, 
micronuclei); Enzyme 
alteration (GST, CAT); Lower 
acute toxicity vs other metals 
(LC50 ∼53 mg/L)

Aliko et al. (2018), 
Bagheri et al. (2024), 
Gheorghe et al. (2017), 
Musharraf and Khan (2021), 
Passos et al. (2022), 
Xu J. J. et al. (2023)

Co Fossil fuel combustion, 
industrial wastewater

Vitamin B12 synthesis (energy 
metabolism, nervous system 
function); Fatty acid and 
nucleic acid metabolism; 
Support for cell division and 
growth

Oxidative stress, lipid 
peroxidation, apoptosis, DNA 
damage; Disrupts 
reproduction and enzyme 
metabolism; Alters Ca2+

homeostasis (competition)

Bagheri et al. (2024), Banerjee 
and Ragsdale (2003), Blust 
(2011), Ghribi et al. (2025), 
Javed and Usmani (2013), 
Kubrak et al. (2011), 
Younus et al. (2020)

Mo Fertilizers, pesticides, 
industrial sewage, chemical 
waste

Sulphur metabolism and 
detoxification (enzyme 
cofactor); Amino acid 
metabolism

Limited data; Potential 
oxidative stress and enzyme 
dysfunction

Aubakirova et al. (2023), 
Regoli et al., 2012; Reid (2002), 
Ricketts et al. (2015), 
Satkanov et al. (2025)

2023). Acts as a cofactor for antioxidant enzymes such as SOD, and 
helps protect cells from oxidative damage in zebrafish or Pangasius 
hypophthalmus (Banni et al., 2011; Kumar et al., 2017). Regulates 
endocrine signalling pathways (growth hormone and IGF-1) that 
influence body growth, tissue differentiation and bone ossification. 
It is part of enzymes that regulate important biological functions 
including DNA repair, RNA formation and amino acid metabolism 
(Dawood et al., 2022; Wang et al., 2020). It is required for the 
activity of enzymes involved in DNA replication, and its absence 
causes growth inhibition and abnormalities (Clearwater et al., 2002), 
Specifically, increased growth performance, improved antioxidant 
capacity and inflammatory responses were confirmed in P. fulvidraco
(Xu X. W. et al., 2023). 

4 Key pathways and uptake 
mechanisms in the accumulation of 
metals in fish

The accumulation of potentially toxic metals in freshwater fish 
involves a complex interplay of uptake pathways and biological 
mechanisms (Figure 1). The main uptake pathways include uptake 
through the food and water, and indirect uptake through the skin 
and mucous membranes.

Gills are considered to be the primary source of uptake of metals 
from the aquatic environment into the fish. Gills play a critical role in 
ion regulation and gas exchange, and are directly and continuously 
exposed (Deb and Fukushima, 1999; Zia and McDonald, 1994). 
Chloride cells found in the gills of fish are specialized cells that 
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FIGURE 1
Key exposure routes, cellular uptake mechanisms, and intracellular interactions of metals in fish (Created in BioRender. Helczman, 2025).

are involved in ion transport, especially Ca2+. They may also play 
a role in the uptake of some metals, especially when present as 
divalent cations (Zia and McDonald, 1994).

Through ionic bonds or covalent bonds with cytosolic 
compounds, these metals can bind to the gill surface. The affinity is 
different in this process, with Cu showing a higher affinity compared 
to Fe or Zn.

Fish accumulate high levels of metals through ingestion of food 
or sediment (Bury et al., 2003; Pouil et al., 2016). Assimilatory 
efficiency plays an important role in the transport of metals across 
the intestinal wall, which varies greatly depending on the specific 
metal. For example, Zn and Cu have a higher assimilative efficiency 
than Co or Mo, which may lead to their more efficient absorption 
in the gut and consequently higher accumulation in the body of 
Oncorhynchus mykiss (Ojo and Wood, 2007).

Particularly, in the presence of high concentrations of metals in 
the aquatic environment, absorption of metals also occurs through 
the skin and mucous membranes of fish (Deb and Fukushima, 1999). 
This process can be influenced by factors such as the chemical form 
of the metal, water temperature, pH and the physiological state 
of the fish.

Metals enter fish cells through ion channels and transporters. 
While Cu and Zn can enter cells through Ca2+ channels, whereas 
Fe uptake is mediated by specific iron transporters such as DMT1 
(divalent metal transporter 1) or transferrin receptors (Bury et al., 
2003; Deb and Fukushima, 1999). Metals can interact with each 
other in their absorption and biological effects. For instance, excess 
zinc (Zn) may reduce copper (Cu) absorption by stimulating the 
production of metallothionein’s, which bind copper and prevent 

its absorption. Similarly, iron (Fe) can increase the toxicity of 
manganese (Mn) by promoting its accumulation in the body, 
especially in the brain, which can lead to neurotoxic effects 
(Clearwater et al., 2002; de Oliveira et al., 2018).

