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A feedback-driven ventilation
model for assessing airway
secretions in mechanically
ventilated patients

D. Vijay Anand1, Manuel Teixeira Cabeleira2, Claire Black3,
Vanessa Diaz-Zuccarini2 and Nicholas C. Ovenden1*
1Department of Mathematics, University College London, London, United Kingdom, 2Department of
Mechanical Engineering, University College London, London, United Kingdom, 3Therapies and
Rehabilitation, University College London Hospitals NHS Foundation Trust (UCLH), London, United
Kingdom

Introduction: A mechanistic compartmental model with a feedback-driven
simulation framework was developed to investigate the impact of airway
secretion accumulation and its removal on the respiratory dynamics of
mechanically ventilated patients. Understanding these dynamics is essential for
secretion management and improving respiratory care in the intensive care
unit (ICU).

Methods: The model simulates pressure support ventilation by incorporating
airway resistances, lung and chest wall compliances, and patient effort via
a dynamic respiratory muscle pressure term, enabling realistic modelling of
patient-ventilator interaction. To validate the model, simulated waveforms were
compared against clinical waveform recordings. Waveform features sensitive to
secretion-related changes, as indicated by the model, were then extracted from
the patient waveform recordings. The Wasserstein distance metric was used to
quantify shifts in pre- and post-suction feature distributions, and unsupervised
clustering was applied to identify distinct patient groups corresponding to low,
medium, and high secretion levels.

Results: The simulations revealed characteristic changes in ventilator
waveforms associated with secretion accumulation, including reduced
inspiratory flow and prolonged expiration. Analysis of patient data using
clustering methods identified distinct groups corresponding to low, medium,
and high levels of secretion. Further, we introduce a model-informed
secretion index derived from the simulations and patient data, enabling
non-invasive and continuous monitoring of secretion accumulation at the
bedside.

Conclusions: This study demonstrates the potential of physiology-informed,
model-based approaches for real-time assessment of secretion accumulation
in mechanically ventilated patients. The proposed framework supports
personalized respiratory care by providing clinicians with data-driven insights
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into secretion accumulation, paving the way for more precise secretion
management strategies in the ICU.

KEYWORDS

mechanical ventilation, airway clearance, secretion management, compartmental
model, ventilator waveforms

1 Introduction

Mechanical ventilation is initiated to support or take over
a patient’s breathing when they are unable to independently
sustain adequate ventilation. However, the introduction of an
artificial airway in order to deliver mechanical ventilation results
in impairment of the normal mechanisms underpinning airway
clearance; airway humidification, mucocilliary escalator and cough.
Retention of airway secretions is a common and serious problem in
ventilated patients. Retainedmucus narrows or occludes the airways
(Roe et al., 2025; Mietto et al., 2014), causes respiratory distress,
provides a growth medium for bacteria, and if extensive, leads
to atelectasis, gas exchange impairment, and ventilator-acquired
pneumonia (VAP). VAP is the most common nosocomial infection
affecting patients in critical care and is associated with increased
mortality and antibiotic use (Howroyd et al., 2024). Excess secretions
increase the effort to breathe, making it harder for patients to
transition to spontaneous breathing, complicating the weaning
process and increasing the risk of extubation failure (Branson, 2007;
Volpe et al., 2020; Goetz et al., 2022). Typically, these sequelae
prolong the duration of mechanical ventilation and, consequently,
the patient’s stay in the ICU. Therefore, developing effective
secretion clearance strategies, including automated detection and
appropriately timed secretion removal, is critical for mechanically
ventilated patients.

The effectiveness of mechanical ventilation is primarily
determined by the interplay of airway resistance, lung compliance
and patient-ventilator synchrony, which together regulate
ventilation dynamics, airflow distribution, and the driving
pressure required for adequate gas exchange. Several studies have
demonstrated a significant increase in airway resistance when
secretions accumulate in the airways, particularly in the trachea
and smaller bronchioles (Hess, 2014; Jubran and Tobin, 1994;
Guglielminotti et al., 2000). This increased resistance necessitates
higher ventilator pressures, including elevated peak inspiratory
pressure (PIP), and increases the work of breathing to achieve
adequate tidal volumes (Hess, 2014). In addition, positive end-
expiratory pressure (PEEP) may require adjustment to prevent
airway collapse and maintain alveolar recruitment, leading to
higher inflation pressures that elevate the risk of ventilator-
induced lung injury (VILI), as noted in Jubran and Tobin (1994);
Guglielminotti et al. (2000); Zamanian and Marini (2006). When
secretions obstruct the airways, gas exchange efficiency declines,
resulting in a ventilation-perfusion mismatch as oxygenated air
fails to reach certain lung regions due to mucus plugging. This can
result in hypoxemia (low blood oxygen) and hypercapnia (elevated
CO2), both of which are detrimental to critically-ill patients (Hess,
2007). Airway mucus also alters the lung tissue’s elastic properties,
making it stiffer and less compliant, thereby necessitating higher
ventilator pressures to maintain adequate oxygenation (Hess,

2014). Hence, early detection of secretion accumulation and its
clearance through methods such as suctioning, humidification, and
airway clearance techniques (e.g., respiratory physiotherapy) are
essential for successful weaning (Goetz et al., 2022). Conventional
indicators of secretion accumulation, such as coughing and audible
respiratory sounds, are often unreliable in mechanically ventilated
patients, particularly those who are sedated or have impaired cough
reflexes. Consequently, clinicians turn to ventilator waveforms
(VWFs), which are time series of pressure, flow, and volume signals,
along with their loops, for secretion detection (Jubran and Tobin,
1994; Guglielminotti et al., 2000; Zamanian and Marini, 2006;
Albani et al., 2021b; a; Harris, 2005). Visual interpretation of these
waveforms remains challenging, however, due to factors like lung co-
morbidities and patient-ventilator asynchronies (Younes et al., 2007;
De Wit, 2011), which can obscure secretion-related changes (Paratz
and Ntoumenopoulos, 2014). These issues underscore the need for
non-invasive secretion quantification techniques based on bedside
measurements to improve timely detection and management of
airway secretions. To address this, we adopt a structured approach
that begins by characterising the impact of secretion accumulation
on respiratory dynamics and identifying corresponding signatures
in ventilator waveforms. Our methodology is organized into three
main stages:

• Model development andValidation: A computationalmodel of
pressure support ventilation is developed to simulate the effects
of secretion accumulation on respiratory dynamics.Themodel
incorporates non-linear airway resistance, lung compliance,
and patient effort, and is validated against clinical ventilator
waveform data.
• Feature Identification from Waveforms: The model is used

to generate synthetic ventilator waveforms across varying
secretion levels, enabling the extraction of key features that
show consistent and quantifiable changes with secretion
presence and clearance.
• Clinical Application and Evaluation: The extracted features

are applied to patient ventilator data, and a secretion index
is introduced as a composite metric for quantifying secretion
accumulation and assessing its clinical relevance for non-
invasive detection.

The remainder of this paper is organised as follows: Section 2
presents the development of a pressure support ventilator model
incorporating non-linear resistance, compliance, and patient
respiratory effort, along with details of its simulation, validation,
and optimisation using clinical waveform data. Section 3 focuses
on the application of this model for quantifying airway secretions,
including analysis on both synthetic and real patient data, and
introduces the secretion index as a novel metric for tracking
secretion accumulation. Section 4 summarizes the key findings and
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discusses the translational potential of the proposed framework for
real-time, non-invasive monitoring of secretion accumulation.

