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Objective: This meta-analysis aims to evaluate the comparative effects of blood
flow restriction resistance training (BFR-RT) versus traditional resistance training
(RT) on lower limb muscle hypertrophy, maximal strength, jumping ability, and
sprint performance in athletes.

Methods: A comprehensive search was conducted across PubMed, Web of
Science, the Cochrane Library, Embase and SPORTDiscus databases. This search
identified 181 studies, of which 15 met the inclusion criteria. The quality of
the studies was assessed using the Cochrane risk-of-bias tool, and data were
analyzed using StataMP 17.0.

Results: The analysis revealed that BFR-RT significantly enhanced lower limb
maximal strength (ES = 0.27, 95% CI: 0.03–0.52, p = 0.031, I2 = 25%),
demonstrating its effectiveness in improving strength. However, no significant
differences were observed between BFR-RT and RT for lower limb muscle
hypertrophy (ES = 0.17, 95% CI: -0.15–0.50, p = 0.293, I2 = 0%), jumping ability
(ES = 0.25, 95% CI: -0.04 to 0.54, p = 0.091, I2 = 0%), or sprint performance (ES
= −0.1, 95% CI: 0.39–0.19, p = 0.136, I2 = 0%).

Conclusion: The findings suggest that while BFR-RT is effective in improving
maximal strength, it does not offer additional benefits over traditional RT in terms
of muscle hypertrophy, jumping ability, or sprint performance.
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athletes, resistance training, lower limb strength, bloodflow restriction training, athletic
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1 Introduction

Blood Flow Restriction Training (BFRT) is a technique that
uses a cuff or tourniquet applied to the proximal limb to partially
occlude blood flow during exercise (Anderson et al., 2019; Sato,
2005). By restricting venous return while allowing partial arterial
inflow, BFRTcreates a localized hypoxic environment that intensifies
fatigue and stimulates muscular and metabolic adaptations even at
low training loads (Yang et al., 2024; The Occlusion Cuff ® , 2025).
This method has become increasingly widespread in both sports
performance and rehabilitation contexts, as clinicians and coaches
integrate BFRT to promote muscle growth, preserve function,
and facilitate recovery in post-operative and athletic populations
(Loenneke et al., 2015; Saraf et al., 2022). Notably, combining low-
intensity exercise with vascular occlusion enables athletes to achieve
gains in muscle size and strength typically associated with high-
load resistance training (HL-RT), but with substantially reduced
mechanical stress on joints and connective tissues (Yang et al., 2024;
Lorenz et al., 2021).

Among its reported benefits, BFRT combined with resistance
exercise (BFR-RT) has demonstrated considerable efficacy in
eliciting hypertrophy and strength improvements comparable to
conventional heavy lifting (Yang et al., 2024; Chang et al.,
2024). Research indicates that BFR-RT activates similar molecular
pathways, including mTOR signaling and myokine release, thereby
driving protein synthesis and muscle adaptation (Yang et al., 2024).
Because BFR-RT typically employs loads of only 20%–40% of
one-repetition maximum (1RM), it offers a lower-risk training
strategy for both healthy athletes and those recovering from injury
(Lorenz et al., 2021). Additionally, BFRT has been linked to
improvements in aerobic capacity and endurance performance,
with studies showing greater increases in VO2max and time-to-
exhaustion when low-load exercise is performed under vascular
restriction compared to non-occluded training (Cognetti et al.,
2022). From a clinical standpoint, BFRT is also used to attenuate
muscle atrophy during periods of immobilization or rehabilitation
(Saraf et al., 2022). Lorenz et al. and others have highlighted that
BFRT enables patients to maintain strength and muscle mass when
heavy loading is not yet feasible, effectively bridging early and later
rehabilitation stages (Lorenz et al., 2021).

In athletic settings, BFR-RT has attracted attention as a tool
to support or complement high-load training. For example,
meta-analyses and controlled trials report that BFR-RT can
improve explosive capabilities, such as jump height and sprint
performance, and contribute to better overall conditioning
(Yang et al., 2024; Wang et al., 2023). Its advantages include
the use of much lighter loads (20%–40% 1RM with high
repetitions) compared to traditional strength training protocols

Abbreviations: BFRT, Blood flow restriction training; RTE, test group
Resistance training; BFR-RTE, test group combining Blood Flow Restriction
with Resistance Training; CMJ, Countermovement jump; 1RM, one-
repetition maximum; E, test group; C, control group; SJ, Squat jump; SLJ,
Standing long jump; CMJ, Countermovement jump; 10 m, 10-m sprint;
20 m, 20-m sprint; 30 m, 30-m sprint; 40 m, 40-m sprint; HL, high-load;
ML, Moderate intensity load; LL, low-load; LL-BFR-RT, low-load blood flow
restriction resistance training; LL-MH, Lower limb muscle hypertrophy; n,
missing data. W Woman; PRISMA, Preferred Reporting Items for Systematic
Reviews and Meta-Analyses; M, Man; W, Woman.

