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Engineering, University of Sherbrooke, Sherbrooke, QC, Canada, 4Department of Anesthesiology and
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Objective: Oscillometry is the most popular blood pressure (BP) measurement
method. Conventionally, BP is computed from the oscillation height versus
cuff pressure function (“height oscillogram”). However, the oscillation shape
also changes with cuff pressure. The objectives were to mathematically model
oscillation shape and height variations as a function of cuff pressure and analyze
these models using patient data.

Methods: The patient data comprised oscillometric arm cuff pressure and
invasive brachial BP waveforms from 109 patients with diverse BPs. The data
were analyzed to show that the oscillation area versus cuff pressure function
(“area oscillogram”) in particular could be reliably constructed while offering
distinct information to the height oscillogram. An analytical model of the area
oscillogram was developed with four unknown parameters representing the
widths of the brachial artery compliance curve over positive and negative
transmural pressure ranges and systolic and diastolic BPs. With invasive systolic
and diastolic BPs as inputs, this model and a previous height oscillogram
model with the same four parameters, were evaluated in terms of fitting
individual patient oscillograms. The impact of key assumptions of the models
was evaluated as well.

Results: The area and height oscillogram models fitted the patient data well
with errors of 6.9% ± 0.3% and 8.7% ± 0.4%, respectively. Cuff-arm-artery
viscoelasticity affected the height oscillogram model fitting, while cuff-arm
system nonlinearity may affect area oscillogram model parameter estimates.

Conclusion: Despite simplifying assumptions, the proposed area and
previous height oscillogram models can reproduce measured patient
oscillograms well. These models may ultimately help improve oscillometric
BP measurement accuracy.

KEYWORDS

arterial compliance, blood volume oscillations, cuff blood pressure, cuff-arm
compliance, mathematical model, oscillometry, parameter estimation, viscoelasticity
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1 Introduction

Oscillometry has become the preferred non-invasive method
for measuring systemic arterial BP, as it is the easiest to use,
low in cost, and relatively accurate. Oscillometric arm cuff BP
monitors are widely employed in home, office, bedside, and
ambulatory settings (Nitzan, 2011). Moreover, oscillometry holds
the potential for cuffless BP measurement using everyday devices
(Chandrasekhar et al., 2018a; Landry et al., 2024a; Xuan et al., 2023;
Panula et al., 2020; Chandrasekhar et al., 2018b).

The oscillometric principle measures BP by exploiting the
sigmoidal relationship between blood volume and transmural
pressure in arteries, where transmural pressure is the internal BP
minus the external pressure. A typical oscillometric device operates
by rapidly inflating a cuff around the upper arm to supra-systolic
pressures to occlude the underlying brachial artery. The device then
deflates the cuff slowly at a rate of 2–4 mmHg/s to a pressure below
the diastolic level. As the cuff deflates, the transmural pressure
increases, altering the blood volume pulsations.These variable blood
volume oscillations proportionally change the volume enclosed
by the cuff, thereby inducing oscillations in the cuff pressure.
The recorded cuff pressure measurement during the deflation is
processed as follows: (i) band-pass filtering to extract the cuff
pressure oscillations as a surrogate for the blood volume oscillations
and (ii) low-pass filtering to obtain the applied external pressure.
These data are then used to compute BP via an algorithm.

Conventional oscillometric algorithms focus on the variable
peak-to-peak height of the cuff pressure oscillations relative to
the applied cuff pressure (i.e., “height oscillogram”). Popular
algorithms that use the height oscillogram to compute BP include
the maximum amplitude (Drzewiecki et al., 1994; Mauck et al.,
1980; Forouzanfar et al., 2015), fixed ratios (Drzewiecki et al.,
1994; Forouzanfar et al., 2015; Geddes et al., 1982), and derivative
(Forouzanfar et al., 2015; Drzewiecki and Bronzino, 2006)
algorithms. These and other algorithms are population-based
or susceptible to noise, leading to significant BP measurement
inaccuracies especially beyond normal BP ranges (van Montfrans,
2001; Pickering et al., 2005). However, accurate BP measurement
is crucial for reducing the global burden of cardiovascular disease
(Mills et al., 2016; Padwal et al., 2019).

Figure 1A illustrates an exemplary oscillometric cuff pressure
measurement showing variations in the morphology of the
oscillometric pulses with decreasing external pressure beyond
merely the height variations. The oscillations appear relatively
narrow at higher cuff pressures and become wider as the cuff
deflates to lower cuff pressures, as shown in Figure 1B. These
changes suggest that there may be shape features beyond height that
could facilitate the BP computation. We recently analyzed finger
oscillometric measurements to show experimentally that analysis of
oscillation width variations can yield accurate diastolic BP estimates
(Freithaler et al., 2023). Other recent studies have also leveraged
shape-based features of individual oscillometric pulses, including
oscillation duration, area under the oscillation, and oscillation
upstroke and downstroke characteristics, primarily in the context
of machine learning-based BP computation (Argha et al., 2019;
Celler et al., 2020; Lin et al., 2014).

Mathematical modeling of oscillometry can provide a deeper
understanding of the underlying principle and aid in developing

more accurate algorithms. Various models, ranging from simple
to complex, have been developed (Drzewiecki et al., 1994;
Mauck et al., 1980; Chandrasekhar et al., 2019; Raamat et al.,
2011; Ursino and Cristalli, 1996; Babbs, 2012; Liu et al., 2016a;
Liu et al., 2016b; Forouzanfar et al., 2012). Complex models
allow for detailed understanding of all factors that influence
the cuff pressure oscillations. However, simple models carry
different advantages. We and others previously developed a simple
analytical model for the height oscillogram using a parametric
sigmoidal function that relates transmural pressure to arterial blood
volume (Babbs, 2012; Dhamotharan et al., 2023). We used our
parsimoniousmodel to derive simple formulas for readily explaining
the three aforementioned algorithms (Chandrasekhar et al.,
2019). Furthermore, we and others determined BP and arterial
properties by optimally fitting a parsimonious model to the
measured height oscillogram, allowing for a patient-specific
algorithm (Babbs, 2012; Liu et al., 2016a; Liu et al., 2016b;
Forouzanfar et al., 2012; Balasingam et al., 2011). However, to
our knowledge, all previous oscillometric modeling efforts have
exclusively focused on the height oscillogram.

In this study, we investigated simple shape features of the
oscillometric pulses obtained from patient arm cuff pressure
measurements. We found that the area under the pulses, when
plotted against external pressure, exhibited a consistent inverted U-
shape similar to the height oscillogram but with a distinct and easily
detectable maximum point. We then developed an analytical model
for the “area oscillogram”. We evaluated this model and compared
it to our previous height oscillogram model by fitting both models
to the patient oscillometric data. Finally, we performed extensive
analyses to quantify the impact of key model assumptions on the
model fitting. This studymay possibly be the first or at least amongst
the first to present an analytical model of the area oscillogram or any
shape oscillogram for that matter.