2 Mechanistic modelling for
interpretability of ventilator
waveforms

Mechanistic modelling of patient-ventilator dynamics plays
a crucial role in understanding airway secretion clearance by
capturing the interplay between airway resistance, lung compliance,
and mode of ventilation. In addition, it provides information on
VWF alterations associated with secretion accumulation. When
calibrated with bedside data such as airway pressures, including
peak inspiratory pressure (PIP) and plateau pressure (Pplat); tidal
volume (VT); respiratory rate (RR); inspiratory and expiratory times;
oxygenation andblood gas levels; patient-specific parameters such as
height, weight, and lung pathology; secretion-related observations
like suctioning frequency and secretion volume; respiratory effort
metrics, including esophageal pressure (Pes); and ventilator settings
such as, positive end-expiratory pressure (PEEP), and fraction of
inspired oxygen (FiO2), themodel can closely reflect patient-specific
physiology and enhance its clinical applicability.

Early attempts at ventilator modelling relied primarily on simple
equation-basedapproaches, suchas linear resistance-compliance (RC)
models, described inBates (2009),whichmodel the airflowusingbasic
relationships between pressure, flow, and volume. In thesemodels, the
respiratory system is often represented by the equation

ΔPaw = Rrs ⋅Qaw +V/Crs, (1)

where ΔPaw = Paw −PEEP denotes airway pressure difference
across the system, Qaw is the flow rate, V is the system
volume obtained by integrating Qaw over time. Rrs and Crs
represents the airway resistance and total respiratory compliance
respectively. This equation illustrates how changes in pressure are
influenced by airway resistance and lung compliance, providing
a foundational understanding of respiratory mechanics. While
useful for approximating ventilator mechanics of sedated patients,
these simple equations fail to capture the complex, non-linear,
and time-dependent dynamics of patient-ventilator interactions
(Chen et al., 2024). Overcoming these limitations requires more
complex models and feedback mechanisms to dynamically
model changes in airway resistance, compliance, and pressures,
ensuring better alignment with clinical data (Albanese et al., 2016;
Ngo et al., 2018). Compartmental models based on ordinary
differential equations (ODEs) remain the most widely used
approach, simplifying the complexity of the respiratory system
by dividing it into compartments representing the lungs, airways,
and surrounding anatomical structures. These models capture key
dynamics through non-linear variations in parameters such as lung
compliance and airway resistance (Liu et al., 1998; Sundaresan et al.,
2009; Zhou et al., 2021). Due to their computational efficiency,
they are widely employed to simulate basic ventilator modes,
such as volume-controlled and pressure-controlled ventilation.
More complex ventilator models build upon compartmental
approaches by incorporating detailed anatomical and physiological
features, including multi-compartment lung structures, complex

airway branching with non-linear resistances, and dynamic
interactions with the heart and surrounding blood vessels
(Mistry et al., 2022; Cabeleira et al., 2024). While these models
can replicate conditions such as acute respiratory distress syndrome
(ARDS) and chronic obstructive pulmonary disease (COPD), they
require patient-specific parameters and detailed representations of
lung morphology to yield physiologically meaningful simulations.

Despite their utility, existing ventilator models struggle to
accurately simulate advanced ventilator modes such as proportional
assist ventilation (PAV) (Younes, 2002), continuous positive
airway pressure with pressure support (CPAP-PS), and neurally
adjusted ventilatory assist (NAVA), which depend on real-time
patient feedback (Sinderby et al., 1999). Further, they often assume
ideal synchronisation between the ventilator and the patient,
overlooking asynchronies such as delayed triggering or breath
stacking.Therefore, tobetterreflectrealpatient-ventilator interactions,
it is essential to design models that incorporate dynamic feedback
across various ventilator modes. Such physiology-informed models
will also be crucial for enabling future advancements, including the
integration of artificial intelligence for personalized ventilation, real-
time secretion detection, patient effort monitoring, and prediction
of ventilator asynchronies. These improvements necessitate models
that continuously adapt to patient-ventilator interactions, enabling
the simulationof diverse ventilatormodes and accommodating awide
range of patient conditions.

In this study, we present a comprehensive ventilator model
that incorporates airway resistance, lung compliance, chest wall
mechanics, and patient-driven breath cycles to simulate pressure
support ventilation.Anevent-based simulation strategyusingcallback
functions enables real-time adjustment of ventilator pressure by
tracking physiological transitions, such as peak inspiratory flow and
its decline, allowing for realistic simulation of pressure support mode
with dynamic feedback.Ourmodel aims to uncover changes inVWFs
in relation to underlying physiological parameters, particularly those
influencedbysecretionaccumulation.Using thesimulatedwaveforms,
weextractkeyrespiratoryfeaturessuchaspeakinspiratoryflow(Qmax),
which represents the maximum airflow achieved during inspiration
and reflects the combined effect of patient effort and airway resistance;
tidal volume (VT), the total volume of air delivered to the lungs during
a single breath and an indicator of overall ventilation effectiveness;
and the expiratory time constant (τ), which characterizes how quickly
the lungs empty during exhalation and is sensitive to both airway
resistance and lung compliance. In a simplified single-compartment
model, τ = RrsCrs, where Rrs and Crs denote the airway resistance
and respiratory system compliance, respectively. These features
are then used to assess the potential of waveform-based analysis
for real-time, non-invasive secretion monitoring and personalized
respiratory care.

2.1 Model formulation

The mechanistic model developed in this study is designed
to generate ventilator waveforms that reflect both clear and
secretion-accumulated airways by modulating airway resistance,
lung compliance, and patient effort parameters. Our model employs
a compartmental modelling approach, where the mechanical
ventilation system is represented as a series of interconnected
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FIGURE 1
Left: The compartment model of pressure support mechanical ventilation. The model includes a feedback element that monitors inspiratory flow to
guide the ventilator pressure profile. Right: A short recording of VWFs for 30 s and superimposition of individual breaths.

TABLE 1 Summary of model input parameters and output.

Input parameters

PEEP, PS above PEEP Ventilator settings: Positive End-Expiratory
Pressure and Pressure Support above PEEP

RVenET, RLbLa,
KETLt

1 ,K
LtLb
1 , KETLt

2 ,K
LtLb
2

Airway resistance parameters, including laminar
(K1) and turbulent (K2) flow resistance components

CET,CLt,CLb,Cbase,CThx,
α,β

Compliance parameters of compartments and
compliance shaping terms from the
Salazar-Knowles model

Ppeak, tRisePT, tInspPT, tExpPT Patient respiratory muscle pressure parameters

tcycleVT, tRiseVT, tValve Ventilator cycle timing parameters

End Inspiration % End-inspiration flow threshold: defines the
percentage of peak inspiratory flow at which the
ventilator switches from inspiration to expiration

Model Outputs

Paw(t), Qaw(t), V(t) Ventilator waveforms: airway pressure, airway flow,
and lung volume

Qmax, VT, τ Extracted features: peak inspiratory flow, tidal
volume, and expiratory time constant

compartments, each corresponding to specific components such
as the ventilator, endotracheal tube, upper airways (trachea
and bronchi), and smaller airways (alveoli). The bronchi and
alveoli compartments are enclosed within a larger compartment
referred to as the chest cavity that undergoes pressure changes
due to the motion of the diaphragm. (See Figure 1). In this
approach, each compartment is assigned parameters, such as
resistance and compliance, to account for pressure changes
and air storage capacity, respectively, as air moves in and out
of the lungs.

