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Introduction: Anterior cruciate ligament (ACL) injuries hold significant clinical
importance, making the development of accurate and efficient diagnostic tools
essential. Deep learning has emerged as an effective method for detecting ACL
tears. However, current models often struggle with multiscale and boundary-
sensitive tear patterns and tend to be computationally intensive.

Methods: We present LRU-Net, a lightweight residual U-Net designed for ACL
tear segmentation. LRU-Net integrates an advanced attention mechanism that
emphasizes gradients and leverages the anatomical position of the ACL, thereby
improving boundary sensitivity. Furthermore, it employs a dynamic feature
extraction module for adaptive multiscale feature extraction. A dense decoder
featuring dense connections enhances feature reuse.

Results: In experimental evaluations, LRU-Net achieves a Dice Coefficient Score
of 97.93% and an Intersection over Union (IoU) of 96.40%.

Discussion: It surpasses benchmark models such as Attention-Unet, Attention-
ResUnet, InceptionV3-Unet, Swin-UNet, Trans-UNet and Rethinking ResNets.
With a reduced computational footprint, LRU-Net provides a practical and highly
accurate solution for the clinical analysis of ACL tears.

KEYWORDS

ACL (anterior cruciate ligament), MRI image, deep learning, segmenation, attention,
lightweight

1 Introduction

ACL injuries are among the most common and debilitating knee issues, particularly
affecting athletes and active individuals (Boden et al., 2000).The ACL plays a crucial role in
stabilizing the knee joint by connecting the femur to the tibia, helping to prevent excessive
forward movement of the tibia and stabilizing rotation. This ligament is prone to tears
during high-impact activities such as pivoting, jumping, or sudden stops (Mattacola et al.,
2002), with an estimated annual incidence of 68 per 100,000 person-years in the general
population. ACL tears can lead to significant complications, including joint instability,
cartilage deterioration, and an increased risk of osteoarthritis, creating significant obstacles
to patient mobility and overall quality of life (Dienst et al., 2002; van der List et al., 2017).
Therefore, timely and accurate diagnosis of ACL injuries is essential for guiding treatment
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approaches, ranging from conservative rehabilitation to surgical
reconstruction, helping alleviate chronic issues (van der List and
DiFelice, 2016; 2018).

Magnetic resonance imaging (MRI) has become the gold
standard for non-invasive assessment of ACL injuries, offering
superior soft-tissue contrast and multiplanar imaging compared
to other methods such as X-rays or ultrasounds (Noone et al.,
2005). However, diagnosing ACL tears via MRI can be challenging
due to the small size of the ligament (typically 5–10 mm in
width), its varying alignment across imaging planes, and the subtle
signal changes that indicate partial or complete tears. Although
manual interpretation by radiologists is generally practical, it
is labor-intensive and subject to variability between observers,
with reported sensitivities and specificities ranging from 85%
to 95%, depending on the clinician’s experience (Thomas et al.,
2007; Sivakumaran et al., 2021). These challenges have led to the
development of automated detection methods, particularly those
utilizing deep learning techniques to enhance diagnostic accuracy
and speed (Zhao et al., 2022).

Deep learning based method have show significantly enhance
in classification and segmentation tasks. convolutional neural
networks (CNNs) (Krizhevsky et al., 2017) Frameworks such as
Attention-Unet (Oktay et al., 2018), andAttention-ResUnet (Li et al.,
2022) demonstrated remarkable accuracy on datasets like Imagenet
(Deng et al., 2009). Some methods showed special capabilities,
especially in tasks of knee joint and skin images (Iqbal et al.,
2020; 2021). The architectures of ResNet and UNet have also
been continuously improved and optimized, like InceptionV3-Unet
(Punn and Agarwal, 2020), Swin-Unet (Cao et al., 2023), Trans-
Unet (Chen et al., 2021) and Rethinking ResNets (Luo et al.,
2022), However, challenges persist, including high computational
demands (e.g., models like Attention-Unet can have over 19 million
parameters), insufficient boundary precision in segmentation, and a
reliance on advanced hardware that may not be feasible for clinical
applications. Additionally, the intricate boundaries of ACL tears
in MRI images require models that can effectively identify and
delineate injuries.