2 Methods

2.1 Patient data

We utilized previously collected high-fidelity data from
128 cardiac catheterization patients for this study. Detailed
descriptions of the data and institutional review board (IRB)-
approved data collection procedures are available elsewhere
(Liu et al., 2016a; Liu et al., 2016b). Briefly, the de-identified
patient data comprise single or two consecutive oscillometric cuff
pressure waveforms obtained through fast inflation-slow deflation-
constant cuff pressure (60 mmHg) cycles of an upper arm cuff device
(Watch BP Office, Microlife AG, Switzerland or VP-1000, Omron
Colin, Japan). The data include gold standard brachial artery BP
waveforms simultaneously measured from the contralateral arm via
a micromanometer tipped catheter (SPC-320, Millar Instruments,
United States). The measurements were available at baseline
conditions and after administration of sublingual nitroglycerin to
reduce BP in a subset of the patients. The sampling rate for all
waveforms was 250 Hz.

We inspected the data for: (i) inter-arm cuff BP differences
of >10 mmHg (Orme et al., 1999), (ii) significant artifact or
arrhythmias in the cuff pressure waveforms, (iii) significant brachial
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FIGURE 1
(A) Exemplary cuff pressure oscillations and applied cuff pressure measured with an upper arm oscillometric device. (B) Variation in the shape of the
oscillometric pulses at different cuff pressures.

BP waveform artifacts, and (iv) oscillograms with incomplete
inverted U-shape (>80% amplitude on either side of the maximum)
due to insufficient cuff pressure range. After excluding these
measurements, a total of 173 waveform pairs from 109 patients
remained for analysis. The patient demographics were as follows:
76% male, 61 ± 13 (mean ± SD) years, 163 ± 8 cm, 72 ± 12 kg
with arm circumferences of 29 ± 3 cm. The patients had clinical
diagnoses of mainly hypertension (61%), coronary artery disease
(48%), dyslipidemia (39%) and/or diabetes (24%) and were on
various medications. The invasive BP values were 138 ± 20 mmHg
for systolic BP, 72 ± 9 mmHg for diastolic BP, and 66 ± 19 mmHg for
pulse pressure (PP).

2.2 Preliminary analysis to assess shape
features of oscillometric pulses

We first qualitatively examined four simple features of the
oscillometric pulses: (i) oscillation height, (ii) oscillation area,
calculated by integrating the pulse amplitudes relative to a line
that connects the leading and trailing feet of the pulse over its
duration, (iii) oscillation area-to-height ratio, which represents the
effective oscillation width, and (iv) ratio of the oscillation areas
to the left and right of the systolic peak, which reflects pulse
asymmetry. Figure 2A illustrates how these features are computed
from an oscillometric pulse. As described below, we extracted clear
oscillations from the cuff pressure waveforms; calculated the four
features for each oscillation; and plotted them against the applied
cuff pressure to generate their respective oscillograms. We aligned
each of the oscillograms for the 173 measurements by shifting
their fiducial points (maximum for the height, area, and area ratio
oscillograms andminimum for the area-to-height ratio oscillogram)
to 0 mmHg and superimposed all 173 shifted oscillograms on the
same plot, as shown in Figure 2B. Similar to the height oscillogram,
the area oscillogram exhibited inverted U-shape.

Both the height and area oscillograms demonstrated consistency
across the data with relatively low scatter in the noise-prone low and
high cuff pressure ranges, thereby allowing for robust construction.
In contrast, the area ratio and area-to-height ratio oscillograms
exhibited greater variability across the measurements, indicating

that these ratios are more susceptible to signal artifacts and hence
may not be reliably formed. Based on the relative quality of the
oscillograms, we concluded that the area ratio and area-to-height
ratio oscillograms are not ideal formodeling efforts and thus focused
on the area oscillogram.

We compared the area and height oscillograms. As indicated
in Figure 3A, the area oscillogram was typically left-shifted relative
to the height oscillogram. The maximum amplitudes of the area
and height oscillograms occurred at different cuff pressures denoted
by PAmax and PHmax, respectively. When PHmax was plotted versus
PAmax, nearly all the datapoints were above the identity line, as
shown in Figure 3B. On average, PHmax was 7 mmHg higher than
PAmax. Additionally, the area oscillogram tended to be narrower
than the height oscillogram (see Figure 3A), primarily because of the
faster fall with increasing cuff pressure. These observations indicate
that the area oscillogram may offer more information about BP
and arterial properties to the height oscillogram. Consequently, we
proceeded to develop and analyze amathematical model for the area
oscillogram.

2.3 Analytical modeling of the area
oscillogram

Our modeling began with the sigmoidal relationship between
transmural pressure (P) and blood volume (V) in arteries, as
depicted in Figure 4A. This relationship is defined by the function
f(·) as follows:

V = f(P) = f(Pa − Pc). (1)

Here, Pa refers to the BP within the artery or the internal
pressure, while Pc is the cuff pressure that is assumed to be the
external pressure surrounding the artery. By inputting the BP
waveform Pa(t) and a slowly decreasing linear cuff pressure ramp
Pc(t) into f(P), the blood volume waveform (V(t)) at different
P arises, as illustrated in Figure 4B (left). The model then high-
pass filters V(t) to obtain blood volume oscillations and applies a
constant scale factor (k) to these oscillations to yield the observed
cuff pressure oscillations.
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FIGURE 2
(A) Computation of simple shape features of an oscillometric pulse for which analytical modeling is feasible. (B) Four features plotted against adjusted
cuff pressure for all 173 patient oscillometric measurements in the study. The cuff pressure was adjusted so that the main fiducial marker of all the plots
for each feature occurred at 0 mmHg.

FIGURE 3
(A) Exemplary normalized area oscillogram (oscillation area vs. cuff pressure function) and normalized height oscillogram (oscillation height vs. cuff
pressure function) measurements. These oscillograms were constructed from the cuff pressure measurements in Figure 1A. PAmax and PHmax are the
cuff pressures at which the area oscillogram and height oscillogram are maximal, respectively. (B) PHmax plotted against PAmax over the 173 oscillometric
measurements.