A typical compartment is composed of a capacitor connected to
inflow and outflow resistances to simulate the inflow and outflow
of air from a compartment. The underlying governing equations
used to compute the compartment’s internal pressure (P), the flow
in (Qin), the flow out (Qout) and the volume change from some
reference value (V−V0) are:

dV
dt
= Qin −Qout . (2)

Qin = P
in − P
Rin , Qout = P− P

out

Rout , (3)

P =
(V−V0)

C
+ Pext, (4)

These equations are formulated based upon principles of
conservation laws, constitutive equations, and phenomenological
relations. Equation 2 is the conservation equation that describes
the dynamics of air inflow, outflow, and accumulation within
the system, maintaining the integrity of volume conservation.
The flow in and out of a compartment is then calculated using
Equation 3, which depends on the pressure difference between
connected compartments and the associated resistances. Equation 4
is the constitutive equation that computes the pressure in a
compartment, with reference to an external pressure Pext, based
on its compliance and the volume it occupies at that instant of
time. The model consists of five interconnected compartments
representing different regions of the respiratory system: the
endotracheal (ET) tube, trachea (Lt), bronchi (Lb), alveoli (La),
and thoracic (Thx) cavity. Each compartment exhibits specific
compliance behaviour, denoted as CET,CLt,CLb,CLa,CThx, which
represent the elastic properties of the airway and lung structures.
The airflow between these compartments is regulated by four
resistances, RVenET,RETLt,RLtLb,RLbLa, corresponding to different
airway segments, from the ventilator to the alveoli. Additionally,
each compartment has an associated unstressed volume V0,
representing its equilibriumvolume in the absence of external forces.
The actual volume V at any given time deviates from this baseline,
leading to a dynamic pressure evolution over timewithin the system.
For the endotracheal tube and trachea compartments, the external
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TABLE 2 Model parameters and their ranges used for simulating
CPAP-PS mechanical ventilation. ∗Indicates parameters included in the
14-dimensional optimization vector.

Parameter Value/Range

Cycle Timing Parameters

tcycle,PT 2.0–3.0 s

tcycle,VT 2.0–3.0 s

t∗RisePT 0.15–0.25 s

t∗InspPT 0.75–1.00 s

t∗ExpPT 0.3–0.5 s

Pressure Parameters

P∗peak −5.0 to −1.0 mmHg

PEEP 5.0 mmHg

PS above PEEP 10.0 mmHg

Lung Compliance Parameters

C∗base 10.0–100.0 mL/mmHg

C∗Lb 1.0–10.0 mL/mmHg

C∗Lt 1.0–10.0 mL/mmHg

C∗ET 1.0–10.0 mL/mmHg

C∗Thx 300.0–500.0 mL/mmHg

α 0.05

β∗ 0.03–0.05 mmHg−1

Airway Resistance Parameters

R∗VenET 0.0005–0.005 mmHg⋅ s/mL

K∗1,ETLt 0.0005–0.005 mmHg⋅ s/mL

K∗1,LtLb 0.0005–0.005 mmHg⋅ s/mL

K2,ETLt 1× 10−6 mmHg⋅s2/ml2

K2,LtLb 1× 10−6 mmHg⋅s2/ml2

R∗LbLa 0.0005–0.005 mmHg⋅ s/mL

Lung Volume Parameters

V0La 2000.0 mL

V0Lb 70.0 mL

V0Lt 70.0 mL

V0ET 70.0 mL

V0Thx 3,500.0 mL

pressure term, Pext, is set to Patm, which is the atmospheric pressure.
Conversely, the thorax pressure PThx is the external pressure for
the bronchi and alveoli compartments within the chest cavity. The
thoracic pressure, PThx, is computed as:

PThx =
VLb +VLa −V0Thx

CThx
+ PMus, (5)

where VLb and VLa are the volumes of the bronchi and alveoli
compartments, CThx is the thoracic compliance, and PMus is
negative pressure generated by the respiratory muscles. Whilst
the temporal dynamics of each compartment are described using
ODEs, the spatial dependencies between different compartments
are approximated through the implementation of lumped properties
and the interconnections between the compartments. It is clear
from the equations (Equations 1–5) that the compliance and
resistances dictate the temporal evolution of the pressure and
volume in each compartment. The compliances and resistances
can be either constant or variable, with the potential for non-
linear relationships to physiological variables depending on the
specific compartment and its interactions with others, resulting
in phenomenological equations that describe these dynamics.
These phenomenological equations introduce non-linearity into
the model by representing airway resistance and compliance
as functions of flow and pressure, respectively, as proposed in
Bates (2009). Specifically, the nonlinearity in airway resistance is
modelled using the Rohrer’s equation (Flevari et al., 2011), which
is applied to the two resistance segments between endotracheal
tube to trachea and trachea to bronchi expressing the pressure-flow
relationship as

R (Q) = K1 +K2 ⋅ |Q|. (6)

Here, K1 and K2 represent laminar and turbulent flow
contributions to resistance. This introduces flow-dependent
resistance, where resistance increases with higher airflow due to
turbulent effects in the airway, making the ventilator mechanics
highly non-linear. Specifically, in the context of secretion
accumulation, we focus on modulating the laminar component (K1)
of airway resistance, as mucus accumulation is assumed to primarily
increase frictional resistance within the airways, particularly in
the lower flow regimes typical of mechanically ventilated patients.
The K2 parameter, representing turbulent contributions, is kept
constant, as the effects of turbulence are considered secondary under
these conditions. While Rohrer’s equation captures flow-dependent
resistance, this approach simplifies secretion effects to changes in
resistance and does not explicitly account for mucus rheology. The
lung compliance follows a modified version of Salazar-Knowles
sigmoidal model (Salazar and Knowles, 1964), given by

CLa = Cbase (1− αe−βPLa) , (7)

where compliance varies dynamically with alveolar pressure PLa,
capturing the gradual stiffening of the lungs at higher pressures.
The parameters α and β in the model regulate the compliance
adaptation. In this case, α determines the magnitude of compliance
reduction, while β controls the rate at which compliance decreases
as PLa increases, effectively capturing the progressive stiffening of
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FIGURE 2
Model validation of CPAP-PS simulation using real ventilator waveforms: airway pressure, airway flow, volume, and pressure–volume loop for two
patients. Note the differences in airway pressure and flow patterns between the top and bottom plots, particularly during the inspiratory phase
(highlighted in the shaded region of the flow curves).

FIGURE 3
Model simulation of CPAP-PS mode using patient-specific parameters: airway pressure (Paw), airway flow (Qaw), lung volume (V), and muscle pressure
(PMus) for two different patient effort scenarios. Note the differences in airway pressure and flow profiles between the simulations, especially during the
inspiratory phase (highlighted in the shaded region), which reflect variations in spontaneous breathing effort and patient–ventilator interaction.

lung tissue at higher pressures (Cabeleira et al., 2024). This non-
linear compliance response ensures the model accurately represents
pressure-volume dynamics observed in real lungs, particularly
during mechanical ventilation (Liu et al., 1998; Polak and Mroczka,
2006). The non-linear resistances and compliances as described in
Equations 6, 7 are specific to the patient or scenario and need

to be fitted accordingly for accurate physiological representation.
In a typical pressure support mode, the ventilator pressure (PVen)
serves as the driving pressure, controlling airflow into the lung
compartments by cycling between inspiratory and expiratory
pressures. This pressure is generated according to the ventilator’s
settings, including PEEP, PS above PEEP, and the timing parameters
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FIGURE 4
Comparison of optimisation results for pressure, flow, and volume waveforms: pre-suction (top) and post-suction (bottom). The recorded VWF data
(red) is overlaid with five optimized VWF profiles (grey), demonstrating consistent alignment between the recorded data and optimised solutions before
and after secretion clearance.