(70%–90% 1RM), which can reduce cumulative joint stress and
the risk of overuse injury (Weaver et al., 2024). Despite the
reduced mechanical tension, BFRT tends to induce comparable
hypertrophy and strength gains while potentially allowing more
frequent training sessions and less delayed-onset muscle soreness
(Lorenz et al., 2021; Rodríguez et al., 2024).

Nevertheless, the precise impact of BFRT on performance-
related outcomes remains subject to debate. Some studies have
reported that low-load BFR-RT produces smaller increases in
strength compared to traditional high-load protocols. For example,
a recent meta-analysis by Chang et al. (2024) observed that while
muscle hypertrophy did not differ significantly between BFR-RT and
HL-RT, strength gains were modestly inferior in BFR-RT groups
(Chang et al., 2024). Similarly, trials involving semi-professional
soccer players found no additional improvements in sprinting
or jumping ability when BFR-RT was added to regular training
(Scott et al., 2017). These results suggest that in already well-trained
athletes, the translation of BFR-induced adaptations to sport-specific
performance may be inconsistent. In contrast, other systematic
reviews and meta-analyses have highlighted substantial benefits of
BFR-RT, reporting significant improvements in strength, power,
speed, and endurance relative to conventional training (Wang et al.,
2023). Such discrepancies likely arise from variations in training
volume, frequency, cuff pressure, exercise selection, and the training
status of participants.

While previous reviews have examined the effects of BFRT
across diverse populations and training modalities—including
aerobic BFR, passive BFR, and mixed interventions
(Yang et al., 2024; Rui et al., 2023)—few studies have specifically
focused on the impact of combining BFRT with resistance training
in athletes. Given that BFR-RT has become the most common
and practically applied form of BFRT in sports settings, there is
an urgent need to clarify its relative effects on key performance
indicators essential for athletic development, including lower-
limb strength, muscle hypertrophy, jumping performance, and
sprint speed. This study aims to concentrate on resistance
training and further elucidate the influence of BFR-RT on athletic
performance. Through a meta-analysis, the study will systematically
evaluate the effects of BFR-RT on performance outcomes,
synthesize the existing body of evidence, and determine its actual
effectiveness.

2 Research methods

2.1 Search strategy

The literature search was conducted across the PubMed, Web
of Science, the Cochrane Library, Embase and SPORTDiscus
databases using the following keywords: “Blood flow Restriction,”
“Kaatsu,” “Ischemic Training,” “BFRT Therapy,” “BFRT Therapies,”
“BFRT,” “Blood Flow Restriction Training,” “Blood Flow Restriction
Exercise,” “resistance training,” “resistance exercise,” “Resistance,”
“Strength Training,” “Strengthening Programs,” “Weight Bearing
Exercise Program,” “players,” “sportsman,” “athlete,” “sports
person,” and “sportswomen.” The search timeframe covered all
publications from the inception of each database until June
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29, 2025. The detailed search strategy for each database is
provided in Supplementary Appendix 1.

To ensure the accuracy of the literature search, two researchers
independently verified the search terms. In cases where there was
disagreement between the two researchers (B.D and R. Y) regarding
the selection of search terms, a third researcher (G.L) made the final
decision.

2.2 Study selection

This meta-analysis was conducted in accordance with the
guidelines of the Cochrane Collaboration (Cumpston et al., 2019)
and the Preferred Reporting Items for Systematic Reviews andMeta-
Analyses (PRISMA) (Moher et al., 2009). The study protocol was
registered with the International Platform of Registered Systematic
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TABLE 1 Inclusion and exclusion criteria for literature.

Principle Inclusion criteria Exclusion criteria

P Athletes of any age or gender, without injury, illness, or
other clinical conditions

Athletes with injuries, illnesses, or other clinical
symptoms

I The experimental group underwent resistance training
under blood flow restriction

Other methods; Blood flow restriction combined with
other training methods

C The control group underwent resistance training Non resistance training

O At least one of the following outcome indicators in
athletes: lower-limb strength, muscle hypertrophy,

jumping performance, or sprint speed

Outcomes unrelated to these indicators or studies
unable to report mean and standard deviation before

and after the intervention

S Randomized controlled trial Non randomized controlled trials

Other — Conference papers, review literature, book chapters
and reviews; Unable to obtain the full text; Non sports

science literature

Review and Meta-Analysis Protocols (INPLASY202480005). The
Population, Intervention, Comparator, Outcomes, and StudyDesign
(PICOS) criteria were used to define the inclusion and exclusion
criteria for this meta-analysis, as outlined in Table 1.

The retrieved records from each database were imported into
EndNote X9 software for duplicate removal. Two researchers
independently conducted an initial screening of the titles and
abstracts to identify potentially relevant studies. Following this,
both researchers thoroughly reviewed the full texts and assessed
the studies based on the population, intervention, comparator,
outcomes, and study design criteria to determine their eligibility
according to the inclusion and exclusion standards. The study
selection process was conducted independently by two researchers.
In cases of disagreement, a third researcher (G.L) was consulted,
and any conflicts were resolved through discussion until a consensus
was reached. Inter-rater agreement for study eligibility assessment
based on full-text review was substantial (Almost Perfect, Cohen’s
kappa = 0.85).