To arrive at our previous model of the height oscillogram
(OH(Pc), i.e., cuff pressure oscillation height versus applied cuff
pressure function) (Chandrasekhar et al., 2019; Dhamotharan et al.,
2023), V(t) is plotted against Pc(t), as shown in Figure 4B (right).
It is evident that the upper and lower envelopes of this plot are
the x-axis reversed sigmoidal relationships evaluated at systolic and
diastolic BPs (Ps and Pd), respectively.The height oscillogram is thus
given as follows:

OH(Pc) = k f(Ps − Pc) − k f(Pd − Pc). (2)

The derivative of f(P) with respect to P or the “arterial
compliance curve” (g(P)) is parameterized by an exponential linear-
function, which we previously found to be better than seven other
functions for height oscillogram modeling (Dhamotharan et al.,
2023), as follows:

g(P) =
d f(P)
dP
= ae

P
b (−P

b
+ 1)u(−P) + ae

−P
c (P

c
+ 1)u(P) (3)

f(P) = ∫g(P)dP = a(2b− P)e
P
b u(−P) + [−a(2c+ P)e

−P
c + 2a(b+ c)]u(P),

(4)

where u(·) denotes the unit step function; a signifies the
maximal arterial compliance at zero transmural pressure; while
b and c describe the widths of the arterial compliance curve over the
negative and positive transmural ranges, respectively. Substituting
Equation 4 into Equation 2 gives the complete model for OH(Pc)
as follows:

OH(Pc) = d((Pd − Pc + 2c)e
−
Pd−Pc

c − (Ps − Pc + 2c)e
− Ps−Pcc )

×u(Pd − Pc) + d(2(b+ c) + (Pd − Pc − 2b)e
Pd−Pc

b − (Ps − Pc + 2c)e
− Ps−Pcc )

×(u(Pc − Pd) − u(Pc − Ps)) + d((Pd − Pc − 2b)e
Pd−Pc

b − (Ps − Pc − 2b)e
Ps−Pc

b )

×u(Pc − Ps),
(5)

where d = a · k.
To formulate a new analytical model of the area oscillogram

(OA(Pc), i.e., cuff pressure oscillation area versus applied cuff
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FIGURE 4
(A) The oscillometric models in this study are based on the sigmoidal relationship ( f(∙)) from transmural pressure (P(t) = internal BP (Pa(t)) – external
cuff pressure (Pc)) to blood volume (V(t)) in arteries. This relationship is represented by the integral of an exponential-linear function with parameters b
and c denoting the widths of the relationship over the negative and positive transmural pressure ranges, respectively, and parameter a determining the
height of the relationship (Dhamotharan et al., 2023). u(·) is the unit step function. (B) V(t) is formed as the response of the model to a slowly
decreasing linear cuff pressure ramp Pc (t) (left). V(t) plotted against Pc (t) (right) indicates that the previous height oscillogram model (OH (Pc)) is given
by the difference in the x-axis reversed sigmoidal functions evaluated at systolic BP (Ps) and diastolic BP (Pd) with scaling by k to convert V(t)
oscillations to the observed cuff pressure oscillations (Chandrasekhar et al., 2019; Dhamotharan et al., 2023). (C) The proposed area oscillogram model
(OA (Pc)) is computed as the oscillation area of kV(t) above the diastolic level for each heartbeat. (D) For analytical solution of the area oscillogram
integral, Pa(t) is defined as a triangular waveform with parameter PP denoting pulse pressure, parameter T denoting the beat duration, and parameter
Ts indicating the systolic duration. The dashed line is a real invasive brachial BP waveform for comparison.
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pressure function), we integrated V(t) scaled by k over each
beat duration (T) and then subtracted the portion of the area
below Pd, as depicted in Figure 4C and given mathematically
as follows:

OA(Pc) = ∫
T

0
k f(Pa(t) − Pc)dt−∫

T

0
k f(Pd − Pc)dt. (6)

The integral defined by Equation 6 with Equation 4 is of
the form ∫xexdx, which may be analytically solvable only when
x is a linear function. We thus modeled Pa(t) as a triangular
pulse for each heartbeat, as shown in Figure 4D and given
mathematically as follows:

Pa  (t) = [Pd +
PP
Ts
t]  (u (t) − u (t−Ts))

+ [Ps −
PP

T−Ts
 (t−Ts)]  (u (t−Ts) − u (t−T)) , (7)

where PP = Ps − Pd and Ts is the systolic duration
(i.e., duration over which Pa(t) rises). Substituting
Equation 4 and Equation 7 into Equation 6 and solving the
resulting integrals gives the complete model for OA(Pc)
as follows:

OA(Pc) = (
dcT
PP
[(3c+ Ps − Pc)e

( −(Ps−Pc)c ) − (3c+ Pd − Pc)e
( −(Pd−Pc)c )]

+dT(2c+Pd − Pc)e
( −(Pd−Pc)c ))u(Pd − Pc)

+((dbT
PP
[3b− (3b− (Pd − Pc))e

( (Pd−Pc)b )])

+(dcT
PP
[(3c+ (Ps − Pc))e

( −(Ps−Pc)c ) − 3c]+ 2d(b+ c)T
Ps − Pc
PP

−dT(2b− (Pd − Pc))e
( Pd−Pcb )))(u(Pc − Pd) − u(Pc − Ps))

+(dbT
PP
[(3b− (Ps − Pc))e

( (Ps−Pc)b ) − (3b− (Pd − Pc))e
( (Pd−Pc)b )]

−dT(2b− (Pd − Pc))e
( Pd−Pcb ))u(Pc − Ps). (8)

Note that the parameter Ts does not appear in this final
expression for OA(Pc).

Differentiating Equation 5 and Equation 8 with respect to
Pc and setting the derivatives to zero yield expressions for
the cuff pressure at the maximum of the height oscillogram
PHmax (Chandrasekhar et al., 2019) and at the maximum of the area
oscillogram PAmax as follows:

PHmax = Pd + b[
PP
b+ c
] (9)

(2b− Pd + PAmax)e
( Pd−PAmax

b
) + PP

b
(b− Pd + PAmax)e

( Pd−PAmax
b
)+

(2c+ Ps − PAmax)e
( PAmax−Ps

c
) − 2(b+ c) = 0.

(10)

Equation 10 is not analytically solvable forPAmax and is therefore
not insightful. We thus employed a simpler exponential function
(Dhamotharan et al., 2023) to define the arterial compliance curve
g(P) as follows:

g(P) =
d f(P)
dP
= αe

P
β u(−P) + αe

−P
γ u(P), (11)

where α, β, and γ have analogous meanings to a, b, and c,
respectively. Using Equation 11 and following similar steps as before,

we developed expressions for PAmax and PHmax as follows:

PHmax = Pd + β[
PP
β+ γ
] (12)

(β+ Ps − Pd)e
( Pd−PAmax

β
) + γe(

PAmax−Ps
γ
) − (β+ γ) = 0. (13)

Equation 13 may likewise not be analytically solvable. However,
under typical parameter values for α and β (Dhamotharan et al.,
2023), the first term is often much larger than the second
term such that Equation 13 may be simplified as follows:

PAmax = Pd + β ln[
β+ PP
β+ γ
]. (14)

These final formulas for PAmax and PHmax can be readily
interpreted.