FIGURE 5
Distribution of airway resistance parameters and clustering based on ventilator waveform features. Left: Histograms of resistance values across three
secretion levels. Middle: Box plots showing separation in WSD(Qmax) across secretion levels. Right: UMAP projection of patient clusters, with Low
(blue), Medium (green), and High (red) secretion levels.

of the breathing cycle, creating a waveform that induces mechanical
ventilation. The ventilator pressure waveform PVen(t) is assumed
here to take the following form:

PVen (t) =

{{{{{
{{{{{
{

PEEP+ PVen
Insp (t) , if0 ≤ t < tRiseVT

PSabovePEEP, if tRiseVT ≤ t < tInspVT

PSabovePEEP− PVen
Exp (t) , if tInspVT ≤ t < tInspVT + tValve

PEEP, otherwise,
(8)

where the time variable t is measured relative to the start of each
ventilator cycle of duration tcycleVT (i.e., t ∈ [0, tcycleVT) within each
cycle), PEEP is the positive end-expiratory pressure, PSabovePEEP
is the pressure support above PEEP, tRiseVT is the time taken to

reach peak pressure, tInspVT is the duration of inspiration, and
tValve is the valve closing time during the transition to expiration.
Specifically, the distinct shape of this pressurewaveform is given here
by the functions:

PVen
Insp (t) = (PSabovePEEP−PEEP) sin( π ⋅ t

2 ⋅ tRiseVT
)and

PVen
Exp (t) = (PSabovePEEP−PEEP)

t− tInspVT
tValve
.

The respiratory muscle pressure PMus(t) is modeled using a
piecewise function to simulate the inspiratory and expiratory phases
of spontaneous breathing. The pressure waveform is governed by
the patient’s respiratory effort and defined in terms of baseline
and peak effort parameters:
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FIGURE 6
Box plots showing WSD-based considering three features (Qmax, Qslope, and Vslope) across secretion categories: Low, Medium, and High. Asterisks

indicate statistically significant differences between groups based on the Mann–Whitney U test:
∗
p < 0.05,

∗∗
p < 0.01,

∗∗∗
p < 0.001; ns denotes not

significant.

FIGURE 7
UMAP plot showing patient clustering based on secretion levels using WSD-based measures. Left: Patients categorized into five clinical secretion
levels: none, small, moderate, large, and copious. Right: Patients grouped into three aggregated secretion levels: low, medium, and high.

FIGURE 8
Comparison of resistance conditions and secretion index across segment numbers. Left: Resistance verses time plot shows the resistance progression
for different models: Linear (cyan), Quadratic (orange), Exponential (green), and Constant (black). The exponential model shows the fastest growth,
while the constant condition remains unchanged. Right: Secretion Index plot shows the median secretion index across 12 segments with standard
deviation error bars. The linear model shows the steepest decline, while the constant condition remains stable.
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PMus (t) =

{{{{{{{{
{{{{{{{{
{

Pbase +
1
2
(Ppeak − Pbase)[1− cos(

πt
tRisePT
)], if0 ≤ t < tRisePT

Ppeak, if tRisePT ≤ t < tInspPT

Pbase +
1
2
(Ppeak − Pbase)[

[
1+ cos(

π(t− tInspPT)
tExpPT

)]

]
, if tInspPT ≤ t < tInspPT + tExpPT

Pbase, otherwise
(9)

This formulation simulates a smooth pressure profile
for a spontaneous breath. During the inspiratory rise phase
(0 ≤ t < tRisePT), the muscle pressure decreases from the baseline
value Pbase to a more negative peak Ppeak, reflecting the onset of
active inspiratory effort. This is followed by a sustained inspiratory
phase (tRisePT ≤ t < tInspPT) where pressure remains at Ppeak. During
the early expiration phase (tInspPT ≤ t < tInspPT + tExpPT), the pressure
gradually returns to baseline, modelling passive muscle relaxation.
For the remainder of the respiratory cycle, the pressure stays
constant at Pbase until the onset of the next breath. This expression
allows for physiologically realistic transitions and control of breath
phase timing and effort. In order to incorporate patient–ventilator
interaction nature of CPAP-PS mode, the model includes a feedback
component (described in the next section) that detects key phases
of spontaneous breathing, such as peak inspiratory flow and
end-inspiratory timing. This feedback informs the timing and
duration of pressure support, allowing for optimal airflow delivery
into the lungs. Although this study focuses on the CPAP-PS
ventilation mode, the model architecture is readily adaptable to
other commonly used modes. By modifying the ventilator pressure
waveform PVen(t) in Equation 8, the model can simulate pressure
control ventilation (PCV) or mandatory breaths in synchronized
intermittent mandatory ventilation (SIMV). In such cases, the
patient feedback component can be disabled, and PVen(t) can
be predefined as a square waveform, where the PS above PEEP
functions as the peak inspiratory pressure (PIP) applied over a fixed
inspiratory period. This flexibility supports potential extensions
of the framework for broader ICU scenarios, including controlled
ventilation phases or spontaneous breathing trials.

2.2 Model simulation including feedback

Forward simulations were performed to generate VWFs for
CPAP-PS ventilation. In this mode, the ventilator provides pressure
support (PS) above positive end-expiratory pressure (PEEP) until
the inspiratory flow in the airway decreases to a predefined
threshold, typically set at 20% or 30% of the peak inspiratory flow
rate. The simulation incorporates a predefined patient spontaneous
breathing profile, PMus(t), along with ventilator settings such as
rise time, PEEP, PS above PEEP, and end-inspiration flow timing
to generate a feedback-dependent ventilator pressure, PVen(t).
Table 1 provides an overview of the model input parameters used
to configure the simulation and the resulting outputs, including
ventilator waveforms and derived quantities. The model parameters
such as resistances and compliances were based on data from the
literature, specifically Cabeleira et al. (2024), and listed in Table 2.
In CPAP-PS mode, the ventilator assists patient-initiated breaths
by maintaining a continuous positive airway pressure throughout
the respiratory cycle while providing additional pressure during
inspiration to support the patient’s spontaneous breathing effort. To

realistically simulate the ventilator dynamics, we use an event-based
simulation approach, which is well-suited for modelling CPAP-PS,
by providing feedback to dynamically control subsequent ventilator
pressures in response to patient respiratory muscle pressures
generated by PMus(t) using Equation 9. The function PVen(t)
represents both the timing and magnitude of CPAP-PS support,
dynamically adjusting ventilator pressures based on patient effort
and using event-based triggers to capture critical transition points.

The governing ODEs described in the model formulation
section are implemented and solved using the Julia programming
language, leveraging the efficiency and flexibility of Julia’s scientific
computing ecosystem. The DifferentialEquations.jl package is used
for numerical integration of the governing equations, ensuring
robust time-dependent simulations (Rackauckas and Nie, 2017).
Additionally, as in Pal et al. (2024), NLsolve.jl and Roots. jl are
employed to solve the non-linear equations for resistance and
compliance, allowing for a physiologically accurate representation
of airway dynamics. We employ a fourth-order Runge–Kutta (RK4)
method for time integration of the ventilator model, supplemented
with event-driven callbacks to detect specific physiological
transitions during the respiratory cycle. These callbacks are used
to identify key features such as the peak inspiratory flow rate (Qmax)
and to track when the flow decays to a defined fraction of this peak,
capturing critical phase transitions in the ventilator waveform. In
our model, the variables PET and QVenET correspond to the airway
pressure (Paw) and airway flow (Qaw), respectively. The first callback
detects the maximum flow rate, identifying the time point near
tRiseVT that marks the rise in ventilator pressure. Upon reaching
this peak flow, the simulation records Qmax and continues with the
computation of subsequent phases. The second callback identifies
when flow in the airway declines to 20%or 30%of its peak, signalling
the end of inspiration and transition to expiration. This event-based
approach ensures that each phase of the ventilator cycle is aligned
with the physiological timing, accurately reflecting the interaction
between the ventilator-applied pressure and the patient’s respiratory
mechanics. In particular, the PVen(t) and PMus(t) together drive
the dynamic response of the respiratory system in the model,
influencing the compartmental pressures and airflow rates, thus
providing insights into the combined effect of mechanically- and
physiologically-induced pressure changes on the airway pressure
distribution and ventilation dynamics.