2.3 Data extraction

Upon completing the search, detailed information was collected
from the eligible articles. Two researchers (B.D and R. Y)
independently extracted the data into aMicrosoft Excel spreadsheet.
The extracted data included the article title, publication year, author
names, characteristics of the subjects (age, sample size of the
experimental and control groups), training protocols (intervention
duration, intervention methods, training frequency, training load,
BFR-RT duration, cuff location, width, pressure, and intervention
methods in both the experimental and control groups), outcome
measures, and authors’ conclusions. If discrepancies arose in the
data extracted by the two researchers, a third researcher (G.L)
would extract the data and confirm the final version. Pre- and post-
intervention data were recorded asmean ± standard deviation in the
Excel spreadsheet, If the full text or specific data from the study were
not accessible, the corresponding author was contacted to obtain

the relevant information. Inter-rater reliability for study selection
was calculated usingCohen’s kappa statistic (Almost Perfect, Cohen’s
kappa = 0.83).

2.4 Risk of Bias Assessment

The quality of all included studies was assessed using the
Cochrane Risk of Bias Tool. The evaluation criteria included “Low
risk,” “Unclear risk,” and “High risk,” and the final results served
as the basis for assessing the quality of the included studies. The
quality assessment for all studies included in this meta-analysis was
independently conducted by two researchers (B.D and R. Y). Inter-
rater reliability for the Risk of Bias Assessment was also calculated
using Cohen’s kappa statistic (Substantial, Cohen’s Kappa = 0.72).

2.5 Data analysis

All statistical analyses were performed using StataMP 17.0. As
all variables were continuous, outcomes were reported as means and
standard deviations. Standardized mean differences (SMDs) were
calculated to estimate effect sizes, and forest plots were generated
accordingly. A random-effectsmodel was applied to compute pooled
effect sizes across studies, regardless of heterogeneity, to account for
potential clinical and methodological differences among included
studies (Borenstein et al., 2021; Chandler et al., 2019). Heterogeneity
was assessed using the I2 statistic, with values interpreted as
follows: <25% indicating low heterogeneity, 25%–75% moderate,
and >75% substantial heterogeneity (Van Tulder et al., 2003). When
I2 exceeded 75%, sensitivity analyses were conducted to assess
the robustness of the pooled results (Higgins et al., 2003). The
magnitude of effect sizes was interpreted according to the scale
proposed by Hopkins et al. 2009: <0.2 = trivial; 0.2–0.6 = small;
0.6–1.2 = moderate; 1.2–2.0 = large; 2.0–4.0 = very large; and >4.0
= extremely large. To assess potential publication bias, a funnel plot
was constructed to visually inspect asymmetry in the distribution of
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study effect sizes. In addition, Egger’s regression test was performed
to statistically evaluate the presence of publication bias (Sedgwick
and Marston, 2015). A p-value of <0.05 was considered statistically
significant.

3 Results

3.1 Literature search results

A total of 181 articles were retrieved from the databases, and
an additional four articles were identified through manual search of
the references in related studies. After removing duplicates, an initial
screening was conducted based on the titles and abstracts. Full texts
were then reviewed and re-screened, excluding studies that did not
meet the inclusion criteria. Ultimately, 15 studies were included in
the meta-analysis. The detailed process is illustrated in Figure 1.

3.2 Study characteristics

A total of 15 studies were included in this meta-analysis,
encompassing 372 participants, all of whom were athletes. The
experimental group, which underwent BFR-RT, included 185
participants, while the control group, which performed traditional
RT, included 205 participants.Themajority of the interventionswere
conducted at a frequency of 2–3 sessions per week, with intervention
durations ranging from 3 to 10 weeks. The types of athletes included
in the studies were volleyball players (Wang et al., 2022), long
jumpers (Hopkins et al. 2009), weightlifters (Van Tulder et al., 2003),
rugby players (Jessee et al., 2018; Geng et al., 2024; Vergara et al.,
2024; Adhitya et al., 2025), football players (Wang et al., 2022;
Garber et al., 2011; Sarfabadi et al., 2023; Luebbers et al., 2019;
Kami ̇Ş et al., 2024), netball athletes (Manimmanakorn et al.,
2013), trampoline athletes (Yang et al., 2022), Basketball players
(Adhitya et al., 2025; Smith H. et al., 2025), and canoeists
(Ugur et al., 2023). Detailed characteristics of the included studies
are presented in Table 2.

3.3 Risk of Bias Assessment

Thequality assessment of the 15 included studies was conducted
based on the Cochrane Risk of Bias Tool criteria, and the results
are presented in Figure 2. All the included studies were randomized
controlled trials. Regarding allocation concealment, 13 studies were
assessed as having unclear risk, while only 2 studies were considered
to have a low risk. Due to the nature of the interventions, all studies
were rated as high risk for blinding of participants and personnel,
as blinding was not feasible. For blinding of outcome assessment,
10 studies were assessed as having unclear risk, and 5 studies were
rated as low risk. In terms of incomplete outcome data, 2 studies
were assessed as having unclear risk, and 13 studies were rated as
low risk. Regarding selective reporting, 2 studies were assessed as
having unclear risk, while the remaining 13 studies were considered
to have low risk. Regarding other biases, 1 study was assessed as
having unclear risk, while the remaining studies were considered to
have low risk.