2.4 Model evaluation

We evaluated the area and height oscillogram models in terms
of their ability to fit the respective patient oscillograms. We
constructed the oscillograms from the oscillometric measurements,
as shown in Figure 5, using an automated algorithm (Babbs, 2012;
Dhamotharan et al., 2023). This algorithm included trimming of
the flat tails that can appear at either end of the oscillograms.
These tails are not accounted for by our modeling and due to,
for example, pulsations from proximal arteries to the cuff or
lower pressure vessels under the cuff. We then normalized the
trimmed oscillograms by their respective maximum amplitudes.We
likewise normalized the oscillogram models of Equations 5, 8. This
normalization step eliminated the d parameter in themodels. For the
Ps and Pd parameters in the models, we inputted the average systolic
and diastolic BPs from the invasive brachial BP waveform over the
duration of the oscillogram. We then performed two parameter (b
and c) quadratic minimizations as follows:

Min
{b,c}
∫
Pc_max

Pc_min

(Ox(Pc) − Ôx(Pc,b,c))
2dPc, (15)

where Ox (with x = AorH) represents the measured normalized
oscillogram, Ôx indicates the normalized oscillogram model fit,
and Pc_min and Pc_max define the cuff pressure fitting range
resulting from the tail trimming. We set the search range for
the two parameters b and c to 0–60 mmHg based on our earlier
studies (Chandrasekhar et al., 2019; Dhamotharan et al., 2023). We
employed sequential quadratic programming to find the minimum
over this constrained range using the average b and c parameter
values from the previous studies (11 and 14 mmHg) as the initial
seeds. For convergence criteria, we set the tolerance for optimality,
step, and constraint to 10−6. We assessed the performance of the
models specifically in terms of the normalized-root-mean-square-
error (NRMSE) of the oscillogram fitting in percent as follows:

NRMSE = 100 ·

√√√√

√

∫
Pc_max

Pc_min

(Ox(Pc) − Ôx(Pc, ̂b, ̂c))
2dPc

∫
Pc_max

Pc_min

(Ox(Pc))
2dPc

, (16)

where ̂b and ̂c are the optimal parameter estimates. We also assessed
the models by examining the parameter estimates. We used paired
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t-tests to assess the significance in the difference between the fitting
errors and b and c parameter estimates at the p = 0.05 level.

2.5 Evaluation of model assumptions

The oscillogram models of Equations 5, 8 rely on several
key underlying assumptions including: (i) a triangular BP pulse
for developing the area oscillogram model; (ii) a purely elastic
cuff-arm-artery system; and (iii) a constant scale factor to relate
blood volume oscillations to cuff pressure oscillations. These
assumptions could potentially lead to inaccuracies in the model
fits. As shown in Figure 6, we developed a framework to evaluate
the impact of these assumptions on the model fitting errors and
parameter estimates. The framework essentially involves comparing
the fits of the proposed models and alternate models that do not
invoke the assumptions to the patient oscillogram measurements.

To evaluate the triangular BP pulse assumption, we defined
two BP waveforms Pa(t) (see purple panels in Figure 6). The first
waveformwas an alternate invasive brachial BP (Pinva (t)). We applied
a high-pass filter ( fc = 0.5 Hz) to this waveform and re-scaled it
using the average Ps and Pd. The second waveform was the proposed
triangular BP (Ptria (t)) generated using Equation 6 but with T and
Ts determined for each beat based on the invasive BP waveform.
This approach ensured a fair comparison, as the two waveforms
differed only in the pulse shape. Note that the analytical area
oscillogram model of Equation 8 provided comparable fits to using
this triangle BP waveform input (compare first bar in Figure 7B to
first bar in Figure 8B).

To evaluate the purely elastic cuff-arm-artery system
assumption, we defined three systems (see grey panels in Figure 5).
The first system was the proposed purely elastic model (E), which
included only the static integral of the exponential-linear function
f(P). The other two systems were alternate Hammerstein (H; static
nonlinearity followed by linear damper) and Wiener (W; linear
damper followed by static nonlinearity) viscoelastic models, as
previously employed for finger arteries in (Landry et al., 2024b).
The static nonlinearity in both models was the integral of the
exponential-linear function f(P) in Equation 4, while the linear
dynamic component was a first-order, low-pass filter with unity
gain and cutoff frequency w (rad/s).

To examine the constant scale factor relating blood volume
oscillations to cuff pressure oscillations assumption, we employed a
previous physical model of the cuff-arm system (Drzewiecki et al.,
1994) in which the nonlinear elasticity of the cuff and
compressibility of air within the cuff (Boyle’s law) are incorporated.
The model takes the blood volume waveform V(t) and volume of air
pumped into and out of the cuff (Vp(t)) as inputs to output the cuff
pressure Pc(t) as follows:

Pc(t) = EC

{{{{
{{{{
{

[[[

[

Patm(Vp(t)+Vc0)
(Pc(t)+Patm)

+Vi0 +V(t)

Vi0 +Vc0

]]]

]

1
n

− 1
}}}}
}}}}
}

n

, (17)

where Patm is the atmospheric pressure,Vc0 is the cuff volume at cuff
pressure of 0 mmHg, Vi0 is the volume of an incompressible arm,
and Ec and n are parameters defining the nonlinear cuff elasticity. By
applying partial derivatives to both sides of Equation 17 at higher Pc

values, changes in Pc are related to changes in V as follows:

∂Pc =
1

[Vi0+Vc0
Ec
+
 (Vp+Vc0)

Patm(
Pc

Patm
+1)

2]

∂V. (18)

For a standard cuff, Vi0 +Vc0 ≪ Ec and Equation 18 can thus be
simplified as follows:

∂Pc = (
Patm + Pc
Vp +Vc0

)(
Pc
Patm
+ 1)∂V. (19)

Here, the left term ( Patm+Pc
Vp+Vc0
) is the local slope of the Pc −Vp

relationship (i.e., reciprocal of the local cuff-arm compliance) at
higher cuff pressures, while the right term ( Pc

Patm
+ 1) represents

further scaling due to air compression within the cuff induced by
arterial pulsations. The patient data used here did not include cuff
volume measurements, so we could not study the impact of the
nonlinear compliance on themodel fitting.We thus could only assess
the effect of air compression by arterial expansion and defined two
scale factors (see orange panels in Figure 6).The first scale factor was
the proposed constant k, and the second scale factorwas the alternate
variable kv = (

Pc
Patm
+ 1).

Again referring to Figure 6, we fed each of the BP waveforms,
Pinva (t) or P

tri
a (t), along with Pc(t) into each of the three nonlinear

models, H, W, or E, to compute V(t). We then high-pass filtered
this waveform and scaled it by k or kv to compute the cuff pressure
oscillations. We constructed the area and height oscillograms using
the oscillations. We determined the model parameters by optimal
fitting to the patient data. Note that for the viscoelastic models, we
employed three parameter (b,c, and w) quadratic minimization for
the fitting. We evaluated the model fits again in terms of NRMSE
and the parameter estimates. We finally invoked paired t-tests to
determine differences in the model fitting errors and parameter
estimates, using a significance level of p = 0.005 to approximately
account for the multiple comparisons involved.