2.3 Model validation and optimisation

To validate the CPAP-PS ventilator model, clinical VWF data
was used to compare simulated and recorded patient waveforms.
VWF data was obtained from the Getinge Servo-U ventilator
(Göteborg, Sweden), which provides real-time monitoring and
recording of flow, volume, and pressure waveforms. During routine
airway clearance procedures, pre-suction waveform data was
recorded using the ventilator’s built-in data acquisition system
before performing an airway clearance procedure to remove
excess secretions. The post suction waveform data was obtained
at least 2 minutes post procedure to allow for resumption of
the baseline respiratory rate under identical ventilator settings to
ensure comparability. Both pre- and post-suction waveform datasets
were exported and the data parsed and stored in a structured,
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human-readable format for further analysis. This structured data
acquisition process ensured consistency in ventilatormeasurements,
enabling reliable comparison of waveform changes associated with
secretion removal. The secretion levels were assessed by an expert
physiotherapist using standard clinical criteria during suctioning.
These were initially recorded as five categories: none, small,
moderate, large, and copious. For the purposes of analysis, these
were aggregated into three broader categories by grouping none
and small as low, moderate as medium, and large and copious as
high secretion levels. Unfortunately, direct quantitative secretion
volume measurements were not routinely available for all patients,
but the categorization based on clinical judgement was consistent
with routine ICU practice.

The ventilator model simulations were compared with clinical
ventilator waveform data by running forward simulations and
manually adjusting themodel parameters to improve alignmentwith
observed pressure, flow, and volume waveforms over time. Figure 2
presents ventilator waveforms from clinical cases, demonstrating
the model’s ability to capture physiological changes and provide
meaningful interpretations of patient-specific ventilator dynamics.
In Figure 2 (top), a linear decrease in the flow curve is observed
during the interval between peak flow and the end of inspiration,
indicating a passive decay of inspiratory flow as pressure support
is maintained constant. In contrast, Figure 2 (bottom) shows a
sharp increase near the latter part of inspiration, suggesting that
the patient’s breathing effort is dominating ventilator support.
This is further evident in the concave shape of the flow curve
during the transition from rise time to end of inspiration. To
further illustrate the clinical relevance of the model, we present
another example that reflects distinct patient–ventilator interaction
patterns observed in clinical data. Figure 3 shows model-based
simulations for two different patient effort scenarios. In the first
case (top panel), the patient initiates a spontaneous breath which
is promptly supported by the ventilator, demonstrating synchrony
between patient effort and ventilator support. In the second case
(bottom panel), a spontaneous breath is initiated by the patient
before the mandatory ventilator breath could complete, resulting
in patient–ventilator desynchrony and double triggering, which is
clearly evident in the flow and pressure waveforms. The model
demonstrates a strong capability in capturing patient-ventilator
dynamics, effectively reflecting changes in airway resistance,
compliance, and patient effort within ventilator waveforms. Despite
its minimal formulation, which simplifies the spatial structure
of the lung by representing key anatomical regions, such as the
trachea, bronchi, and alveoli, using lumped resistance (RLtLb,RLbLa)
and compliance (CLt,CLb,CLa) parameters, the model maintains
spatial simplicity while providing sufficient temporal accuracy
to capture subtle VWF variations arising from patient–ventilator
interactions, all with minimal computational complexity. The
choice of model parameters and operating range helps to ensure
that the solutions accurately reflect the VWFs. In practical
implementations, incorporating physiological constraints, such as
those based on expected muscle pressure dynamics, into the
parameter identification process can ensure that the model adheres
to realistic physiological limits (Vicario et al., 2015).

In our study, we calibrated the ventilator model and estimated
optimal parameter values using an evolutionary optimization
approach. Specifically, we employed a non-gradient-based

optimization method, Exponential Natural Evolution Strategy
(xNES), developed initially by Glasmachers et al. (2010) and
implemented using the BlackBoxOptim package in Julia. xNES
is a derivative-free evolutionary optimization method designed for
high-dimensional, non-linear objective functions. Its suitability for
physiological model calibration arises from its ability to efficiently
explore complex, noisy parameter spaces where solutions are often
non-unique and interdependent. In ventilator simulations, where
patient-specific variations introduce significant heterogeneity in
the resulting lung mechanics, xNES enables robust parameter
estimation without relying on gradient information, making it
more effective than traditional optimization methods. The xNES
optimization minimizes the discrepancy between simulated and
observed patient data (pressure, flow, and volume waveforms)
by refining model parameters within physiological constraints.
It iteratively explores the parameter space, adapting its search
distribution and covariance matrix to converge on an optimal
solution that minimizes the fitness score. The process terminates
when a target fitness or iteration limit is reached, yielding a
calibrated parameter set that closely aligns the ventilator model
with patient data. Mathematically, this involves minimizing the
difference between simulated data Xsim(t) and observed patient data
Xobs(t) across ventilator signals such as pressure Paw(t), flow Qaw(t),
and volume V(t). Dynamic Time Warping (DTW), a measure that
accounts for both the amplitude and temporal alignment, is used to
evaluate the fit. The objective function is defined as:

f (θ) = ∑
i∈{P,Q,V}

wi DTW(Xsim,i (θ) ,Xobs,i) ,

where θ represents the model parameters to be optimized, Xsim,i(θ)
is the simulated time-series data for variable i (e.g., pressure, flow,
volume) given parameters θ, Xobs,i is the observed time-series data
for variable i, DTW(Xsim,i(θ),Xobs,i) computes the DTW distance
between the simulated and observed data for variable i, and wi
is a weighting factor for each variable i. The DTW measures the
similarity between two time-series, particularly focusing on the
temporal alignment of the maxima and minima. This approach
enables the optimization to achieve a close fit between the
simulated and observed ventilator waveforms. xNES is used to
explore the parameter space by adjusting the search distribution,
where parameter samples θ are drawn from a multivariate normal
distribution θ ∼N (μ,C), where μ is the mean vector of the
parameter distribution, and C is the covariance matrix. At each
iteration, xNES updates μ and C based on sampled parameters
θ and their fitness scores. More details on the method can
be found in Glasmachers et al. (2010). The optimization terminates
when either the fitness score f(θ)meets a predefined threshold ftarget
or the iteration count t exceeds the maximum limit Tmax, i.e.,

Stopif f (θ) ≤ ftargetor t ≥ Tmax.