3.4 Meta-analysis results

3.4.1 Lower limb muscle hypertrophy
Seven studies (comprising 7 experimental and 7 control

groups, totaling 147 participants) were included in the analysis
comparing the effects of RT and BFR-RT on lower limb muscle
hypertrophy (Figure 3). The heterogeneity test yielded an I2 of 0%
and a p-value of 0.853, indicating no significant heterogeneity. The
meta-analysis showed a pooled effect size (ES) of 0.17 (95% CI: 0.15
to 0.50, p = 0.293), suggesting no statistically significant difference
between the groups.

3.4.2 Lower limb maximal strength
In the included studies, 8 studies (comprising 11 experimental

groups and 14 control groups, with a total of 248 participants)
compared the effects of RT and BFR-RT on lower limb athletic
performance in athletes (Figure 4). The heterogeneity test revealed
an I2 value of 25% and a P value of 0.184, indicating low
heterogeneity. The meta-analysis results showed a pooled effect size
(ES) of 0.27 (95% CI: 0.03–0.52, p = 0.031), indicating a statistically
significant difference favoring BFR-RT over RT.

3.4.3 Jump performance
Eight studies (comprising 11 experimental and 10 control

groups, with a total of 207 participants) compared the effects of
RT and BFR-RT on jump performance in athletes (Figure 5). The
heterogeneity test indicated an I2 of 0% and a p-value of 0.970,
showing no significant heterogeneity. The meta-analysis resulted in
a pooled effect size (ES) of 0.25 (95% CI: 0.04 to 0.54, p = 0.091),
with no statistically significant difference between the groups.

3.4.4 Sprint speed
In the included studies, 6 trials compared the sprint performance

between RT and BFR-RT groups in athletes (Figure 6), comprising
9 experimental groups, 9 control groups, and a total of 201
participants. The heterogeneity test revealed I2 = 0% and p = 0.695,
indicating substantial heterogeneity across the studies. The meta-
analysis showed a pooled effect size (ES) of −0.10 (95% CI: 0.39 to
0.19, p = 0.136), with no statistically significant difference between
the groups.

3.5 Publication bias

Funnel plots for all outcomes showed approximate symmetry,
and Egger’s regression tests revealed no significant publication bias,
suggesting a low risk of publication bias (Figure 7).

4 Discussion

4.1 The impact of BFR-RT on lower limb
muscle hypertrophy

The meta-analysis results indicate that BFR-RT is not an effective
methodforenhancing lower limbmusclehypertrophyinathleteswhen
compared to RT alone.This finding is consistent with prior systematic
reviews by de Ruiter et al. (2007) and Sadamoto et al. (1983), as well as
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FIGURE 1
Literature screening process diagram.

many of the studies included in the present analysis (Scott et al., 2017;
Yangetal., 2022;Uguretal., 2023;Luebbersetal., 2014;Yamanakaetal.,
2012), all of which reported similar results.

Individual studies agree. Laurentino et al. (2008) showed
that applying an occlusion cuff during 8 weeks of heavy leg
extensions did not augment quadriceps CSA gains relative to
training without cuffs. Likewise, Dankel et al. (2016) found that
blood flow restriction added to high-load biceps curls produced no
greater muscle activation or hypertrophy than high-load exercise
alone–concluding that BFR “would seem unlikely to induce greater
muscle hypertrophy” under those conditions pubmed.ncbi.nlm.
nih.gov. Teixeira et al. (2021) reported similar results: after
8 weeks of unilateral knee extensions, all protocols (high-load
with BFR during rest, with BFR during lifting, or with no BFR)

showed ∼6–7% quadriceps CSA increases with no between-group
differencesjournals.lww.com. In sum, adding BFR to an already
intense program did not confer any extra muscle size gain.

A likely reason is redundancy of the hypertrophic stimulus.
Maximal contractions themselves generate very high intramuscular
pressure, effectively occluding blood flow and causing the same
hypoxic, metabolite‐rich environment that BFR aims to induce.
In other words, heavy lifting “per se” creates near-occlusion in
the muscle (Teixeira et al., 2021), so supplemental cuff pressure
adds little new stress. Moreover, the once‐popular hormonal
hypothesis has been largely disproven: acute surges of GH, IGF-
1, testosterone, etc. from exercise have no clear link to long-
term muscle growth (Lixandrão et al., 2018). Recent evidence
indicates that systemic hormonal spikes do not predict how much
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TABLE 2 Basic characteristics of included literature.