To address these shortcomings, we propose an LRU-Net
that enhances the original design with a lightweight residual
encoder utilizing depthwise separable convolutions (Chollet, 2017),
a U-Net decoder featuring skip connections, and advanced
modules, including optimized dynamic ASPP (Chen et al., 2018)
and enhanced lite CBAM (Woo et al., 2018). With a reduced
parameter count of 9.1 million, the model employs a hybrid
loss function that combines Dice, focal (Lin et al., 2017), and
an enhanced boundary term to improve edge precision. Our
contributions include:

1. An efficient architecture incorporating depthwise separable
ResBlocks in the encoder and U-Net upsampling in
the decoder.

2. A multiscale, boundary-aware mechanism through optimized
dynamic ASPP and enhanced lite CBAM.

3. Evaluating the proposed LRU-Net method using actual image
slices and their corresponding mask slices representing knee
ACL tears, along with a comprehensive assessment of the
model’s performance and stability.

4. Demonstrating superior capability in localizing the knee
ACL tear region in MR images compared to other state-
of-the-art methods, including Attention-Unet, Attention-
ResUnet, InceptionV3-Unet, Swin-UNet, Trans-UNet and
Rethinking ResNets.

5. This study analyzed the impact of various hyperparameters on
the performance of the LRU-Net method, offering an in-depth
examination of the model’s robustness capabilities.

2 Materials and methods

2.1 Dataset description

The Affiliated Hospital of Nantong University provided 706
individuals aged 14–81 years who showed clinical evidence of an
acute unilateral anterior cruciate ligament (ACL) tear. MRI scans
were conducted using 1.5T and 3.0 T modalities. The imaging
protocol included an axial T1-weighted fast spin-echo (FSE)
sequence for detailed anatomical visualization, a sagittal T2 fat-
suppressed (FS) FSE sequence for assessing bone marrow lesions
(BML), and sagittal and coronal proton-density (PD)-weighted FSE
sequences (Miller, 2009).These PD-weighted sequences were crucial
for confirming ACL and other ligament or meniscal injuries and
evaluating articular cartilage.

The dataset used in this study consisted of PD-weighted MRI
scans of the knee joint, primarily focusing on ACL tears.These scans
had an original resolution of 512 × 512 pixels. The images were
obtained using a standard PD-weighted protocol, which enhanced
contrast for soft tissue structures, particularly the ACL.

2.2 Data preparation

The dataset preparation involved a multi-step process to convert
raw DICOM images (Mantri et al., 2022) into a suitable format for
deep learning analysis, followed by expert annotation (Table 1). The
detailed workflow is outlined below:

Step 1: Loading and selecting DICOM images. PD-weighted MRI
images, 512 × 512 pixels, were extracted from DICOM
files. Expert radiologists selected key slices with ACL
tears, including only clinically significant images, thereby
reducing noise from irrelevant areas and focusing on ACL
tear pathology.

Step 2: Converting DICOM images and generating initial masks.
The selected DICOM images were converted to NIFTI
format using a custom Python script, maintaining their
original resolution. Initial binarymask files in NIFTI format
were created and initialized as black (value = 0) to indicate
regionswithout tears.This conversion ensured compatibility
with neuroimaging tools and deep learning frameworks.

Step 3: Expert annotation using ITK-SNAP (Yushkevich and Gerig,
2017). The converted NIFTI images and initial masks were
loaded into ITK-SNAP, where expert radiologists delineated
ACL tear regions, marking them as white (value = 1).
The annotated masks replaced the initial ones, producing
the final ground truth masks and ensuring high-quality,
validated annotations.
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TABLE 1 Algorithm for knee ACL tear mask region extraction with ROI.

