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Advancing cardiac diagnostics:
high-accuracy arrhythmia
classification with the EGOLF-net
model

Deepika Tenepalli and T. M. Navamani*

School of Computer Science and Engineering (SCOPE), Vellore Institute of Technology (VIT), Vellore,
Tamil Nadu, India

Introduction: Arrhythmia, characterized by irregular heartbeats, can range from
harmless to potentially life-threatening disturbances in heart rhythm. Effective
detection and classification of arrhythmias are crucial for timely medical
intervention and management.

Methods: This research utilizes the MIT-BIH Arrhythmia Database, a well
acknowledged benchmark dataset, to train and validate the proposed EGOLFNet
model, Enhanced Gray Wolf Optimization with LSTM Fusion Network. This
model integrates advanced optimization techniques with deep learning to
enhance diagnostic accuracy and robustness in arrhythmia detection. The
methodology includes preprocessing the ECG signals to normalize and filter
out noise, followed by feature extraction using statistical methods and wavelet
transforms. The distinctive aspect of EGOLF-Net involves using Enhanced Gray
Wolf Optimization to select optimal features, which are then processed by LSTM
layers to capture temporal dependencies in the ECG data effectively.

Results and Discussion: The model achieved an accuracy of 99.61%,
demonstrating the potential of EGOLF-Net as a highly reliable tool for classifying
arrhythmias, significantly advancing the capabilities of cardiology diagnostic
systems. Thus the proposed EGOLF-Net model was developed and validated for
accurately identifying heart arrhythmias using electrocardiogram (ECG) data.
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1 Introduction

Arrhythmias are conditions characterized by irregular heart rhythms, varying from
benign to potentially life-threatening (Antzelevitch and Burashnikov, 2011; Çınar and
Tuncer, 2021; Attia et al., 2019). These anomalies arise from electrical disturbances that
disrupt the normal rhythm of the heart, potentially leading to severe health complications
such as stroke, heart failure, or sudden cardiac arrest. Over time, advances in medical
technology and understanding of cardiovascular diseases have highlighted the critical need
for accurate detection and timely treatment of arrhythmias, underscoring their significance
in public health (Ferreira and Zanesco, 2016; Organization, 2020; Mc Namara et al., 2019).

The study focuses on five primary types of arrhythmias: Atrial Fibrillation (AFib),
Supraventricular Tachycardia (SVT), Bradycardia, Premature Ventricular Contractions
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(PVCs), and Atrial Flutter (Luo et al., 2017). Each type presents
unique challenges in detection and management, largely due to
their distinct manifestations and impacts on cardiac function
(Saini et al., 2013). For example, AFib is known for the rapid
and irregular beating of the atrial chambers, while Bradycardia is
characterized by abnormally slow heart rates (Saini et al., 2015;
Islam et al., 2022; Behl et al., 2020; Councils, 2015). Accurate
classification of these conditions is crucial for implementing
appropriate therapeutic strategies (Nurmaini et al., 2020; Tenepalli
and Navamani, 2024) proposed the ERFEX framework using
XGBoost, RFE, and SHAP, achieving 98.23% accuracy. However, it
still faces challenges such as overfitting and limited generalizability
to diverse datasets.

Kumar et al. (2022) developed a deep learning model for
detecting heart arrhythmias using data from IoT-connected
ECG devices. Based on a modified Grey Wolf Optimizer
(GWO) algorithm, this model achieved 95% accuracy. However,
it faces challenges with computational cost and requires
more sophisticated feature extraction techniques for improved
performance (Singh and Mahapatra, 2024) investigates the use
of Recurrent Convolutional Neural Networks (RCNN) optimized
by a GWO algorithm for classifying heart arrhythmias. This
model achieved an accuracy of 98% on standard datasets,
surpassing traditional machine learning methods. However, it
presents challenges, including high computational demands, the
need for large amounts of labeled data, the risk of overfitting,
and potential difficulties in practical implementation (Sinnoor
and Janardhan, 2024). Proposed an LSTM-based arrhythmia
classification system with optimized hyperparameters using the
Runge-Kutta (RUN) optimizer, achieving 99. 87% precision by
combining the preprocessing of the ECG signal (Liu et al., 2024)
developed a lightweight deep learning model to detect heart
arrhythmias using 12-lead ECG data. This model, optimized
through techniques such as compact convolutions and identifying
critical accuracy segments, achieves high accuracy (95.532%)
while requiring fewer parameters. However, oversimplifying the
model may lead to losing important information, potentially
impacting its performance.