3 Results

3.1 Formulas for cuff pressure at the
oscillogram maximum

The simplified formulas for the cuff pressure at which the
height and area oscillograms reach their maximum, PHmax and
PAmax, allow for a qualitative comparison, since they share the
same four parameters (see Equations 12, 14). When comparing
these two formulas, it is evident that PAmax will consistently be
less than PHmax. This theoretical prediction aligns with the peak
positions extracted from the patient oscillogram data (see Figure 3),
indicating that the models correctly capture the typical
leftward shift of the area oscillogram compared to the height
oscillogram.

3.2 Oscillogram model fits

Figure 7A shows representative examples of the area oscillogram
and height oscillogram model fits with NRMSEs of 7.5% and
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FIGURE 5
Automated algorithm to form the measured area oscillogram and height oscillogram from the cuff pressure waveform. The cuff pressure waveform,
which is measured during fast cuff inflation and then slow cuff deflation followed by a constant cuff pressure of 60 mmHg is analyzed to form
tail-trimmed oscillogram measurements. Important user-selected variables: Band-pass filter of 6th order with cut-off frequencies of 0.75 and 5 Hz
(step 2); amplitude thresholds < 0.2 mmHg for peaks and > −0.1 mmHg for valleys and pulse interval variability < 0.65/PR and > 1.35/PR, where PR is
FFT-based pulse rate (steps 3 and 4); and 5th order moving average filter (Step 6).
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FIGURE 6
Framework for evaluating the impact of key assumptions of the models on the model fitting errors and parameter estimates. This framework assessed
the impact of the triangular BP waveform (Ptri

a (t)) assumption for the area oscillogram model by comparison with a real simultaneously measured
invasive brachial BP waveform (Pinv

a (t)); the purely elastic model assumption by comparison with standard viscoelastic models with a single additional
parameter reflecting the filter cutoff frequency (w) (Landry et al., 2024b); and the constant scale factor relating V(t) oscillations to cuff pressure
oscillations (O(t)) by comparison to a model-based variable scale factor where Patm is atmospheric pressure (Drzewiecki et al., 1994).

FIGURE 7
(A) Exemplary area oscillogram and height oscillogram model fits with normalized-root-mean-squared-errors (NRMSEs) of 7.5% and 9.1%, respectively.
(B) NRMSEs and (C) parameter estimates of both model fits over all 173 measurements. Data presented as mean ± SE. Horizontal lines indicate
significant difference at p < 0.05 level.

9.1% respectively. Figure 7B shows that the area oscillogram and
height oscillogram models fit the 173 respective tail-trimmed
oscillogram measurements with overall NRMSEs of 6.9% ± 0.3%
and 8.7% ± 0.4%. The model fits for the area oscillogram were
significantly better than for the height oscillogram. Figure 7C
shows the average b and c parameter estimates for the area and
height oscillogram model fits. The height oscillogram model fits
yielded significantly larger c parameter estimates than b parameter
estimates on average, consistent with a right-skewed brachial
artery compliance curve (Drzewiecki and Pilla, 1998). However,
the parameter estimates from the area oscillogram model fits
were unexpected, with the b parameter estimates greater than the
c parameter estimates on average.

3.3 Effect of assumptions on model fits

Figure 8 shows the overall impact of the different BP waveforms
(triangle or invasive) along with the different nonlinear models
(Elastic, Hammerstein, or Wiener) and scale factors (constant or
variable) on the oscillogram model fitting errors.

For the height oscillogram model fits (see Figure 8A), the
NRMSEs were 9.1% ± 0.4%, 6.5% ± 0.4%, and 5.0% ± 0.3% for
the Elastic, Hammerstein and Wiener models, respectively. (Note
that the triangular BP waveform is not a foundational assumption
for the height oscillogram model.) The viscoelastic models yielded
significant reductions in the fitting errors by approximately 45%
for the Wiener model and about 30% for the Hammerstein
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FIGURE 8
(A) Comparison of overall NRMSEs of the height oscillogram model fits for Elastic (E), Hammerstein viscoelastic (H), and Wiener viscoelastic (W)
models. (B) Comparison of the overall NRMSEs of the area oscillogram model fits for the three models and invasive and triangle BP waveform inputs.
Note that the triangle BP waveform input is not assumed by the height oscillogram model. (C) Comparison of the overall NRMSEs of both model fits for
constant (k) and variable (kv) scale factors relating blood volume oscillations to cuff pressure oscillations. Although the results were generated using
the W model and invasive BP waveform input, they are representative of all comparisons between k and kv scale factors. Data presented as mean ± SE.
Horizontal lines indicate significant differences at p < 0.005 level.

model compared to the Elastic model. The substantial fitting
error reductions suggest that the additional filter cutoff frequency
parameter for the viscoelastic models is crucial for accurately
modeling the cuff-arm-artery system response.

For the area oscillogrammodel fits (see Figure 8B), the NRMSEs
for the Elastic, Hammerstein, andWiener models were 7.3% ± 0.3%,
6.7% ± 0.3%, and 6.4% ± 0.3% for the triangular BP waveform and
8.6% ± 0.5%, 8.0% ± 0.4%, and 6.9% ± 0.3% for the invasive BP
waveform.The triangular BPwaveform actually yielded significantly
better model fitting than the invasive BP waveform for the Elastic
and Hammerstein models with an average NRMSE difference
of 1.3%. The Wiener model produced significant reductions in
NRMSE compared to the Elasticmodel and theHammersteinmodel
for the invasive BP waveform. The Wiener model here afforded
improvement in the area oscillogram fitting accuracy by 16% on
average compared to the Elastic model, which is notably lower
than the improvements observed for the height oscillogram model
fitting. Interestingly, there were no significant differences in the
fitting errors between the Elastic and viscoelastic models for the
triangular BP waveform, suggesting that the triangular pulses were
not affected by the low-pass filtering effect of the viscoelasticmodels.
These results indicate that the area oscillogrammodel is more robust
to viscoelastic effects than the height oscillogram model.

Finally, the variable scale factor did not have significant impact
on the area oscillogram and height oscillogram model fitting
errors compared to the constant scale factor, regardless of the
BP waveforms or nonlinear models employed. Consequently, only
the model fitting errors produced by the Wiener model with
the invasive BP waveform input for the two scale factors are
shown (see Figure 8C), as these results are representative of the
other errors.

The b and c parameter estimates for the different BP waveforms
and nonlinear models are shown in Figure 9A for the height
oscillogram and Figure 9B for the area oscillogram. For the height
oscillogram, all models yielded larger c parameter estimates than
b parameter estimates in line with known physiological patterns.
Compared to the Elastic model, the viscoelastic models altered
the b parameter estimates more than the c parameter estimates on

average. For the area oscillogram (see Figure 9B), the parameter
estimates for c always remained smaller than for b. Compared to
the Elastic model, the viscoelastic models impacted the c parameter
estimates more than the b parameter estimates on average for the
triangular BP waveform. In general, the viscoelastic models brought
the b and c parameter estimates closer together, whereas they were
significantly different for the Elastic model for both the area and
height oscillograms.