Specific proteins and metallothionein (MT) play the most 
important role in maintaining metal homeostasis and detoxification 
of the body (Deb and Fukushima, 1999). MT´s are cysteine-
rich proteins that bind metals via thiol groups. They are 
involved in the detoxification of metals such as Cu and Zn. 
Metals are bound by these mechanisms after entering the fish 
body and subsequently either stored or excreted for proper
regulation.

The bioavailability of metals is influenced by the chemical 
parameters of the water (pH, hardness and the presence of 
ligands). The toxicity of some metals such as Cu is influenced 
by the formation of hydroxide complexes in circumneutral waters
(Liao et al., 2023).

The gills, as an organ constantly exposed to direct contact 
with water and food, and the liver, as a major detoxification 
organ, are among the primary tissues of metal accumulation. 
Numerous studies have demonstrated high accumulation of metals 
such as Fe, Cu and Zn in the liver (Javed and Usmani, 2013; 
Jia et al., 2017; Spanopoulos-Zarco et al., 2017). Kidney is 
also one of the organs with high accumulation, as it plays 
an important role in excretion of excess metals. However, the 
efficiency of excretion varies depending on both the metal 
and the degree of accumulation (Deb and Fukushima, 1999;
Javed and Usmani, 2013). 
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5 Potential toxicity of metals in fish

Although the monitored elements are biogenic and play 
various roles in the fish organism, maintaining their optimal levels 
is crucial for the health of the organism. Their deficiency or 
excessive accumulation can lead to physiological and biochemical 
disturbances, that may have toxic effects on cellular and systemic 
processes. In general, excessive levels of metals can cause oxidative 
stress, DNA damage and disruption of enzyme activity, leading to 
impaired growth, reproduction and survival (de Oliveira et al., 2018; 
Naz et al., 2023). Also, metal speciation in water, i.e. the different 
chemical forms in which these metals occur in the environment, 
directly affects their effectiveness and uptake/absorption into 
the organism. Free metal ions are more bioavailable, and fish 
tissues/mucous membranes absorb them much more easily. On 
the other hand, metals in organic or inorganic compounds are 
less bioavailable (De Paiva Magalhães et al., 2015; Millero, 2001). 
Metal speciation, and thus of course bioavailability, is also affected 
by environmental changes (e.g. pH, salinity, hardness, and oxygen 
or carbon content) (Dahlberg et al., 2025; Pierrot and Millero, 
2017; Rouleau et al., 1996); for example, significant changes in 
pH (either decrease or increase) combined with factors such as 
water hardness and the presence of different metals, influence 
metal speciation by maintaining metals in their free ionic forms, 
which can increase absorption and associated toxicity in fish 
(De Paiva Magalhães et al., 2015; Namieśnik and Rabajczyk, 2010).

Excessive dietary Fe exposure can lead to oxidative stress, 
decreased activity of antioxidant enzymes (e.g., superoxide 
dismutase, catalase), and increased lipid peroxidation (Cano-
Viveros et al., 2021; Gürkan et al., 2021), specifically in the liver 
of Prochilodus lineatus (de Oliveira et al., 2018). This suppression 
of immunity makes fish more susceptible to pathogens such as 
Aeromonas hydrophila in Micropterus salmoides (Chen et al., 2024). 
High Fe levels can also damage intestinal, gills and liver tissues 
in Labeo rohita and alter the composition and function of the gut 
microbiota (Chen et al., 2024; Singh et al., 2019), specifically in M. 
salmoides.

Exposure to copper sulphate or copper oxide nanoparticles 
(CuO-NPs) decreases erythrocyte count, haematocrit, and 
haemoglobin levels, indicating anaemia. Cu exposure increases 
lipid peroxidation and decreases the activity of antioxidant enzymes 
(e.g., SOD, CAT). It also causes inflammation and degenerative 
changes in gills, liver, kidney and brain tissues (Fırat et al., 
2022; Naz et al., 2023), and DNA damage (Fırat et al., 2022; 
Kumar M et al., 2023; Passos et al., 2022) in L. rohita, Oreochromis 
niloticus, and/or Channa punctata.

The 96-h LC50 for Zn in freshwater fish (e.g., Cyprinus 
carpio) is approximately 20.8 mg/L, indicating moderate toxicity 
(Gheorghe et al., 2017). Zn toxicity affects the activity of enzymes 
involved in detoxification, including increased expression of 
glutathione-S-transferase (GST) and catalase (CAT) (Passos et al., 
2022). This response can lead to oxidative stress, which causes lipid 
peroxidation and subsequent tissue damage.