In recent years, optimization algorithms and machine learning
models have become pivotal in enhancing the diagnosis and
classification of medical conditions, including arrhythmias (Kohli
and Verma, 2011). These technologies leverage vast amounts
of data to uncover patterns undetectable by human experts,
offering significant improvements in diagnostic accuracy and
efficiency (Brenyo and Aktas, 2014; Karpagachelvi et al., 2010;
Hagiwara et al., 2018). Integrating optimization techniques
helps to fine-tune the model parameters and select relevant
features, which is crucial for building robust predictive models
(Hammad et al., 2022).

Electrocardiogram (ECG), a straightforward, inconspicuous,
harmless method that measures the heart’s electrical activity,
is a frequently used test to identify arrhythmias (Kıymaç and
Kaya, 2023). Manual ECG interpretation is challenging due to
waveform variability and subjective human assessment, prompting
the development of automated machine-learning-based Cardio
Vascular Disease (CVD) systems. Midani et al. (2023) developed
a hybrid Deep Neural Network (DNN) model that effectively
identifies arrhythmias in ECG data. It combines recurrent

and contextual DNNs, achieving high accuracy, but may have
computational limitations for real-time applications in portable
devices or systems with restricted processing power. Kıymaç and
Kaya (2023) proposed a memory-enhanced artificial hummingbird
algorithm to optimize deep learning models for classifying cardiac
arrhythmias from ECG data. It is fully automated, efficient, and
robust but requires significant computational resources and large
datasets for training. The 1D Convolutional Neural Network (CNN)
method developed by Ahmed et al. (2023) has performed well in
extracting important characteristics fromECGdata. However, it had
a compromised sensitivity, resulting in a greater occurrence of false
negatives, a crucial issue in medical diagnosis. Furthermore, the
approaches that use traditional Convolutional Neural Networks
(CNNs) for image analysis, as introduced by Liu et al. (2022),
showed effectiveness in extracting features. However, they faced
challenges in terms of sensitivity, which could result in omitting
important positive information necessary for clinical decision-
making. Ojha et al. (2022) proposed a novel approach that combines
autoencoders and SVM for feature extraction and classification.
This method has demonstrated remarkable accuracy. However, it
necessitates significant processing resources and meticulous tuning
to prevent overfitting, particularly when dealing with smaller or
imbalanced datasets.

The diverse range of approaches employed for arrhythmia
detection, each with its advantages and limitations. While ongoing
advancements in these methods show promise for improving heart
health diagnoses, challenges such as computational requirements,
mathematical complexity, and applicability to various datasets
remain significant obstacles. Previous studies often encounter
challenges such as limited accuracy due to inefficient feature
optimization and the inability to capture ECG signal complexities
fully. These constraints underscore the need for more robust and
efficient models, creating opportunities for innovative solutions
like the proposed EGOLF-Net model. This model aims to
address these deficiencies by combining advanced optimization
techniques with deep learning. The unique methodologies
emphasized, such as improvements achieved through meta-
heuristic algorithms and attention-based models, demonstrate
the ongoing development in this field, emphasizing the need
for further research and refinement to optimize patient care
and clinical outcomes.