Studies Genders/
Subjects

Sample size Age Experimental
group

Control
group

Experimental
group

Control
group

Experimental
group

Control
group

Interventions Interventions

Wang et al.
(2022)

M/volleyball 6 6 20.17 ± 0.75 20.83 ± 1.47 HL-BFR-RT HL-RT

Wang et al.
(2022)

M/volleyball 6 6 20.50 ± 1.38 20.83 ± 1.47 LL-BFR-RT HL-RT

Sarfabadi et al.
(2023)

M/long jump 9 8 n n ML-RT +
LL-BFR-RT

ML-RT

Luebbers et al.
(2019)

M,W/weightlifting 9 9 15.8 ± 1.2 16.6 ± 1.2 LL-BFR-RT HL-RT

Luebbers et al.
(2019)

M,W/weightlifting 9 9 15.8 ± 1.2 16.6 ± 1.2 LL-BFR-RT LL-RT

Luebbers et al.
(2014)

n/rugby players 17 14 20.3 ± 1.1 20.3 ± 1.1 HL-BFR-RT +
LL-BFR-RT

HL-RT + LL-RT

Scott (2017) M/football 10 8 19.8 ± 1.5 19.8 ± 1.5 HL-BFR-RT +
LL-BFR

HL-RT + LL-RT

Hosseini et al.
(2022)

n/football 10 9 15.9 ± 60.8 15.9 ± 60.8 BFR-RT RT

Yamanaka et al.
(2012)

n/football 16 16 19.2 0 ± 1.8 19.2 ± 1.8 LL-BFR-RT LL-RT

Yang et al. (2022) M,W/trampoline 7 8 13.9 ± 0.4 13.8 ± 0.5 LL-BFR-RT HL-RT

Ugur et al. (2023) n/kayak 17 16 18.59 ± 0.71 18.81 ± 1.11 LL-BFR-RT LL-RT

Cook et al. (2014) W/rugby players 10 10 21.8 ± 1.2 21.1 ± 1.5 ML-BFR-RT ML-RT

Castilla-López
and

Romero-Franco
(2023)

M/football 9 9 19.22 ± 1.69 19.22 ± 1.69 LL-RFR-RT Interventions

Takarada et al.
(2002)

W/rugby players 6 6 25.3 ± 0.8 25.4 ± 0.8 ML-BFR-RT HL-RT

Kami ̇Ş et al.
(2024)

M/football 12 12 19.25 ± 0.86 19.42 ± 1.24 LL-BFR-RT HL-RT

Adhitya et al.
(2025)

M,W/basketball
and rugby
athletes

23 23 16.3 ± 1.4 17.1 ± 2.3 LL-BFR-RT ML-RT

Adhitya et al.
(2025)

M,W/basketball
and rugby
athletes

23 23 16.3 ± 1.4 16.4 ± 1.1 LL-BFR-RT HL-RT

Smith H. et al.
(2025)

M,W/basketball 8 9 21.1 ± 1.5 22.0 ± 2.1 LL-BFR-RT LL-RT

Frequency Duration Resistance
training
exercises

Training load BFR-RT
duration, cuff
position, width,

pressure

Key outcome
indicators

Significant
differences
between

groups (yes or
no)

3/week 8 weeks half-squats E:70% 1RM
C:70%1RM

Throughout
RT,proximal part of the

thigh,7 cm, 50%
arterial occlusion

Half squat 1RM, SJ yes

(Continued on the following page)
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TABLE 2 (Continued) Basic characteristics of included literature.

Frequency Duration Resistance
training
exercises

Training load BFR-RT
duration, cuff
position, width,

pressure

Key outcome
indicators

Significant
differences
between

groups (yes or
no)

3/week 8 weeks half-squats E:30% 1RM
C:70%1RM

2/week 6 weeks leg press, squats E:60%–70%1RM+20%1RM
C:60%–70%1RM

Throughout
RT,proximal part of the

thigh, 10 cm, 60%
arterial occlusion

Squat 1RM, SLJ yes

3/week 6 weeks squats E:20%1RM
C:65%–90%1RM

Throughout
RT,proximal part of the

thigh, 7.6 cm,
Subjective rating of
perceived exertion

(RPE): 7/10

Squat 1RM yes
3/week 6 weeks squats E:20%1RM

C:20%1RM

2/week 7 weeks squats E:≥70%
1RM+≥20%1RM

C:≥70%
1RM+≥201RM

Throughout
RT,proximal part of the

thigh, 7.6 cm,
Subjective rating of
perceived exertion

(RPE): 7/10

Squat 1RM, LLMH yes

2/week 5 weeks squats E:60%–90%1RM+20%–30%1RM
C:60%–90%1RM+20%–30%1RM

Throughout
RT,proximal part of the
thigh, Subjective rating
of perceived exertion