Mn in combination with Fe induces genotoxic effects including 
DNA damage and micronucleus formation in O. niloticus
(Passos et al., 2022). It also alters the activity of thyroid function, 
hepatic, GST and CAT enzymes (Hoseini et al., 2014; Kumar N et al., 
2023). The LC50 for Mn in freshwater fish C. carpio is relatively 

high (>53 mg/L), indicating lower acute toxicity compared to 
other metals (Gheorghe et al., 2017).

Co toxicity can induce oxidative stress leading to lipid 
peroxidation, cell apoptosis and DNA damage in fish tissues 
(e.g. in Carassius auratus) (Blust, 2011; Kubrak et al., 
2011). High levels interfere with fish reproductive health, 
enzyme metabolism and calcium balance due to competition 
(Bagheri et al., 2024; Ghribi et al., 2025).

In the case of Mo, there is insufficient information on its 
effects on fish health in excessive accumulation, but it is suggested 
that oxidative stress and dysfunction of some enzymes may occur. 
The 96-h LC50 values range from >50 to >10,000 mg L-1, with 
these values varying widely depending on the species (Reid, 2002; 
Ricketts et al., 2015). Exceeding toxic levels can lead to increased Mo 
accumulation in tissues and potential toxicity (Regoli et al., 2012). 
Despite its low toxicity, physiological changes have been observed 
even at sublethal concentrations, including accelerated breathing, 
loss of balance after physical exertion, and tissue damage such as 
fused gill lamellae and haemorrhages in the digestive tract (Reid, 
2002; Ricketts et al., 2015). Interesting are also the interactions of 
Mo in nanoforms, e.g. MoS2, which can increase the toxicity of other 
metals, such as antimony, through oxidative stress and disruption of 
fatty acid metabolism in algae (Zou et al., 2024). 

6 Future research and 
recommendations

Research on trace metals in fish is a key area for understanding 
their dual impact as essential elements and potential toxicants. The 
first priority should be to develop advanced, more sensitive and cost-
effective methods for realistic monitoring of metal concentrations 
in the aquatic ecosystem. The use of modern techniques and 
artificial intelligence appears to be a promising step. Advanced 
AI algorithms can process large monitoring datasets, identify 
patterns of biomarker changes based on metal concentrations and 
environmental conditions, and generate predictive models for the 
early detection of risk and real-time prognosis of toxic effects. It 
is also important to identify new biomarkers and establish early 
warning systems to detect exposure and toxicity. Promising new 
biomarkers may include microRNAs that regulate stress pathways, as 
well as transcriptomic and metabolomic profiles that are sensitive to 
microelements. Proteomic analyses can identify proteins that enable 
the detection of sublethal toxicity before traditional oxidative stress 
symptoms appear. Furthermore, it is important to investigate the 
interactive effects of metals, which may have synergistic but also 
antagonistic effects on fish physiology. Developing models to predict 
these combined effects under different conditions would provide a 
deeper understanding of the complex interactions. Given changes in 
climatic conditions (temperature change, ocean acidification, shifts 
in hydrological cycles), it is essential to investigate the influence of 
these factors on the dynamics of metal toxicity. 

7 Conclusion

This review discusses the intricate relations between potentially 
toxic metals in freshwater fish and their significance to fish
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physiology along with the possible detrimental effects of their 
accumulation. The interaction of their beneficial and adverse effects 
emphasizes the necessity of integrated management strategies in 
aquatic environments.

The role of cobalt, copper, iron, zinc, molybdenum and 
manganese in fish physiological processes and the precarious 
balance between natural and man-made sources of metals in 
aquatic systems are considerations of fundamental importance. The 
potential toxicity of even the essential elements, the determinants 
of metal toxicity and bioavailability, and the long-term ecological 
implications of metal accumulation in fish are also among the major 
conclusions of this study.

Future research should be directed predominantly at enhancing 
monitoring and early warning systems, examining the impacts of metal 
mixtures as well as their interactions with environmental stressors, 
developing novel solutions to pollution remediation, exploring the 
genetic and epigenetic impacts of chronic metal exposure, and refining 
risk model prediction associated with human health. 

In conclusion, the regulation of potentially toxic metals in 
freshwater systems requires an integrative interdisciplinary strategy. 
Enabling a clearer understanding of such complex interactions will 
allow us to more effectively develop methodologies aimed at protecting 
the aquatic ecosystem, healthy fish populations, and protecting 
human health in an environment of increasing environmental 
pressures. The findings of this review can be translated into 
environmental monitoring and regulatory frameworks by identifying 
the most sensitive biomarkers of metal exposure, integrating AI-driven 
predictive models to detect early signs of toxicity, and informing 
evidence-based thresholds for water quality standards that account 
for sublethal and synergistic effects of metals. 
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