The main contributions of this research work are as follows:

• Proposed a novel fusion EGOLF-Net model that combines
EnhancedGreyWolf Optimization (EGOLF) with Long Short-
Term Memory (LSTM) networks to predict arrhythmia.
• The sophisticated EGOLF-Net technique improves feature

selection, diagnostic precision, and resilience in classifying
arrhythmias.
• A thorough comparison analysis is done by evaluating

the proposed model against existing research work in the
literature.
• Conducted statistical significance analysis to verify the efficacy

and reliability of the EGOLF-Net model for identifying
arrhythmias.

The structure of this paper is organized as follows. The
Related Works section discusses the existing methodologies in
arrhythmia detection. The methodology section discusses the
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FIGURE 1
Proposed Block diagram.

proposed methodology, introducing the EGOLF-Net model and
describing its unique components and operational framework. The
Result Analysis section presents the results of applying the EGOLF-
Net model on ECG. Finally, the Conclusion and Future Scope are
discussed.

2 Related works

In recent years, advancements in deep learning have significantly
improved arrhythmia diagnosis. Researchers have explored various
methods combining neural networks with advanced data processing
to enhance accuracy. This section provides an overview of these
methods, highlighting their strategies and performance in ECG
data analysis.

Kumar et al. (2023) explored combining deep learning
with fuzzy clustering to improve medical image diagnosis.
Fuzzy clustering helped handle uncertainties in medical data,
enhancing the model’s performance. However, using fuzzy
logic can make the model less understandable due to complex
rules and membership functions. To analyze Electrocardiogram
(ECG) signals,Daydulo et al. (2023) used a time-frequency approach
with deep learningmodels (ResNet 50 andAlexNet).Their approach
achieved 99.2%overall accuracy, with high sensitivity and specificity.
Thismethod effectively captured the temporal and frequency aspects
of ECG signals for accurate heart disease diagnosis. However,
combining multiple deep learning models can make the model
more computationally demanding, limiting its applicability in
resource-constrained settings.

Tripathi et al. (2022) proposed a deep learning-based method
for classifying cardiac arrhythmias using ECG signals, achieving
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FIGURE 2
EGOLF-Net Model-class diagram..

high accuracy with reduced hardware needs. However, it requires
large datasets and prolonged training. Soman and Sarath (2024)
proposed a Chameleon-Sparrow Search Algorithm-based Deep
Convolutional Neural Network (CsSA-based Deep CNN) for
effectively classifying arrhythmia in ECG signals using wavelet-
based preprocessing and feature extraction. However, further
improvements are necessary to enhance its accuracy and address
computational complexity concerns, particularly for real-time
clinical applications. Cai et al. (2020) proposed Multi-ECGNet, a
deep learning-based approach for multi-label ECG classification,
effectively identifying multiple heart diseases simultaneously
with high accuracy, surpassing human experts. However, its
computational complexity and potential for misclassification may
limit its real-world application. Ojha et al. (2022) extracted and
classified features using an autoencoder and a Support Vector
Machine (SVM). This combination made effective reduction of
dimensionality and reliable classification possible. Autoencoder
training can be computationally demanding, though, and it might
need fine-tuning to prevent overfitting especially when working
with smaller or imbalanced datasets. Haq et al. (2023) proposed the
Reseek-Arrhythmia model. It effectively detects and classifies heart
arrhythmias with high accuracy, but it may struggle with handling
noisy data or distinguishing subtle arrhythmia patterns.

Mandala et al. (2024) proposed a new ensemble learning
approach for arrhythmia detection using multi-lead ECG data,
which achieves high sensitivity, specificity, and accuracy for
detecting various arrhythmia classes. Jha (2024) provided a
comprehensive review of existing machine-learning and deep-
learning-based techniques for arrhythmia detection using ECG
signals, highlighting their strengths, limitations, and potential
areas for improvement. Begum and Singh (2024) proposed a

CNN-based continual normalization classifier for arrhythmia
detection, achieving 99.2% accuracy, outperforming existing
methods. Glaser et al. (2024) systematically reviewedML algorithms
for predicting and detecting New-Onset Atrial Fibrillation (NOAF)
in ICU patients, finding CatBoost and SVM as promising methods
and highlighting their potential to improve clinical decision-
making. Sposato et al. (2024) presented the management of atrial
fibrillation (AF) in ischemic stroke/TIA patients, detailing the
risk assessment and monitoring strategies based on different AF
detection methods.