The optimization is performed over a 14-dimensional
parameter vector, denoted as θ, consisting of compliance,
resistance, and spontaneous breathing parameters within
the model. Specifically, the compliance components include
CET,CLt,CLb,Cbase,β,CThx, representing the elastic properties of
different respiratory compartments. The four resistance parameters,
RVenET,K1ETLt,K1LtLb,RLbLa, that define airflow resistance across
various airway segments. Finally, four spontaneous breathing
parameters, Ppeak, tRisePT, tInspPT, tExpPT, characterize the peak
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inspiratory effort, and the timing of different phases in the breathing
cycle. The list of optimized parameters and their physiological
bounds is provided in Table 2; these bounds serve as physiologically
informed guidelines and can be adjusted to achieve the best fit
for individual breaths. These parameters collectively form the
search space explored by xNES to minimize the discrepancy
between simulated and observed ventilator waveforms. To analyse
the effect of suctioning on the VWFs, we optimized individual
breaths before and after the suctioning procedure using the xNES
algorithm. Due to the stochastic nature of xNES, we performed
10 optimization runs per breath to capture the range of possible
solutions. This approach accounts for variability in the optimization
process and enables a robust statistical comparison of parameter
distributions before and after secretion removal by evaluating
multiple plausible solutions per breath. Figure 4 compares pre-
suction (top) and post-suction (bottom) ventilator waveforms
for pressure, flow, and volume, illustrating that the optimization
process generates multiple plausible parameter sets per breath,
each capable of closely reproducing the observed VWFs. This
non-uniqueness reflects a fundamental challenge in physiological
modelling, as parameters related to respiratory muscle pressure
cannot be uniquely estimated from ventilator waveforms alone.
Addressing this limitation may require integrating oesophageal
pressure measurements or applying stronger priors and Bayesian
techniques to constrain the parameter space within physiologically
plausible bounds (Tsaneva-Atanasova et al., 2025; Cheng et al.,
2025). While formal confidence intervals were not calculated
in this study, parameter ambiguity was mitigated by imposing
physiological bounds during the xNES optimization (Table 2).
To evaluate the model fit, we computed the Root Mean Square
Error (RMSE) and the coefficient of determination (R2) for airway
pressure (Paw), flow (Qaw), and volume (V) waveforms across the
analysed breaths. The RMSE and R2 values in Table A1 indicate
good agreement between the model and experimental data across
both pre- and post-suction breaths. RMSE values for airway pressure
remained below 2.2 mmHg, and flow and volume errors were within
physiologically reasonable ranges. The R2 values were consistently
above 0.75 for all signals, with most exceeding 0.85, confirming
that the model accurately captures key features of patient-specific
respiratory dynamics.

3 Secretion quantification using
ventilator waveforms

The ability to detect and quantify airway secretion
accumulation remains a critical yet unresolved challenge in
mechanical ventilation. Traditional methods for assessing secretion
accumulation have notable limitations. One common approach
is auscultation, which involves listening to lung sounds with
a stethoscope. This method is inherently subjective and often
unreliable in sedated or intubated patients. Another common
practice is secretion volume estimation, typically performed after
suctioning, which provides only retrospective insight and relies on
visual assessment and clinical judgment rather than standardized
or predictive metrics. Although ventilator waveforms are routinely
monitored at the bedside, their potential for secretion monitoring
remains underutilized due to the absence of structured methods for

quantifying secretion load and its impact on respiratory dynamics.
To address this gap, we use our CPAP-PS model to simulate
secretion-related waveform alterations, providing a controlled
framework for understanding the impact of secretion accumulation
on ventilation patterns and enabling the development of quantitative
metrics for secretion detection. To quantify secretion accumulation,
various features derived from ventilator waveform data were
considered, including peak inspiratory flow (Qmax), tidal volume
(VT), and the expiratory time constant (τ). The peak inspiratory
flow was computed as the maximum value of the flow waveform
during the inspiratory phase. Tidal volume was obtained from the
peak of the volume waveform, corresponding to the maximum
lung inflation in a breath cycle. The expiratory time constant
(τ) was estimated by fitting an exponential decay model to the
expiratory portion of the volume waveform and extracting the
decay constant from the fitted curve. These waveform features
capture both inspiratory and expiratory airflow characteristics,
thus providing a basis for assessing secretion-induced changes in
respiratory dynamics.

3.1 Secretion analysis on VWF synthetic
data

To evaluate the impact of secretion accumulation on ventilator
waveforms, we generated a synthetic dataset using the CPAP-
PS ventilator model developed in this study. Secretion levels
were assumed here to be proportional to increased airway
resistance, with specific parameter variations introduced to simulate
different secretion accumulations. In this exploratory analysis, we
selected resistance distributions to systematically probe how varying
resistance levels affect ventilator waveforms. We defined a baseline
resistance mean of 0.001 mmHg⋅ s/mL with a standard deviation of
0.0003 mmHg⋅ s/mL to capture variability in breaths. To examine
moderate and high secretion scenarios, we shifted the mean to two-
and threefold the baseline, respectively. This pragmatic approach
allows us to identify waveform features that are indicative of changes
in airway resistance. While this analysis focuses solely on airway
resistance, confounding factors such as lung compliance and patient
effort also influence these waveform features. In the model, the
airway resistance parameters K1ETLt and K1LtLb were assumed to
follow a normal distribution, with mean values of N (0.001,0.0003)
for low resistance, N (0.002,0.0003) for medium resistance, and
N (0.003,0.0003) for high resistance. Figure 5 (left) shows the typical
airway resistance distributions corresponding to different secretion
levels. The resistance increase was chosen to be twice and thrice
the baseline value to represent medium and high secretion levels,
respectively. To introduce breath-to-breath variability, the muscle
pressure signal was varied for each simulated breath by randomly
sampling parameters of PMus(t), including Ppeak, tRisePT, tExpPT,
and the total cycle duration (tcyclePT). For each simulated breath,
the muscle pressure signal (PMus) was generated by sampling key
parameters from uniform distributions: the total cycle time tcycle
was drawn from U(4.0,5.0), peak inspiratory pressure Ppeak from
U(−5.0,−4.0), inspiratory rise time tRisePT from U(0.5,1.0), and
expiratory time tExpPT from U(0.1,1.0). A total of 30 synthetic
patients were simulated, equally distributed across three secretion
levels (10 per category). Each patient underwent 12 simulated
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breaths pre-suction and 12 post-suction, resulting in 24 breaths per
patient. Patients were categorized based on their pre- and post-
suction resistance distributions. High secretion patients had a pre-
suction resistance distribution ofN (0.003,0.0003) and post-suction
N (0.001,0.0003), medium secretion patients had a pre-suction
resistance of N (0.002,0.0003) and post-suction N (0.001,0.0003),
while low secretion patients maintained a resistance distribution
of N (0.001,0.0003) before and after the suctioning procedure. The
synthetic ventilator waveform data was then used to analyse the
effects of secretion accumulation and removal on the ventilator
waveforms.

A quantitative analysis was conducted to evaluate secretion-
related changes in ventilator waveforms using the synthetic dataset.
For each of the 30 synthetic patients, peak inspiratory flow
(Qmax), tidal volume (VT), and the expiratory time constant
(τ) were computed over 12 simulated breaths before and after
suctioning. The Wasserstein distance (WSD) was used to quantify
the change in distribution of each feature across the pre- and
post-suction states, resulting in three WSD scores per patient.
Figure 5 (middle) shows a clear separation in the distributions of
the peak inspiratory flows with different secretion levels. These
WSD-derived metrics were then used as input to a Uniform
Manifold Approximation and Projection (UMAP) algorithm, which
clustered patients based on secretion accumulation. UMAP is a
non-linear dimensionality reduction technique that preserves both
local and global data structure, making it well-suited for clustering
tasks in high-dimensional datasets (McInnes et al., 2018). It is
particularly effective for visualizing complex data by projecting
it into lower dimensions (e.g., 2D or 3D) while maintaining
meaningful relationships between observations (patients, in this
case). In this analysis, UMAP was applied as an unsupervised
clustering method, and the resulting embeddings revealed distinct
patient clusters corresponding to low, medium, and high secretion
levels. These results suggest that waveform-derived features can
provide sufficient information to categorize patients by secretion
accumulation, highlighting the potential of ventilator waveform
analysis as a non-invasive tool for secretion assessment.