Step Procedure

1

Selection and Loading

1.1 Extract PD-weighted DICOM images (initial resolution: 512 × 512 pixels)
1.2 Select ACL tear-related slices by expert radiologists

2

Conversion and Initialization

2.1 Convert DICOM to NII format using Python (maintains 512 × 512 resolution)
2.2 Generate initial black masks in NII format (background value: 0)

3

Annotation with ITK-SNAP

3.1 Load images and masks into ITK-SNAP
3.2 Annotate ACL tear regions as white by experts (tear regions: value 1)
3.3 Save final masks at 512 × 512 resolution

4

Preprocessing and Augmentation

4.1 Resize images and masks to 256 × 256 pixels (bilinear interpolation)
4.2 Apply random transformations and ACL tear-specific simulations (flipping, rotation ±1°, brightness ±0.01, contrast ±0.1, tear simulations)

Step 4: Image Resizing. For our LRU-Net method, the knee images
and masks were resized to 256 × 256 pixels, balancing
computational efficiency with detail preservation. Resizing
was performed using standard image processing libraries to
preserve essential features despite the reduced size.

2.3 Proposed model architecture

The LRU-Net is a deep learning framework designed for
accurate ACL tear segmentation. It combines a lightweight residual
encoder with a U-Net-style decoder, enhanced by advanced feature
extraction and attention mechanisms specifically adapted to the
characteristics of ACL tears (Figure 1). The encoder downsampled
the input through three stages to capture hierarchical features.
At the bottleneck, the optimized dynamic ASPP and enhanced
lite CBAM modules facilitate multiscale context aggregation,
refining feature maps to enhance boundary sensitivity. The dense
decoder restores spatial resolution across four stages, utilizing
dense connections and dropout to improve feature reuse. A 1
× 1 convolutional layer with sigmoid activation generates the
final segmentation mask. Optimized for lightweight computation,
LRU-Net surpasses traditional models by leveraging anatomical
constraints and attention mechanisms.

2.4 Encoder-decoder architecture

2.4.1 Encoder
The encoder employs a hierarchical architecture comprising

four stages (stage 1: skip1, stage 2: skip2, stage 3: skip3, stage
4: skip4), each stage utilized optimized ResBlock to progressively
downsample spatial resolution, extracting increasingly abstract
feature representations (Figure 2). In the stage 2, stage 3 and
stage 4 we use mid-point addition to expand the channel depth

progressively and facilitate the integration of low and high-level
features. the formula of mid-point addition is:

Xmid = Xin +
1
2
K (K = f(Xin))

Xout = f(Xmid +Xin) +Xmid

There were two noteworthy differences in every stage: (1).
when adding the shortcut, the mid-point design compressed the
output of symbol by half. (2). The second shortcut is from
an earlier location, which is directly from input. By using this
mid-point method, the number of parameters in LRU-Net is
less than that in the conventional ResBlock. The optimized
ResBlock integrates two weight layers, which combining efficient
depthwise separable convolutional operations, 1 × 1 pointwise
convolutions for channel reduction and expansion with 3 × 3
depthwise convolutions for spatial feature extraction, alongside
batch normalization and ReLU activation. achieving superior
computational efficiency characteristic of lightweight convolutional
designs. The encoder effectively captures multiscale features,
encompassing fine-grained details, such as tear textures, and broader
anatomical contexts.

2.4.2 Bottleneck
At the bottleneck, the optimized dynamic ASPP employs

dynamic dilation rates for multiscale feature integration. This is
followed by an enhanced lite CBAM that incorporates channel,
gradient, spatial, and ACL position prior attention, refining the
features for a tear-specific focus.