Yu et al. (2024) provided a comprehensive review of the
pathophysiology and etiology of arrhythmia in COVID-19 patients,
offering valuable insights for understanding the disease. Still, it
may not detail the specific mechanisms underlying arrhythmia
development. An automatic CNN arrhythmia classifier improved
by a memory-enhanced artificial hummingbird algorithm was
proposed by Kıymaç and Kaya (2023). Their methodology utilizes
sophisticated algorithms to enhance the accuracy of classification.
Nevertheless, the efficacy of the study may be limited by the
dependence on memory-enhancement methods, which may
not exhibit strong generalization capabilities across various
datasets. Admass and Bogale (2024) Proposed a metaheuristic
enhancement, combining optimal weighted feature integration with
an attention-based hybrid deep learning model to categorize ECG
signals. The objective of this approach is to improve the accuracy
of categorization by combining different features and attention
methodologies. Nevertheless, the intricacy of the model may result
in higher computational requirements and possible constraints in
handling various ECG signal specifications.

The existing literature review comprehensively explores
contemporary methods for arrhythmia detection, focusing
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FIGURE 3
Flowchart of proposed work.

TABLE 1 Hardware specifications and training time.

Parameter Specification

Processor Intel Core i7 (12-core) @ ∼2.6 GHz

RAM 16 GB DDR4

Operating System Windows 10, 64-bit

Software Environment MATLAB R2023a

ECG Signals Used 3,000 (MIT-BIH Arrhythmia Database)

Feature Extraction Time ∼6 min

EGWO Optimization Time ∼8 min

LSTM Training Time ∼7 min (30 epochs)

Total Training Duration ∼21 min

on various techniques and their effectiveness in utilizing
electrocardiogram (ECG) data. Recurrent Deep Neural Networks
(DNN), convolutional models like ResNet 50 and AlexNet

TABLE 2 Training parameters of EGOLF-Net model.

Parameter Value

Learning Rate 0.01

Batch Size 100

Number of Epochs 30

L2 Regularization Factor 0.001

Number of LSTM Units 50

Initial Weights Initialization He Normal

Optimizer Adam

Dropout Rate 0.2

Feature Selection Method Enhanced Gray Wolf Optimization (EGWO)

Daydulo et al. (2023), and autoencoders integrated with Support
Vector Machines (SVM) Ojha et al. (2022) have been widely
adopted to enhance arrhythmia identification accuracy. While
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FIGURE 4
Fusion of signal pulses.

FIGURE 5
Optimization of fused pulses.

FIGURE 6
Clustered ECG signals after optimization.

these approaches demonstrate excellent diagnostic performance,
they often face computational complexity, interpretability issues,
and resource requirements. For instance, the hybrid DNN model
proposed by Midani et al. (2023) although achieving remarkable
precision through temporal dynamics and contextual learning,
is constrained by its high computational demands, limiting
its suitability for real-time applications on portable devices.

Similarly, Kumar et al. (2023) proposed a model that integrates
deep learning with fuzzy clustering, improving diagnostic accuracy,
but introduced interpretability challenges due to the complex nature
of fuzzy logic rules and membership functions.