The corresponding w parameter estimates were similar for the
Hammerstein and Wiener models and for the height and area
oscillograms and was 3.1 Hz on average, indicating a significant
damping effect. Consistent with the model fitting errors, the
variable scale factor did not have significant effect on the parameter
estimates.

4 Discussion

4.1 Area oscillogram

In conventional oscillometry, BP is computed from the cuff
pressure oscillation height versus applied cuff pressure function
(“height oscillogram”). However, the shape of the oscillometric
pulses is also known to change with the cuff pressure (see Figure 1).
In this study, we employed an exquisite patient dataset to find
that the cuff pressure oscillation area versus applied cuff pressure
function (“area oscillogram”) can be robustly measured compared
to other shape oscillograms in which analytical modeling is feasible
(see Figure 2). Although both the area oscillogram and height
oscillogram consistently exhibited inverted-U shape, there were
notable differences between the two oscillograms (see Figure 3).
With respect to the height oscillogram, the area oscillogram was
typically (i) left-shifted (i.e., peaked at lower cuff pressure) and
(ii) narrower in width. The oscillation width decreases as the
cuff pressure increases, while the oscillation height rises and then
falls with increasing cuff pressure. Therefore, the oscillation area
increases and decreases more rapidly with increasing cuff pressure
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FIGURE 9
(A) Comparison of overall b and c parameter estimates of the height oscillogram model fits for the elastic and two viscoelastic models. (B) Comparison
of overall b and c parameter estimates of the area oscillogram model fits for the different models and BP waveform inputs. Data presented as mean ±
SE. Horizontal lines indicate significant differences at p < 0.005 level.

than the oscillation height, resulting in a left-shifted and narrower
oscillogram.

4.2 Parsimonious area oscillogram and
height oscillogram models

We then extended our previous work on a parsimonious model
for the height oscillogram (Dhamotharan et al., 2023) to develop
such a mathematical model for the area oscillogram in this study.
Previous modeling efforts may have all exclusively focused on the
height oscillogram.

We employed a sigmoid in the form of the integral of an
exponential-linear function to relate transmural pressure of an
artery to its blood volume and used a constant scale factor to
convert blood volume oscillations to the observed cuff pressure
oscillations. To obtain a closed-form expression (see Figure 4), we
modeled the BP waveform with a triangular pulse parameterized
by systolic duration, beat duration, and systolic and diastolic BPs.
This approach yielded a model for the area oscillogram, which when
normalized, includes four unknown parameters: b and c (negative
and positive transmural pressure widths of the arterial compliance
curve, which is the derivative of the sigmoidal function) and Ps and
Pd (systolic and diastolic BPs) (see Equation 8). Notably, the systolic
duration parameter did not appear in the final expression, whereas
the beat duration is measurable. The previous height oscillogram
model, which when normalized, includes the same four unknown
parameters (see Equation 5).

We also analyzed the models to derive interpretable formulas
for the cuff pressure at which the area oscillogram and height
oscillogram are maximal using a simpler sigmoid in the form of
the integral of an exponential function. These formulas correctly
predicted that the peak position of measured area oscillograms
typically occurs to the left of the peak position of measured
height oscillograms (see Figure 3). However, it is important to
note that the area oscillogram model with the exponential-
linear function fitted measured area oscillograms with 10%
lower NRMSEs than the model with the exponential function
on average (result not shown), similar to our earlier findings
for the height oscillogram model (Dhamotharan et al., 2023).

Therefore, we otherwise used the exponential-linear function for the
oscillogram models.

4.3 Model fitting results

When we optimally fitted the height oscillogram and area
oscillogram models, inputted with invasive brachial systolic and
diastolic BPs for Ps and Pd, to the 173 respective oscillogram
measurements (see Figure 5) in the patient dataset, both models
provided fits with only <10% error. Furthermore, the new area
oscillogram model demonstrated better fitting accuracy than the
previous height oscillogrammodel (see Figures 7A,B), likely because
the area or integral of the oscillations is inherently more resilient to
measurement noise and pulse irregularities than the height of the
oscillations. We thus concluded that both models, and especially
the area oscillogram model proposed herein, could fit the data
well. It is also worth noting that the area oscillogram and height
oscillogram model fitting results were similar for the normotensive
subgroup (<140 and <90 mmHg; 51% of patients) and hypertensive
subgroup (results not shown). The model fitting results, along with
the correct prediction of oscillogram peak positions, indicate that
the sigmoidal blood volume-transmural pressure relationship of the
artery by itself can account for both height and width changes of the
oscillometric pulses.

The b and c parameter estimates obtained via the area
oscillogram and height oscillogram model fits were similar in
magnitude (8–14 mmHg on average; see Figure 7C). Further, the
c parameter estimates increased after sublingual nitroglycerin
administration (6.3 ± 3.9 to 8.4 ± 4.5 mmHg for area oscillogram
and 12.2 ± 5.0 to 14.2 ± 5.8 mmHg for height oscillogram;
results not shown). Such an increase is consistent with the
known vasodilatory effect of the drug and suggests the potential
clinical value of the parameter estimates. However, an unexpected
finding was the contradictory b and c parameter estimate trends
from the area oscillogram and height oscillogram model fits
(see Figure 7C). The area oscillogram model produced larger b
parameter estimates than c parameter estimates. However, the
height oscillogram model yielded larger c parameter estimates
than b parameter estimates, which aligns with directly measured
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arterial compliance curve characteristics (Drzewiecki and Pilla,
1998). This latter trend was further demonstrated when we recently
applied the height oscillogram model to finger oscillometric
measurements (Landry et al., 2024b), confirming b < c for finger
arteries as well with a b/c ratio similar to the brachial artery.

The height oscillogram reaches maximal amplitude at a cuff
pressure of PHmax = (

b
b+c
)Ps + (

c
b+c
)Pd (see Equation 9). Using the

average b and c parameter estimates from the height oscillogram
model (b = 10.7 ± 0.5 and c = 13.8 ± 0.4), PHmax = 0.43Ps + 0.57Pd.
This PHmax formula closely resembles the standard formula used
to estimate mean BP (i.e., the time average of the BP waveform)
as 0.4Ps + 0.6Pd (Bos et al., 2007). This coincidence may explain
why PHmax has been successfully used to compute mean BP
(i.e., maximum amplitude algorithm) in traditional oscillometry,
although we showed that PHmax as an estimate of mean BP fails
at high PP (Chandrasekhar et al., 2019). In contrast, when using
the average parameter estimates from the area oscillogram model
(b = 14.0 ± 0.5, c = 8.7 ± 0.6), we arrive at PHmax = 0.62Ps + 0.38Pd,
which would render the maximum amplitude algorithm inaccurate
for mean BP estimation across the BP range.