2.4.3 Decoder
The decoder upsampled features using four dense decoder

blocks, each enhanced by lite CBAM, along with skip connections
(skip1, skip2, skip3 and skip4) to refine tear boundaries. Additional
UpSampling2D layers restore the original resolution, and a
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FIGURE 1
The Knee ACL region location architecture of LRU-Net.

1 × 1 Conv2D with sigmoid activation produces the final
segmentation mask.

2.5 Attention mechanism

The LRU-Net employs two distinct attention mechanisms
to enhance its segmentation performance. These mechanisms
are strategically integrated into the bottleneck and decoder
stages, utilizing multiscale feature extraction and task-specific

feature refinement to improve recognition capability and boundary
segmentation accuracy.

2.5.1 Attention mechanism I
The first attention mechanism at the bottleneck combines

optimized dynamic ASPP and enhanced lite CBAM to process
the encoder’s output, producing a refined feature map. Optimized
dynamic ASPP dynamically adjusts dilation rates (e.g., 8, 16,
32), utilizing parallel convolutions and a global context branch
(GlobalAvgPool, Dense, UpSampling2D) to capture multiscale
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FIGURE 2
The encoder stages detail.

features, which are then fused via a 1 × 1 Conv2D layer.
Enhanced lite CBAM refines these features through channel, spatial,
and gradient attention (via sobel filters) and an ACL position
prior (Si et al., 2025), which prioritizes tear-relevant regions
and reduces false positives (Figure 3). This mechanism enhances
boundary segmentation accuracy, with optimized dynamic ASPP
providing robust multiscale context and enhanced lite CBAM
improving sensitivity to acceptable tear boundaries, achieving a low
boundary dice loss.

2.5.2 Attention mechanism II
The second attention mechanism in the decoder employs dense

blocks with enhanced lite CBAM across four skip connections,
improving feature recovery and boundary refinement for the final
segmentation mask (Figure 4). The dense decoder up-samples the
bottleneck output using UpSampling2D layers and concatenates
features from the encoder. Dense connections and dropout enhance
feature reuse and prevent overfitting, followed by convolutional
layers for processing. This module recovers spatial details from
skip connections. After each dense block, enhanced lite CBAM
refines features through channel, gradient, spatial attention, and
ACL position prior, emphasizing tear boundaries and relevant
regions. It preserves tear-relevant features across scales, enhancing
the recognition of complex tear patterns. By integrating these
modules, superior boundary segmentation accuracy is achieved.The
dense decoder ensures feature consistency for smooth transitions at
tear boundaries, while enhanced lite CBAM highlights fine edges
and the ACL position, resulting in precise tear delineations with
minimal errors.

2.6 Experimental setup

This study was conducted on a 12th-generation Intel
Core i7 processor with 12 cores and 20 threads, 32 GB of
RAM, and an NVIDIA GeForce RTX 3080 GPU with 8960
CUDA cores. The software environment included PyCharm
Professional as the integrated development environment (IDE),
with Python 3.9.12 as the programming language. The TensorFlow
2.10.0 and Keras 2.10.0 packages were utilized for model
development and training. This consistent hardware and software
configuration ensured fairness and reproducibility across all
experiments.

2.7 Training and validation split

The dataset was divided into training and validation subsets
using an 80:20 ratio to ensure robust evaluation and prevent
overfitting. The division, implemented in the data loading function
with a random shuffle (buffer size 1000), ensured a representative
distribution of tear patterns. The shuffle method, seeded by
the system clock, guaranteed reproducibility. The validation
set was used solely for performance monitoring, ensuring no
data leakage. Both datasets were batched (size 8), resulting
in 40 training steps and 10 validation steps per epoch. Early
stopping (patience of 10 epochs) was employed to monitor the
validation dice coefficient score and optimize model selection.
Through data augmentation, this strategy enabled a comprehensive
assessment of LRU-Net’s ACL tear segmentation across diverse
imaging conditions.
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FIGURE 3
The Attention Mechanism I detail.