3.2 Secretion analysis on VWF patient data

To extend the insights gained from synthetic VWF data analysis,
we applied the same feature extraction methodology to real patient
VWF data, where secretion levels were clinically assessed. The real-
world VWF signals, recorded over short time intervals before and
after airway clearance procedures, were inherently more variable
and susceptible to noise. We analysed data from 35 patients, of
whom four had copious secretions, seven had large, nine had
moderate, 13 had small, and two had no detectable secretions.
The analysis of individual breaths revealed noticeable shifts in the
distributions of peak inspiratory flow rate following suctioning.
However, changes in tidal volume and expiratory time constant
were less discernible, likely due to signal variability and the subtle
nature of secretion-related effects on these features. To provide a
more detailed representation of the inspiratory phase, we introduced
two slope-based metrics, namely, the flow slope and the volume
slope. The flow slope (Qslope) quantifies the rate of decline in
inspiratory flow from the point of maximum flow to the point of

maximum volume, computed as (QQmax −QVmax)/(tVmax − tQmax).
The volume slope (Vslope) represents the rate of volume increase
over this same interval, defined as (VVmax −VQmax)/(tVmax − tQmax).
Here, QQmax denotes the peak inspiratory flow, while VQmax is the
lung volume at the time of this peak. Conversely,VVmax corresponds
to the maximum lung volume, and QVmax is the flow at that time.
The interval between tQmax and tVmax captures the late-inspiratory
segment, during which flow rate typically falls as the lungs approach
peak inflation. This segment is particularly sensitive to airway
resistance, lung compliance, and patient–ventilator interaction. The
slope-based metrics introduced here characterize the temporal
evolution of the inspiratory waveform, offering a quantitative
description of breath mechanics. A reduced Qslope may indicate
increased airway resistance or partial obstruction, potentially due
to secretion accumulation. In contrast, deviations in Vslope may
be associated with changes in lung compliance or altered volume
recruitment during inspiration. Together, these measures serve as
physiologically meaningful indicators that support the detection
and interpretation of secretion-related changes in the VWFs. To
quantify the relationship between secretion levels and ventilator
waveform features, we computed WSDs using Qmax, Qslope, and
Vslope, thereby integrating both conventional and slope-based
descriptors of VWFs.

Figure 6 presents a box plots comparing WSD scores across
different secretion levels, showing that WSD derived from peak
inspiratoryflowrateseffectivelydistinguishesbetweenvaryinglevelsof
secretion. Features such asQslope, andVslope across different secretion
categories reveals meaningful trends. Patients in the high secretion
group exhibit significantly higher WSD values compared to those
in the low group, indicating greater variability in their VWFs. This
suggests that it is feasible todistinguishbetween lowandhighsecretion
accumulations using WSD-based metrics. However, the overlap in
WSD values between the medium and high groups, as evidenced by
non-significant statistical differences in several features, highlights the
difficulty in clearly separating these two categories. These findings
imply that whileWSD is effective in capturing waveform dissimilarity
at the extremes of secretion accumulation, it may require further
enhancement or combination with additional features to reliably
discriminate intermediate secretion levels. To investigate whether
patients could be classified based on ventilator waveform changes
associated with secretion levels, we applied UMAP, to cluster patients
using the features extracted from the VWFs. Figure 7 illustrates the
resulting patient clusters, showing clear separation between low and
highsecretion levelsasdeterminedbyWSDscores,whilemediumlevel
exhibits overlap between the two groups. These findings highlight the
potential of ventilator waveform analysis for secretion detection and
showthat thequantifiedwaveformfeatures canbeeffectively leveraged
by machine learning algorithms to enable automated detection and
subsequent clustering of patients with similar secretion levels.

3.3 Secretion index: A novel metric for
airway secretion quantification

A comprehensive assessment of secretion accumulation requires
a method that captures its gradual progression and impact on
ventilation dynamics. To address this, we have developed a metric
that quantifies secretion accumulation by tracking continuous
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changes in ventilator waveforms over time. Our proposed metric is
the Secretion Index (SI) defined as

SI =
[Qmax +

VT
τ
]

[Qmax0 +
VT0
τ0
]
,

where Qmax represents the peak inspiratory flow, VT denotes the
tidal volume, and τ is the expiratory time constant.The denominator
serves as the baseline reference, which can either be taken as
values from a typical healthy adult or from an earlier set of patient
measurements. In this study, the baseline is computed from the
first recorded breath in the observation window, with Qmax0,VT0,τ0
representing the corresponding peak inspiratory flow, tidal volume,
and expiratory time constant at that initial time point. The SI
represents a scalar metric that integrates airflow dynamics and lung
emptying efficiency, offering a comprehensive measure of secretion-
related changes in ventilation. The first term, Qmax, serves as an
indirect indicator of secretion accumulation, as increased airway
secretions are expected to increase airflow resistance, potentially
reducing peak inspiratory flow. The second term, VT/τ, quantifies
how efficiently the tidal volume is expelled relative to airway
mechanics, making it sensitive to secretion-induced changes in
expiratory flow resistance. Since the expiratory time constant is
influenced by both resistance and compliance, this term indirectly
captures the impact of secretion-induced airway narrowing and
obstruction. Ahigher SImay indicate efficient secretion clearance, as
it suggests robust expiratory flow and effective lung emptying, while
a lower SI may signify secretion retention.

To evaluate the effectiveness of the proposed secretion index, a
controlled simulation was designed to generate ventilator waveform
data over a 1-h period, corresponding to approximately 720
simulated breaths. The simulation assumed an initially clear airway,
setting the resistance parameters K1ETLt and K1LtLb to 0.001.
Secretion accumulation was then introduced by progressively
increasing airway resistance, mimicking secretion accumulation
over time. This approach allowed us to examine how the SI
evolves as secretion accumulation progressively increases, providing
a more comprehensive assessment of secretion-induced changes in
ventilation dynamics. Four different resistance evolution patterns
were implemented: constant, linear, quadratic, and exponential. In
the constant case, resistance remained fixed at the baseline value
throughout the simulation, serving as a control. In the linear
case, resistance increased gradually from 0.001 to 0.003 across the
simulation duration. The quadratic variation simulated a slow initial
increase in resistance that accelerated progressively, reflecting a more
non-linear accumulation pattern. In the exponential case, resistance
remained close to the baseline value for themajority of the simulation,
followed by a rapid rise toward the end, reaching amaximumof 0.003.
Thispatternmimicsasuddenobstructionevent,withalate-stage,sharp
transition to ahigh-resistance state.The resistance evolution functions
were implemented using smooth interpolation schemes, ensuring
physiologically plausible transitions between secretion states. Figure 8
(Left) shows a systematic variation in resistance trajectories in this
simulation study corresponding to different secretion accumulation
scenarios. The SI was computed for each breath and its statistics was
analysed across 12 time segments, with each segment representing 60
breaths. Prior to tracking its progression, SI valueswere normalized by
setting theSIof thefirst breath (clear-airwaycondition) as thebaseline.
Correspondingly, the SI exhibited variations following the same trend

as airway resistance across different progression profiles (see Figure 8
(Right)). This analysis provides a dynamic perspective on secretion
accumulation, complementing the discrete classification approach.
This single metric holds potential as a real-time indicator for
assessing secretion load and guiding airway clearance strategies,
including respiratory physiotherapy, bronchodilator therapy, or
suction procedures. Additionally, SImay serve as a valuable parameter
for tracking disease progression or assessing treatment response in
patients with chronic mucus-related airway diseases.