Recent artificial intelligence (AI) breakthroughs have
markedly enhanced electrocardiogram (ECG)-based cardiac
diagnostics, especially in arrhythmia diagnosis. Multiple studies
have used machine learning and deep learning algorithms to
automate ECG interpretation, exhibiting elevated accuracy levels.
Muzammil et al. (2024) examined the efficacy of AI-enhanced
ECG analysis in clinical diagnoses, highlighting that deep learning,
especially convolutional neural networks (CNNs), may surpass
conventional interpretation techniques by identifying patterns
undetectable by human observers. Nevertheless, they emphasized
significant limitations like dataset bias and interpretability
challenges. Telmoud et al. (2024) assessed traditional machine
learning models, including Decision Trees, Support Vector
Machines, and Random Forests, to categorize ECG data. Their
trials with the MIT-BIH dataset achieved accuracies ranging from
97% to 99%, especially with ensemble models. Nonetheless, these
approaches often rely on manually crafted features and frequently
fail to capture the temporal dynamics of ECG data, essential for
detecting arrhythmic patterns.

Notwithstanding the substantial advancements in ECG-
based arrhythmia classification, two significant deficiencies
persist: the absence of cohesive optimization for feature selection
and temporal modeling. Current models often depend on
comprehensive feature sets lacking optimum selection or disregard
temporal dynamics by concentrating on static ECG segments
or images—insufficient resilience and adaptability. Numerous
models are tailored to particular datasets, have inadequate noise
filtering or generalization abilities, and often do not sustain
high accuracy when used in clinical environments. Hence,
we proposed EGOLF-Net (Enhanced Gray Wolf Optimization
with LSTM Fusion Network), which addresses these gaps by
introducing a hybrid framework that integrates Enhanced Gray
Wolf Optimization (EGWO) for optimal feature selection,
effectively reducing noise and redundancy in high-dimensional
ECG data. LSTM layers to capture sequential dependencies
inherent in ECG signals, enabling robust temporal pattern
recognition, a fully integrated pipeline combining preprocessing,
feature engineering, and learning to boost generalizability and
diagnostic reliability.

3 Methodology

The methodology for detecting and classifying arrhythmias
using Electrocardiogram (ECG) data begins with collecting
ECG signals from individuals showcasing a variety of cardiac
conditions, encompassing both normal and abnormal rhythms
as shown in Figure 1. These signals undergo preprocessing
steps to refine data quality, including noise filtering, signal
amplitude normalization, and segmentation to isolate specific
features within the ECG trace. The signal fusion and optimization
phase in the EGOLF-Net system combines multiple segments
or different aspects of the ECG signals into a comprehensive
signal. The optimized signal undergoes detailed feature extraction,
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TABLE 3 Features extracted.

Dynamic features extracted S-1 S-2 S-3 S-4 S-5 S-6 S-7 S-8 S-9 S-10

Max and Min 198.76 181.42 253.63 257.11 181.42 259.11 176.76 178.96 257.71 171.42

Mean 38.21 59.39 68.87 73.23 59.39 74.23 29.21 32.21 73.24 60.39

Median 32.90 53.68 64.42 63.02 53.68 65.05 27.90 29.84 65.95 53.68

RMS 46.40 66.95 79.00 85.37 66.95 84.34 38.40 37.50 83.54 67.90

FIGURE 7
Confusion matrix for trained data.

involving statistical measures and frequency domain analysis,
to capture the essential characteristics of the ECG data for
accurate classification. Linear Discriminant Analysis (LDA) is
applied for dimensionality reduction, emphasizing the most
informative features for subsequent classification. This technique
helps reduce themodel’s computational complexity while preserving
its discriminative power. Features extracted from the ECG signals
serve as inputs to the proposed model EGOLF-Net model. After
following the mechanism of EGWO, the selected features are fed
to LSTM. The processed data is fed through LSTM layers, which
learn complex patterns in the ECG signals. Finally, a SoftMax layer
classifies the signals into different Arrhythmia types based on the
learned patterns. The EGOLF-Net architecture effectively combines
signal fusion, deep learning, and optimization techniques to

enhance classification accuracy and overcome challenges associated
with ECG data analysis.