2.8 Evaluation metrics

A range of metrics was utilized to thoroughly evaluate the
performance of the LRU-Net for ACL tear segmentation, focusing
on both pixel-wise accuracy and region-based overlap.Thesemetrics
were calculated on the training and validation sets during each
epoch, offering valuable insights into the model’s segmentation
accuracy, boundary precision, and generalization ability. The

evaluation metrics applied in this study include Accuracy, F1 Score,
Intersection over Union (IoU), Dice Coefficient Score, Dice Loss,
and Boundary Dice Loss, described in detail as follows:

(a) Accuracy: This metric evaluates the proportion of correctly
classified pixels throughout the image, defined as:
Accuracy = (Correctly predicted tear pixels + Correctly
predicted non-tear pixels)/Total number of pixels.
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FIGURE 4
The Attention Mechanism II detail.

(b) F1 Score:The F1 Scoremeasures the balance between precision
and recall in detecting tear regions. Precision (P) and recall (R)
are calculated as follows:
P = Correctly predicted tear regions/(Correctly predicted tear
regions + Incorrectly predicted tear regions)
R = Correctly predicted tear regions/(Correctly predicted tear
regions + Actual tear regions incorrectly identified as non-
tear regions)
Thus, the F1 Score is computed as:

F1 = (P+R)/ (2×P×R)

(c) Intersection over Union (IoU): IoU quantifies the overlap
between predicted and actual tear regions, defined as:
IoU = Correctly predicted tear regions/(Correctly predicted
tear regions + Incorrectly predicted tear regions + Actual tear
regions incorrectly identified as non-tear regions)

(d) Dice Coefficient Score (DCS): The DCS measures the likeness
between the predicted and actual tear regions in the ground-
truth mask, defined as:
DCS = 2 × Correctly predicted tear regions/(Total predicted
tear regions + Total actual tear regions)

(e) Dice Loss: The Dice loss of the LRU-Net combines the Dice-
frequency boundary loss (DBL) to enhance segmentation

accuracy, boundary precision, and resilience to class
imbalance. The Dice Loss is defined as:
DL = 1 - [2 × Correctly predicted tear regions/(Total predicted
tear regions + Total actual tear regions)]
BL = 1 - [2 × Correctly predicted boundary tear regions/(Total
predicted boundary tear regions + Total actual boundary
tear regions)]

(f) Boundary Dice Loss (BDL): The Boundary Dice Loss assesses
the model’s capacity to accurately trace tear boundaries based
on training loss. Using the distance transform method, it
prioritizes edge regions by applying a boundary weight factor
of 5. The BDL is defined as:
BDL = 1 - [2 × Correctly predicted tear regions/(Total
predicted tear regions + Total actual tear regions)]

In the formulas, “Correctly predicted tear regions” refers to true
positives (TP), “Incorrectly predicted tear regions” corresponds to
false positives (FP), “Total predicted tear regions” represents the
sum of true positives (TP) and false positives (FP), “Actual tear
regions incorrectly identified as non-tear regions” corresponds to
false negatives (FN), and “Total actual tear regions” refers to the sum
of true positives (TP) and false negatives (FN).

(Figure 5) displays the accuracy plots against validation data for
our proposedmodel’s evaluationmetrics and loss values, illustrating
different evaluationmetrics as a function of training epochs on both
validation and training data for the LRU-Net method.
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FIGURE 5
Evaluation metrics plots of training vs validation data set.

3 Results

This section presents the experimental results of the LRU-Net for
ACL tear segmentation on a dataset of MRI images. The results are

evaluated usingmultiplemetrics as defined in Section 2.8.We report
quantitative and qualitative outcomes and compare the model’s
performance against baseline models, including Attention-Unet,
Attention-ResUnet, InceptionV3-Unet, Swin-UNet, Trans-UNet
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FIGURE 6
(a,b) The IoU and dice coefficient score plot of all methods.