4 Summary and conclusion

This study examined the impact of airway secretions on
ventilator dynamics using a mechanistic model combined with
patient ventilator waveform data. Simulations were performed to
evaluate how secretion accumulation alters respiratory dynamics,
demonstrating that increased airway resistance makes it more
difficult to mechanically maintain desired ventilation. In particular,
increased resistance affects patient-ventilator interactions by
reducing peak inspiratory flow and prolonging expiratory time.
These effects were reflected in VWF alterations, highlighting
the potential for waveform-based analysis to detect secretion
accumulation.

To systematically investigate this, we first employed our
ventilator model to generate synthetic VWF data under varying
airway resistance conditions, corresponding to different secretion
levels. The parameters governing airway resistance were selected
from different distributions to establish controlled pre- and post-
secretion conditions, providing a systematic basis for extracting key
waveform features and analysing the impact of secretion removal on
ventilator dynamics. Features such as peak inspiratory flow (Qmax),
tidal volume (VT), and the expiratory time constant (τ), which were
particularly indicative of secretion levels, were identified from this
synthetic dataset. To quantify the differences in feature distributions
before and after secretion removal, the Wasserstein distance
was computed, capturing the degree of change associated with
secretion clearance. Building on these insights, we applied the same
feature extraction methodology to real patient VWF data, where
secretion levels were clinically assessed. Using an unsupervised
UMAP clustering algorithm, we observed distinct separation
between low and high secretion levels, further demonstrating
the potential of VWF-derived markers for non-invasive secretion
detection.

Beyond discrete pre/post secretion analysis, we further
investigated the continuous progression of airway resistance over
time. A 60-min simulation was conducted, where airway resistance
gradually increased from a baseline clear-airway state to a high-
secretion condition, modelling the dynamic accumulation of
secretions. Four different progression profiles were considered:
constant, linear, quadratic, and exponential resistance increase.
The secretion index, a composite metric derived from ventilator
waveform features, consistently tracked the progression of airway
resistance in all four cases, demonstrating its potential as a
quantitative indicator of secretion accumulation. These findings
highlight the potential critical interplay between airway resistance
and secretion accumulation, emphasizing the need for timely
intervention in response to secretion-induced changes in the
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ventilator waveform features. Although our model delineates
waveform signatures of secretion accumulation, it has certain
limitations. It approximates secretion effects solely through
resistance changes and does not account for mucus rheology
or spatial heterogeneity. The parameter estimation is limited
by the lack of additional physiological data (e.g., oesophageal
pressure, imaging), which would constrain model parameters
and mitigate ill-posedness. While our approach shows promising
initial validation on both simulated and clinical data, formal
uncertainty quantification (e.g., Bayesian methods) and evaluation
in larger patient cohorts are essential to confirm its generalizability
and clinical utility. The current model’s translation to diverse
patient populations is limited by its simplified representation of
airway resistance, without explicitly accounting for condition-
specific respiratory mechanics such as compliance variations,
lung heterogeneity, or dynamic hyperinflation, as observed
in COPD, ARDS, and paediatric cases. Extending the model
to such conditions would require incorporation of disease or
condition-specific parameters, alongside access to well-labelled
ventilator waveform datasets, which remain scarce and present
challenges for comprehensive validation. Further studies in
these areas will enhance the interpretability and applicability
of the framework.

4.1 Potential clinical applications and
implementation challenges

The proposed mechanistic model and secretion quantification
framework holds several practical applications in critical care.
Firstly, the secretion index and ventilator waveform features can be
used for early detection of airway secretion accumulation, allowing
clinicians to initiate suctioning or respiratory physiotherapy
before clinical deterioration occurs. Secondly, the model enables
real-time monitoring of secretion-related resistance changes,
offering the potential for integration into ICU dashboards
or ventilator interfaces as a non-invasive indicator of airway
patency. This would support timely interventions, particularly
in sedated or neurologically-impaired patients. Thirdly, the
model-derived metrics could be incorporated into weaning-
readiness scores by quantifying secretion accumulation trends,
thus improving the prediction of extubation success. Furthermore,
personalised adjustment of ventilator settings such as PEEP
or pressure support based on inferred resistance and patient
effort may reduce ventilator-induced lung injury and improve
synchrony. These applications highlight the translational potential
of this modelling approach in guiding secretion management,
optimizing ventilator strategies, and ultimately enhancing patient
outcomes.

Despite its clinical utility, translating this framework into
routine ICUpractice faces several practical challenges.These include
interoperability with existing ICU infrastructure, particularly with
ventilator platforms and patient monitoring systems that use diverse
data standards and proprietary protocols. Ensuring low-latency
data acquisition, secure transmission, and real-time processing
will be critical for timely clinical decision support. Robust data
storage and management solutions must also be in place to handle
the continuous high-frequency waveform data while maintaining

patient privacy and compliance with healthcare regulations, such as
the European Union General Data Protection Regulation (GDPR)
and the U.S. Health Insurance Portability and Accountability
Act (HIPAA). Moreover, clinician trust in model-derived indices
will depend on transparent validation using real ICU datasets
in prospective clinical trials, rigorous performance benchmarking
against standard secretion assessment methods, and user-friendly
visualization integrated into familiar electronic health record
(EHR) interfaces. Comprehensive training and change-management
programs will be needed to overcome resistance to adopting
novel decision-support tools and to minimize the risk of alarm
fatigue (i.e., desensitization caused by excessive non-actionable
alarms). Successfully navigating these challenges will pave the
way for seamless bedside integration, transforming secretion
management and improving patient outcomes in critical care
environments.
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Appendix A

TABLE A1 Comparison of model performance for pre- and post-suction
breaths across five cases (B1–B5). Metrics include RMSE and R2for airway
pressure (Paw), airway flow (Qaw), and volume (V).

Breath RMSE R2

Paw Qaw V Paw Qaw V

Pre-suction

B1 0.95 147.78 33.50 0.95 0.94 0.95

B2 1.51 77.70 26.43 0.88 0.98 0.97

B3 1.06 152.62 46.31 0.94 0.94 0.91

B4 1.14 177.44 41.81 0.93 0.92 0.93

B5 1.32 85.64 26.85 0.90 0.98 0.97

Post-suction

B1 1.02 110.20 25.37 0.92 0.96 0.97

B2 1.75 264.60 34.50 0.78 0.74 0.95

B3 1.08 133.57 34.75 0.92 0.93 0.95

B4 1.09 93.02 22.09 0.91 0.97 0.98

B5 2.04 284.33 51.00 0.70 0.70 0.89

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2025.1612501
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Mechanistic modelling for interpretability of ventilator waveforms
	2.1 Model formulation
	2.2 Model simulation including feedback
	2.3 Model validation and optimisation

	3 Secretion quantification using ventilator waveforms
	3.1 Secretion analysis on VWF synthetic data
	3.2 Secretion analysis on VWF patient data
	3.3 Secretion index: A novel metric for airway secretion quantification

	4 Summary and conclusion
	4.1 Potential clinical applications and implementation challenges

	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Correction note
	Generative AI statement
	Publisher’s note
	References
	Appendix A