(RPE): 7/10

CMJ, 10 m, 20 m,
40 m, Squat 3RM

no

3/week 6 weeks Football specialized
training + lower limb

strength training

E:45%–85% HRmax
C:45%–85% HRmax

Throughout
RT,proximal part of the

thigh,
4 cm,160–210 mmHg

CMJ, Squat 1RM, 40
yard dash

yes

3/week 4 weeks squats E:20%1RM
C:20%1RM

Throughout
RT,proximal part of the

thigh,5 cm,n

Squat 1RM, LLMH yes

2/week 10 weeks back squat, front squat E:20%–30%1RM
C:60%–85%1RM

Intermittent occlusion,
proximal part of the
thigh, 7.62 cm,set at 7

on the VAS scale

SJ,CMJ,LLMH no

2/week 8 weeks Leg Press, Leg Curl,
Quadriceps Extension

E:30%1RM
C:30%1RM

Throughout
RT,proximal part of the
thigh, 40–51 cm and

49–66 cm,180–230 mmHg

LLMH yes

3/week 3 weeks squats E:70%1RM
ML

C:70%1RM

Intermittent occlusion,
proximal part of the

thigh, 10.5 cm,
180 mmHg

Squat 1RM, 40 m yes

2/week 6 weeks Back Squat, Single
Deadlift, Barbell Hip

Thrust

E:20%–35%1RM
C:70%–85%1RM

Intermittent lower
limbs, 7 ×

82 cm,160 mmHg

Thigh girth,
CMJ、30 m

no

2/week 8 weeks knee extension E:50%1RM
C:50%1RM

Throughout
RT,proximal part of the
thigh, 33 mm,196 ±

5.7 mmHg

LLMH yes

(Continued on the following page)
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TABLE 2 (Continued) Basic characteristics of included literature.

Frequency Duration Resistance
training
exercises

Training load BFR-RT
duration, cuff
position, width,

pressure

Key outcome
indicators

Significant
differences
between

groups (yes or
no)

3/week 8 weeks squat E:bodyweight
C:bodyweight

Throughout
RT,proximal part of the

thigh, 5 cm,60%
LOP-80% LOP

CMJ, 30 m no

2/week 8 weeks back squats, split
squats, deadlifts, and

monster walks

E:30% 1RM
C:70% 1RM

Throughout
RT,proximal part of the
thigh, 100 mm,196 ±

5.7 mmHg

Quadriceps strength no

2/week 8 weeks back squats, split
squats, deadlifts, and

monster walks

E:30% 1RM
C:30% 1RM

Throughout
RT,proximal part of the

thigh, n,70% LAOP

Quadriceps strength yes

3/week 4 weeks Squats combined with
speed drills (auxiliary)

E:20%–30% 1RM
C:80% 1RM

Throughout
RT,proximal part of the
thigh, 100 mm, 60%

LOP

Squat 1RM,CMJ, 5 m,
10 m, 20 m

yes

Note: M, man; W, woman; SJ, squat jump; SLJ, standing long jump; CMJ, countermovement jump; 10 m, 10-m sprint; 20 m:20-m sprint; 30 m, 30-m sprint; 40 m, 40-m sprint; LLMH, lower limb
muscle hypertrophy; L, high-load; LL, low-load; ML, moderate intensity load; LL-BFR-RT, low-load blood flow restriction resistance training; RT, resistance training; LL-RT, low-load blood
resistance training; n, missing data; LOP, limb occlusion pressure.

muscle is gained–mechanical and metabolic stress appear to be the
true drivers (Lixandrão et al., 2018). Thus, expecting BFR to boost
growth via extra hormone release or “metabolic shock” beyondwhat
heavy loads already provide is not supported by current knowledge.

It is worth noting that measurable muscle hypertrophy typically
requires several weeks of training. For example, in Teixeira’s
study, all groups achieved about 7% muscle growth after 8 weeks
(Teixeira et al., 2021). Most RT studies run ≥8–12 weeks to
capture muscle growth. Our meta included few very long trials,
so we cannot exclude subtle effects over longer periods. Future
work should employ longer interventions (e.g., ≥10–12 weeks) to
determine if chronic adaptations diverge when BFR is combined
with heavy lifting. Until then, the evidence suggests that for trained
athletes, BFR + RT offers no hypertrophy advantage over RT alone
(Teixeira et al., 2021; Lixandrão et al., 2018). Taken together, these
findings suggest that in trained athletes, combining blood flow
restriction with resistance training does not produce additional
hypertrophic benefits compared to resistance training alone.

4.2 The impact of BFR-RT on lower limb
maximal strength

The studies included in this analysis assessed strength by
measuring the one-repetitionmaximum in both full and half squats,
with results indicating that BFR-RT has a positive impact on lower
limb strength. Additionally, the study by Yasuda et al. (2006)
demonstrated that 6 weeks of blood flow restriction resistance
training led to an average strength increase of 0.3 kg, further
validating the effectiveness of BFR-RT in enhancing lower limb
strength. Other studies have also reported significant improvements

in muscular strength following BFR-RT (36), reinforcing its
applicability in athletic training.

However,notall investigationsconcur.Gavandaetal. (2020) found
noadditional improvement in leg-press 1RMafter 8 weeksof low-load
BFR-RT (20% 1RM, 40% limb-occlusion pressure) compared with
volume-matchedRTinhealthymales.Likewise,Lixandrãoetal. (2015)
observed only trivial changes in squat strengthwhen cuffpressurewas
set below 40% LOP, suggesting that sub-threshold pressures may fail
to elicit sufficient mechanical and metabolic stress .