These observations led us to conclude that the parameter
estimates from the height oscillogram model were more
physiologically representative, while those from the area oscillogram
model were compromised to achieve optimal data fitting. We
hypothesized that violations to the model assumptions caused this
discrepancy in the parameter estimates.

4.4 Model assumptions and impact on
model fitting

We evaluated the impact of three key model assumptions on
the model fitting errors and parameter estimates via a rigorous
framework (see Figure 6).

4.4.1 Triangular BP waveform assumption
An obvious error source for the area oscillogram model fits is

the assumption of a triangular BP waveform. To assess the impact
of this assumption, we compared the fits of the area oscillogram
model driven by the real invasive brachial BP waveform and by
the presumptive triangular BP waveform (see purple in Figure 6).
Interestingly, the model with the triangular BP waveform input
yielded a lower area oscillogram model fitting error by 15% on
average (see bars over E in Figure 8B). Blood volume oscillations,
which manifest as cuff pressure oscillations, are essentially a low-
pass filtered version of the BP pulsations due to viscoelastic effects
(see below). So, viscoelasticity, which was ignored in this particular
analysis, may explain why the smoother triangular BP waveform
was able to yield superior fitting over the sharper invasive BP
waveform. This analysis also revealed that the input BP waveform
type had no impact on the b and c parameter estimates via the
area oscillogram model fitting (see bars over E in Figure 9B).
The comparative analysis thus justified the triangular BP
waveform assumption.

4.4.2 Elastic cuff-arm-artery system assumption
Another major source of model fitting error arises from the

assumption that the system comprising the cuff material, arm,

and brachial artery is purely elastic. In reality, each of these three
components may exhibit viscoelastic behavior across the range of
cuff pressures. To assess the impact of this assumption, we compared
the fits using the assumed Elastic model (E) and by replacing this
model with Wiener (W) or Hammerstein (H) viscoelastic models
(see gray in Figure 6).

The Wiener and Hammerstein models afforded significantly
more accurate fitting of themeasured height oscillograms with error
reductions of 45% and 30%, respectively, compared to the Elastic
model (see Figure 8A). This finding suggests a significant level of
viscoelasticity, as inclusion of just a single parameter (w) greatly
reduced the fitting errors. The impact of viscoelasticity was less
pronounced for the area oscillogram model fits (see Figure 8B), as
integrating the oscillations to compute their areas effectively acts as
a low-pass filter.

Overall, Wiener model provided more accurate fitting of
the oscillometric data than both the Hammerstein and Elastic
models. Similar results were observed in a previous study on
finger oscillometric data (Landry et al., 2024b). Those results were
expected, as small finger arteries are rich in smooth muscle and
may exhibit a high degree of viscoelasticity. In contrast, brachial
arteries are larger with less smooth muscle and should exhibit a
lower degree of viscoelasticity. The viscoelastic effects observed in
this study may thus also stem from the cuff material and/or arm.
The cutoff frequency of the low-pass filter for the viscoelasticmodels,
which indicates the extent of viscoelasticity, was 3.1 Hz on average.
This frequency falls within the band-pass filter cutoff frequencies
(0.5–5 Hz) used to extract the oscillations from the cuff pressure
recordings and is close to typical heart rates (1–2 Hz).These findings
highlight why viscoelastic effects cannot be removed by basic signal
processing techniques and can significantly impact oscillometric
measurements.

The b and c parameter estimates via the two viscoelastic models
maintained the trends observed via the Elastic model, with b < c for
the height oscillogram model fits and b > c for the area oscillogram
model fits (see Figures 9A,B). However, the viscoelastic models
produced reductions in the difference in the b and c parameter
estimates compared to the Elastic model. These results suggest that
viscoelastic effects play a role towards the discrepancy in parameter
estimates via the area oscillogram and height oscillogram model
fitting but may not fully account for it.

Interestingly, for the height oscillogram model fitting, the
viscoelastic models had a more pronounced effect on the b
parameter, which primarily affects the higher cuff pressure range.
This result suggests viscoelastic effects from the cuff material
and artery, as the arm tissue may be fully compressed in the
higher cuff pressure range. Similar effects were observed in finger
oscillometric measurements, where viscoelasticity led to higher
systolic BP estimation errors (Landry et al., 2024b). In contrast,
for the area oscillogram model fitting, viscoelasticity had greater
influence on the c parameter for the triangular BP waveform
input, which mainly impacts the lower cuff pressure range. This
result may be due to the viscoelasticity of arm tissue, which
begins to decompress at relatively lower cuff pressures. Recall
again that the area oscillogram is shifted to the left relative
to the height oscillogram and therefore occurs at a lower cuff
pressure range.
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4.4.3 Constant scale factor relating blood volume
to cuff pressure oscillations assumption

A third key assumption of the model is that the blood volume
oscillations and cuff pressure oscillations can be related via a
constant scale factor. However, the cuff-arm system is known to
exhibit significant nonlinearity.

To assess the impact of this assumption, we compared themodel
fits using the proposed constant scale factor and a variable scale
factor of ((Pc/Patm) + 1) (see orange in Figure 6). This variable scale
factor accounts for air compression within the cuff due to arterial
pulsation, arises from a previous model of the cuff-incompressible
arm system (see Equation 19), and can be computed from the cuff
pressure and known atmospheric pressure. Although ((Pc/Patm) + 1)
linearly increases with Pc, the net change (∼5%) over nominal cuff
pressure ranges is too small to significantly affect the oscillograms.
We accordingly found no significant differences in model fitting
errors (see Figure 8C) or in the b and c parameter estimates when
using the constant and variable scale factors. This finding confirms
our assumption in earlier works that the ((Pc/Patm) + 1) term can
be neglected in the scaling from blood volume to cuff pressure
oscillations and that the scale factor may thus represent the slope
of the cuff pressure-volume of air pumped into and out of the
cuff function (i.e., reciprocal of the local cuff-arm compliance;
(see Equation 19) (Chandrasekhar et al., 2019; Liu et al., 2016a;
Liu et al., 2016b; Dhamotharan et al., 2023).

4.4.4 What assumptions make the model
parameters differ between the height oscillogram
and area oscillogram?

Collectively, our analysis revealed that none of the studied
assumptions significantly impacted the area oscillogram modeling
fitting. The analysis further indicated that the assumption of a
purely elastic system contributed to the discrepancy in the model
parameters from the area oscillogram and height oscillogram
modeling fitting. However, is there another assumption that could
have caused or contributed to the discrepancy?