FIGURE 7
Example images of LRU-Net comparison with other methods results of real, ground truth, and predicted mask region location.

and Rethinking ResNets. All metrics are calculated using the
training and validation sets (Table 2). Highlights the performance
of our method, LRU-Net, which achieved the highest accuracy, F1
score, IoU, Dice Coefficient Score, Dice loss, and Boundary Dice
Loss at 98.83%, 98.16%, 96.40%, 97.93%, 5.25%, and 8.60% on the
validation data.

In both the Dice Coefficient Score figure and the
IOU plot, the proposed LRU-Net method demonstrated
exceptional performance, achieving the highest scores among all
evaluated methods (Figures 6a,b).

As illustrated in Figure 7, the result indicated the real images in
the first column.The second column is the ground truth masking of
the ACL tear region. The third column is the result of our proposed

LRU-Net. The other columns are the predicted results produced by
other various models.

It showcases sample real images of ACL tear regions, the
corresponding ground truth masks, the results obtained using our
proposed LRU-Net, and the predicted results produced by the six
other models. It offers a visual comparison of the performance
of each model in localization ACL tear regions and demonstrates
the effectiveness of LRU-Net in comparison to other models.
The proposed LRU-Net method has the least overfitting as the
difference between the training and test loss values is small. The
RethinkingResNets also have relatively lowoverfitting. Additionally,
the proposedmethod also has a low number of trainable parameters
compared to other models with the same encoder layers and skip
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TABLE 3 Parameters comparison of LRU-Net and the other six methods.

Method Parameters (M)

LRU-Net 9.1 M

Attention-Unet 19.15 M

Attention-ResUnet 19.7 M

InceptionV3-Unet 10.2 M

Swin-Unet 11.2 M

Trans-Unet 13.4 M

Rethinking ResNets 15.8 M

connections (Table 3), which may have contributed to its high
performance while avoiding overfitting. On the other hand, the
Attention_Unet and Attention_ResUnet models seem to underfit as
they have low test scores and high training loss values.

The significant improvement in localization accuracy highlights
the effectiveness of the LRU-Net method in accurately identifying
and delineating ACL tears.These findings validate the superiority of
our proposed method and its potential for enhancing the diagnosis
and treatment of ACL injuries.

4 Discussion

An ablation study was conducted by training and testing four
variants of the LRU-Net, each with specific components either
removed or modified, to evaluate their respective contributions.
The components investigated were the optimized dynamic ASPP
module, the enhanced lite CBAM attention mechanism, and dense
connections in the dense decoder (Table 4). All variants were trained
and evaluated under the same experimental setup for consistency.

4.1 LRU-Net without attention mechanisms

Excluding both optimized dynamic ASPP and enhanced lite
CBAM (by replacing optimized dynamic ASPP with a Conv2D
layer) resulted in a significant performance drop across all metrics,
highlighting the synergistic role of these mechanisms in capturing
multiscale features and refining tear-relevant information for high
segmentation accuracy and boundary precision.

4.2 LRU-Net without optimized dynamic
ASPP

Removing optimized dynamic ASPP (replaced with a Conv2D
layer) reduced performance, underscoring its importance in
dynamic multiscale feature extraction for tears of varying sizes.

4.3 LRU-Net without enhanced lite CBAM

Excluding enhanced lite CBAMdecreased all metrics, indicating
its critical role in focusing on tear-relevant features and enhancing
boundary delineation.

4.4 LRU-Net without dense connections

Replacing dense connections with standard skip connections
in the dense decoder reduced performance, confirming their
role in maintaining feature consistency and improving boundary
transitions.