Mostmeta-analyses andstudies confirmthatBFR-RTsignificantly
enhances lower limb strength (Ugur et al., 2023; Yamanaka et al.,
2012; Cook et al., 2014). The primary mechanisms underlying this
effect include increased mechanical tension and metabolic stress,
both of which are considered key factors in muscle adaptation and
strength development (Luebbers et al., 2014; Cook et al., 2014).
BFR-RT creates a hypoxic and acidic environment (Yasuda et al.,
2006), promoting lactate accumulation, which in turn affects muscle
contraction and sustains force output by increasing motor unit
recruitment (Yamanaka et al., 2012). Additionally, the accumulation
ofmetabolites and cellular swelling (Jessee et al., 2018; Loenneke et al.,
2012) may further enhance training adaptations, while the additional
recruitment of type II muscle fibers (Loenneke et al., 2015) is
regarded asoneof the crucialmechanismsbywhichBFR-RT improves
strength performance. Furthermore, research suggests that BFR-RT
can stimulate the secretion of anabolic hormones and accelerate the
fatigueprocess, therebypromotinggreatermotorunit recruitmentand
overall strength gains (Yasuda et al., 2014).

From a physiological perspective, the high training frequency
and appropriate loading levels in BFR-RT enhancemuscle activation
and increase motor unit recruitment rates during slow, high-
tension contractions (Wang et al., 2022). The application of
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FIGURE 2
Bias risk map.

FIGURE 3
Forest plot of lower limb muscle hypertrophy in experimental and control groups.

cuff pressure not only facilitates metabolite accumulation but
also influences hormone secretion levels (Takano et al., 2005),
thereby amplifying training adaptations. Specifically, BFR-RT elicits
strength-type neural adaptations—greater motor-unit recruitment

and firing rates under sustained tension—while simultaneously
promoting protein synthesis, lactate accumulation, and growth-
hormone release (Takano et al., 2005; Takarada et al., 2000). Notably,
although BFR-RT is effective in improving strength, its adaptive
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FIGURE 4
Forest plot of maximum lower limb strength between experimental group and control group.

FIGURE 5
Forest plot of lower limb jumps in experimental and control groups.
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FIGURE 6
Forest plot of sprint ability between experimental group and control group.

mechanisms may rely more on neural adaptations rather than
muscle hypertrophy (Gabriel et al., 2006).

However, several trials indicate that BFR-RT may function
mainly as a complement to high-load RT rather than provide
additional strength adaptations—especially when strength is
evaluated via 1RM, where it often fails to surpass traditional ≥70%
1RM training (Held et al., 2020). Discrepancies across studies
appear to hinge on programme and cuff-application variables. For
example, Chen (Chen et al., 2022) employed twice-weekly sessions
at 30% 1RM with 40% limb-occlusion pressure (LOP) and reported
modest gains, whereas Hosseini Kakhak (Hosseini et al., 2022)
used four sessions per week at 40% 1RM with 80% LOP and a
13 cm pneumatic cuff, yielding significantly larger improvements.
Such contrasts suggest that load (<30% vs. ≥ 40% 1RM), weekly
frequency (≤2 vs. ≥ 3 sessions), cuff width (≤5 cm vs. ≥ 13 cm),
and—most critically—relative pressure (<50% vs. 60%–80%
LOP) jointly modulate mechanical tension, metabolic stress,
and thus strength adaptation. Therefore, future research should
systematically manipulate these parameters to define an optimal
BFR-RT prescription and to clarify its suitability across diverse
athletic populations.

4.3 The impact of BFR-RT on jump
performance

The results of the meta-analysis indicate that, compared to
RT, BFR-RT is not an effective method for improving lower limb
explosiveness in athletes. This finding is not entirely consistent
with Xiaolin’s meta-analysis (Wang et al., 2023), which may

be due to the inclusion of a “healthy population,” while our
study specifically targeted athletes. This difference may have led
to contrasting trends in the effects of BFR-RT on lower limb
explosiveness.

First, Enhancing lower-limb explosiveness relies on rapid
motor-unit firing synchrony, a high rate of force development,
and efficient stretch–shortening-cycle behaviour (Enoka, 1997;
Moritani, 1993). The BFR-RT interventions included in our
meta-analysis mainly used slow-tempo, single-plane resistance
exercises and did not incorporate plyometric or ballistic
elements—stimuli that are essential for eliciting the explosive-
type neural adaptations underlying vertical-jump improvements
(Markovic and Mikulic, 2010; Iacono et al., 2016). These findings
suggest that the specificity of the movement stimulus—rather than
the blood-flow-restriction modality itself—determines whether
strength-type gains translate into explosive ability.

Secondly, the impact of BFR-RT on the tendon and tendon-
aponeurosis complex is also an important consideration. Existing
research indicates that tendon stiffness and elasticity play a critical
role in lower limb explosiveness (Maciejewska-Skrendo et al.,
2020). Kubo et al.’s study found that, after 12 weeks, LL-BFR-RT
did not significantly alter the tensile properties and stiffness of
the tendon-aponeurosis complex. Tendon stiffness is believed to
be positively correlated with explosive performance in athletes
(Kubo et al., 2006; Madarame et al., 2011), especially in actions
such as jumping and sprinting, where tendons contribute to force
output by storing and releasing elastic energy. Therefore, the lack
of significant improvement in lower limb explosiveness in this
study may be related to insufficient effects of BFR-RT on tendon
characteristics.
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FIGURE 7
Publication bias diagram. (a) muscle hypertrophy. (b) low limb strength. (c) jump performance. (d) sprint speed.