One major error source that we could not rigorously address
due to a lack of necessary measurements in the patient dataset is
the nonlinear compliance of the cuff-arm system. This nonlinearity
is commonly exhibited by standard arm cuffs (Drzewiecki et al.,
1994). For example, Figure 10A presents a representative pressure-
volume relationship of a universal arm cuff (22–42 cm, Omron BP
Monitor, Japan) wrapped around a rigid mandrel with a layer of
foam simulating compressible arm tissue. The cuff pressure-volume
relationship is highly nonlinear over the low cuff pressure range,
becoming approximately linear only at cuff pressures exceeding
100 mmHg. The local slope of the relationship, which is again the
reciprocal of the nonlinear cuff-arm compliance and essentially the
actual scale factor relating blood volume to cuff pressure oscillations,
increased by approximately 150% over the 50–200 mmHg range.
Since the nonlinearity is more pronounced at lower cuff pressures,
we hypothesized that it affects the area oscillogram more than
the height oscillogram and may be responsible for the observed
differences in parameter estimates.

We conducted simulations to illustrate the potential impact
of cuff-arm compliance nonlinearity on the oscillogram model
fitting. We selected a representative oscillometric measurement in
which the area oscillogram model fitting yielded b > c parameter

estimates, while the height oscillogram model fitting produced the
opposite trend. Figure 10B displays the measured area oscillogram
and height oscillogram (red and blue) and their respectivemodel fits
(black). It is important to note that the oscillogram measurements
inherently include the effects of nonlinear compliance from the
cuff-arm system. We thus mathematically removed the contribution
of the cuff-arm compliance nonlinearity from the oscillogram
measurements. First, we varied the scale factor relating blood
volume to cuff pressure oscillations linearly from0.6 to 1 mmHg/mL
over the cuff pressure range of 60–100 mmHg and kept it constant
above 100 mmHg (in line with Figure 10A). Then, we divided the
measured cuff pressure oscillations by this variable scale factor and
constructed the area oscillogram andheight oscillogram. Figure 10C
shows these area oscillogram and height oscillogram measurements
adjusted to eliminate the contribution of the cuff-arm compliance
nonlinearity (red and blue) along with their respective model
fits (black). The adjusted area oscillogram model fit now yielded
c > b parameter estimates (b = 13.5, c = 15.4 vs. b = 15.3, c =
12.1 for analysis that includes nonlinear cuff-arm compliance),
while the height oscillogram model fit maintained the original
c > b trend for the parameter estimates (b = 7.8, c = 13.0 vs.
b = 8.2, c = 17.0 for analysis that includes nonlinear cuff-
arm compliance).

Due to the nature of the nonlinear compliance of the cuff-
arm system, the area oscillogram model appreciably adjusted its
parameters to achieve the best possible fit. The parameter estimates
via the height oscillogram model fit were also impacted but
without disrupting the expected trend of b < c. The degree of
nonlinearity depends on several factors including the cuff material
and sizing, how the cuff is wrapped around the arm, and the arm
tissue characteristics. These factors, combined with the BP levels,
determine the extent towhich the oscillograms are altered compared
to a constant scaling. For instance, the nonlinearity may have a
higher impact in hospital patients with low BP, obese patients with
loose arm tissue but normal BP, and patients with high PP. In sum,
nonlinear compliance of the cuff-arm system is a viable explanation
for the difference in parameter estimates from the height oscillogram
and area oscillogram model fits.

4.5 Limitations

Our study has limitations. Firstly, while we rigorously evaluated
the new area oscillogram and previous height oscillogram models
in terms of how well they explain the respective oscillogram
measurements, we have yet to investigate the models in terms of
computing BP. Secondly, we ignored arm tissue compression to
simplify the modeling. Thirdly, we were not able to rigorously
investigate the nonlinear compliance of the cuff-arm system. As
explained above, one reason was that necessary cuff volume
measurements were not available. Another reason is that modeling
the nonlinear compliance would have required adding at least
two more parameters to the models, thereby complicating the
analysis. Fourthly, while the viscoelastic models used in the study
effectively quantified the overall extent of nonlinear dynamics,
they did not reveal the individual viscoelastic contributions from
the cuff, arm, and artery. Lastly, the findings of this study, based
on upper arm cuff measurements, may not be generalizable to
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FIGURE 10
(A) Exemplary nonlinear pressure-volume relationship of a standard cuff on a mandrel wrapped with foam to simulate arm tissue. (B) Area oscillogram
and height oscillogram model fits (black) to measurements (red and blue). (C) Area oscillogram and height oscillogram model fits (black) to
mathematically adjusted measurements (red and blue) to approximately eliminate cuff nonlinearity in line with (A).

oscillometric measurement sites beyond the brachial artery or
photoplethysmography measurements of blood volume oscillations.

4.6 Implications for oscillometric BP
computation

Our study has implications for oscillometric BP computation.
The popular fixed ratios algorithm and other conventional
oscillometric algorithms only analyze the height oscillogram to
compute BP. However, this study indicates that the area oscillogram,
which peaks earlier and falls faster than the height oscillogram,
offers additional BP information. In particular, the normalized area
oscillogram reveals more about the four model parameters (systolic
BP, diastolic BP, and the arterial compliance curve widths over
negative and positive transmural pressures) than the normalized
height oscillogram alone and could therefore potentially help in
the BP computation. As a simple example, the peak position of
each oscillogram, which may be especially easy to measure, is
determined by the four unknown parameters. By analyzing both
oscillograms, there would be two equations instead of just one. As a
more general example, bothmodels could be optimally fitted to their
respective oscillograms, allowing for a patient-specific algorithm
that may be more accurate than the conventional population-based
algorithms and yieldmore reliable parameter estimates than patient-
specific algorithms that only use the height oscillogram (Liu et al.,
2016a; Liu et al., 2016b). Alternatively, the area oscillogram and
height oscillogram models could potentially serve as a feature

selection guide for machine learning algorithms to improve
the BP measurement accuracy. The models may also improve
understanding of oscillometric BP computation. For example, our
study suggests that cuff-arm-artery system viscoelasticity could
adversely impact the computation of systolic BP from the height
oscillogram (see Figures 8A, 9A), whereas nonlinear compliance
of the cuff-arm system resulting from tissue compression and cuff
material may negatively affect the computation of diastolic BP from
the area oscillogram (see Figure 10).

5 Conclusion

We systematically analyzed extensive and high-fidelity patient
data to find that the area oscillogram can be robustly measured
and offers complementary information to the conventional height
oscillogram about BP and arterial properties. Subsequently, we
developed an analytical model of the area oscillogram. We showed
that this model fits the patient data well despite its simplifying
assumptions. We also provided evidence that the parameter
estimates of the area oscillogram model are susceptible to the
nonlinear compliance of the cuff-arm system. While the height
oscillogram model also provided good fitting to the patient data,
we additionally showed here that it was significantly impacted
by cuff-arm-artery system viscoelasticity. Our study therefore lays
the groundwork for future studies to leverage the oscillogram
models to improve oscillometric BP computation. Follow-up work
to study the models in the context of tissue compression would
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also be worthwhile. Ultimately, such subsequent efforts may lead
to more accurate oscillometric BP measurement via office, home,
and ambulatory (wearable) devices and thereby help improve
hypertension control.
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