The ablation study highlights the critical contributions of
optimized dynamic ASPP, enhanced lite CBAM, and dense
connections to the performance of LRU-Net. Excluding optimized
dynamic ASPP and enhanced lite CBAM resulted in a significant
performance drop across all metrics, underscoring their synergistic
role in capturing multiscale features and refining tear-relevant
information for high segmentation accuracy and boundary
precision. Removing optimized dynamic ASPP alone reduced
performance, emphasizing its importance in dynamic multiscale
feature extraction for varying-sized tears. Similarly, excluding
enhanced lite CBAM decreased all metrics, indicating its essential
role in focusing on tear-relevant features and enhancing boundary
delineation. Replacing dense connections with standard skip
connections in the dense decoder also lowered performance,
confirming their role in maintaining feature consistency and
improving boundary transitions. These findings validate the
necessity of each component for effective segmentation of ACL
tears. Compared to baselines such as U-Net and Res-Unet,
LRU-Net’s lightweight design and superior metrics highlight its
efficiency for clinical deployment. Clinically, LRU-Net’s precision
aids accurate tear localization, supporting surgical planning
and reducing diagnostic variability. The primary contributions
of this work lie in the two synergistic attention mechanisms
embedded within the LRU-Net. Attention Mechanism I, which
combines optimized dynamic ASPP and enhanced lite CBAM
at the bottleneck, captures multiscale contextual features and
refines them with gradient and anatomical attention. It enables
the model to recognize tear patterns across varying scales while
enhancing boundary sensitivity. Attention Mechanism II, which
integrates the dense decoder and enhanced lite CBAM across
skip connections, ensures precise feature recovery and boundary
refinement during decoding. It leverages dense connections and
attention mechanisms to maintain feature consistency and focus
on tear-relevant regions. These mechanisms collectively contribute
to the model’s ability to achieve high segmentation accuracy and
boundary precision, as evidenced by the low boundary dice loss and
qualitative improvements in tear boundary delineation compared
to baselines.

Despite its strong performance, the model has certain
limitations. The dataset size (706 individuals) may limit its ability
to capture rare or extreme tear patterns, potentially restricting
generalization in diverse clinical scenarios. Additionally, while
the boundary dice loss of 5.25% is low, there remains room
for further improvement in boundary precision, particularly for
tears with extremely low contrast or complex shapes. Future
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TABLE 4 Ablation study on the impact of four components in LRU-Net.

Ablation study Accuracy F1 score IoU Dice coefficient Score Dice loss Boundary dice loss

Without Attention Mechanisms 92.67% 88.70% 80.64% 88.03% 32.20% 54.22%

Without Optimized dynamic ASPP 95.72% 93.08% 87.83% 92.86% 19.10% 32.73%

Without Enhanced lite CBAM 96.88% 94.90% 90.58% 94.02% 15.92% 23.79%

Without Dense Connections 95.91% 93.48% 88.29% 93.23% 18.05% 30.93%

research could address these limitations by expanding the dataset
through synthetic data generation or multi-center data collection to
enhance model robustness and accuracy. Moreover, incorporating
advanced edge-preserving techniques, such as conditional
random fields (CRFs) (Krähenbühl and Koltun, 2012), as a post-
processing step could further refine boundary segmentation.
Exploring hybrid architectures that combine the dense connections
of DenseNet (Huang et al., 2017) with the attention mechanisms of
LRU-Net may also yield additional improvements in feature reuse
and segmentation accuracy.

5 Conclusion

This study introduced the LRU-Net, a deep-learning framework
designed to precisely segment anterior cruciate ligament (ACL)
tears in MRI images. By integrating lightweight residual
blocks, dynamic multiscale feature extraction, and task-specific
attention mechanisms, the model addresses the challenges of
multiscale tear patterns, delicate and irregular boundaries, and
anatomical variability in clinical MRI data. The experimental
results demonstrate the model’s superior performance. The
LRU-Net represents a significant advancement in ACL tear
segmentation, leveraging innovative attention mechanisms to
achieve high accuracy and boundary precision. Its lightweight
design, robust performance, and clinical relevance underscore
its potential for practical deployment in medical imaging
applications, paving the way for future research in automated
diagnostic systems.
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