Furthermore, in Li et al. (2023) ’s research, BFR-RT was shown
to indirectly promote vertical jump height by enhancing muscle
metabolic adaptability and motor unit recruitment. However, the
results of this study differ from LI et al.’s meta-analysis, which
could be due to differences in experimental design, sample
characteristics, and research conditions. Li et al. (2023)’s study
may have included various types of training methods or sample
groups, while our study focused specifically on resistance training,
which might have had a different impact on enhancing lower limb
explosiveness.

In conclusion, although BFR-RT shows potential for enhancing
strength and explosiveness, its effects appear to be no greater than
traditional RT. Future research could further explore the effects
of BFR-RT under different conditions, such as varying athletic
populations, training loads, and cycles, through subgroup analyses,
to better understand its role in explosive power training.

4.4 The impact of BFR-RT on sprint
performance

The meta-analysis results indicate that BFR-RT does not
significantly improve sprint performance in athletes compared to RT
alone.This finding is consistent with themajority of studies included
in this analysis (Scott et al., 2017; Manimmanakorn et al., 2013;
Hosseini et al., 2022; Cook et al., 2014). Research by Fostiak et al.
(2022) also found that 30-m sprint performance did not improve
following BFR training. The included studies evaluated sprint
performance using measures such as 5-m, 10-m, 20-m, 40-m, and
40-yard sprints to comprehensively assess the impact of BFR-RT on
sprint performance.

Critical factors influencing sprint performance include reaction
time, technique, electromyography (EMG) activity, and neural
factors. Reaction time and technique are largely influenced by
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genetics and training (Mero et al., 1992). In terms of other factors,
EMG is often used to assess changes in motor unit recruitment,
firing frequency, and synchronization (Wang et al., 2022). However,
studies have shown no significant differences in EMG amplitude
between BFR-RT and RT (Wang et al., 2022; Moore et al. 2004).
Additionally, neural adaptations, such as increased motor unit
activation and synchronization, are considered crucial for improving
maximal power output (Enoka, 1997; Moritani, 1993; Fujita et al.,
2008). RT research indicates that maximal voluntary contraction
can increase motor unit activation (Folland and Williams, 2007).
However, studies on BFR-RT have not shown significant changes
in motor unit activation (Wang et al., 2022; Gabriel et al.,
2006; Kubo et al., 2006; Scott et al., 2016), which may explain
why BFR-RT does not significantly outperform RT in sprint
performance.

It is noteworthy that one study included in our analysis found
that while there was no significant difference between LL-BFR-RT
and LL-RT in the 10-m sprint, LL-RT outperformed LL-BFR-RT
in the 5-m sprint (Manimmanakorn et al., 2013). This suggests
that BFR-RT might be more effective than RT for certain short-
distance sprints. Systematic reviews by Wortman (Wortman et al.,
2021) and research by Mckee et al. (2023) also pointed to the
positive effects of BFR-RT on sprint performance. This might be
because BFR increases metabolic stimuli during exercise, which
more effectively triggers sympathetic nervous system activity,
enhancing reaction speed and, consequently, displacement speed
(Scott et al., 2016; Kiyohara et al., 2006).

Given these conflicting results, it is possible that BFR-RT’s effects
vary with different sprint distances, and differences in BFR settings,
training loads, and athlete adaptation levels may lead to varying
outcomes. Therefore, more studies are needed to verify the effects
of BFR-RT on specific sprint distances in different sports.

5 Practical applications

Our findings indicate that blood-flow-restriction resistance
training (BFR-RT) is a reliable method for increasing maximal
lower-limb strength. For muscle hypertrophy, explosive power,
and sprint speed, BFR-RT performed comparably to traditional
high-load resistance training. When size or speed is the foremost
objective, programmes centred on conventional high-loadworkmay
therefore remain the first choice, with BFR-RT serving as a useful
alternative whenever heavy loads are impractical—such as during
rehabilitation, in-season maintenance, or deload phases. Ultimately,
coaches should match the training tool to the athlete’s goals,
phase of training, and tolerance for mechanical stress, integrating
BFR-RT alongside traditional methods when it adds logistical or
physiological value.

6 Limitations

Despite the systematic integration of existing research results
through this meta-analysis and the evaluation of BFR-RT’s impact
on athletes’ jump performance, sprint speed, lower limb maximal
strength, and muscle hypertrophy, several limitations exist. First,
the study only included publications in English, with only 15

studies meeting the inclusion criteria. Additionally, the majority of
the studies included had intervention periods of 6–8 weeks, while
some performance indicators might require longer durations to
show significant effects. Future research should focus on improving
sample sizes, study design, and control of external factors to provide
more reliable and comprehensive evidence.

7 Conclusion

This meta-analysis summarizes the effects of BFR-RT on
athletic performance. The results indicate that BFR-RT is superior
to traditional RT in enhancing maximal lower limb strength.
However, BFR-RT did not show superior effects over RT in jump
performance, and no significant advantage was found in lower limb
muscle hypertrophy, particularly in muscle hypertrophy and sprint
speed training, where RT demonstrated more pronounced effects.
Therefore, for these training objectives, RT should be prioritized.
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