3.1 Dataset description

Initially, ECG signals are collected from individuals with various
cardiac conditions from the MIT-BIH dataset (Moody and Mark,
1992). A fundamental dataset in cardiac arrhythmia research, the
MIT-BIH Arrhythmia Database provides digital recordings of ECG
signals obtained from patients with different cardiac abnormalities.
48 half-hour sections of two-channel ambulatory ECG recordings
make up the dataset, which cardiologists painstakingly annotate to
identify specific arrhythmic patterns at a frequency of 360 Hz. Its
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FIGURE 8
SVT type of Arrhythmia Detected for Subject two.

FIGURE 9
Convergence Curves of optimization.

FIGURE 10
Performance of model concerning EPochs.

comprehensive collection of 109,446 labeled beats includes atrial
and ventricular premature beats, atrial fibrillation, ventricular
fibrillation, and normal sinus rhythm. Beat classification and
arrhythmia detection are supervised learning tasks made easier

FIGURE 11
Gradient and Validation check.

by carefully labeling every beat in this extensive repository.
Using a subset of 3000 ECG signals from this repository, we
set aside 70 for training, 15 for testing, and another 15 for
validation. Such a prudent application of this dataset helps to
advance the knowledge and diagnosis of cardiac arrhythmias in
addition to benchmarking algorithms. The present implementation
entails extracting 3,000 ECG segments from diverse patient
records in the MIT-BIH Arrhythmia Database. The signals
undergo processing using fusion and optimization methods to
provide discriminative features, which are then used for model
training and assessment. A randomized 70–15–15 partition
(training, validation, testing) is executed on the whole dataset
via randperm (), guaranteeing an equitable distribution of classes
across the subsets.

The dataset division occurs at the sample level instead of the
patient level, posing a possible danger of data leaking; signals
from the same patient may be included in both the training
and testing sets. This method is computationally efficient but
may overestimate the model’s generalization capacity in practical
situations. Future editions of the EGOLF-Net framework will
provide patient-level stratified splitting, guaranteeing no overlap
of patient data across the various groups. This improvement
will bolster the clinical dependability and consistency of the
model’s performance.

3.2 Feature extraction and selection

After data collection, preprocessing is performed to refine
data quality. This includes normalization, noise filtering, and
segmentation to isolate relevant features. Feature extraction
techniques such as statistical measures and wavelet transforms
are then applied, with dimensionality reduction techniques like
Linear Discriminant Analysis (LDA) employed to emphasize
informative features. The method’s core lies in a classification model
called EGOLF-Net, where features are fed into a fusion network
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FIGURE 12
Error histogram.

combining Enhanced Gray Wolf Optimization (EGWO) with
Long Short-Term Memory (LSTM) architecture. Normalization
is often applied to ensure that ECG signal amplitude varies within a
specific range, generally between −1 and 1. It can be mathematically
represented as in Equation 1:

xnorm =
(x−min (x))
(max (x) −min (x))

(1)

where x is the original ECG signal, and xnormis the normalized signal.
A common approach for filtering ECG signals is using a

bandpass filter which might be represented by Equation 2

Y ( f) =H ( f)X ( f) (2)

where X(f) and Y(f) – Fourier transforms and H(f) - the
frequency response.

After preprocessing, a signal fusion and optimization phase
combine multiple segments or different aspects of the ECG
signals into a comprehensive signal. This step enhances key
features relevant to specific arrhythmias, ensuring focused analyses.
The optimized signal then undergoes detailed feature extraction,
involving statistical measures and frequency domain analysis via
wavelet transforms. The energy of a signal segment can be
calculated using Equation 3:

E = ΣN
n=1|x [n] |

2 (3)

where x [n] represents the signal amplitude at sample n and N is the
total number of samples in the segment.

Wavelet transform provides a way to analyze the signal at
different scales and is defined as in Equation 4:

Wx (a,b) =
1

√|a|
∫
∞

−∞
x (t)φ( t− b

a
)dt (4)

where a and b are the scale and translation parameters, φ(t) is the
mother wavelet, and x(t) is the signal.

Features like mean and variance are computed as in
Equations 5, 6:

Mean

μ = 1
N

N

∑
n=1

x [n] (5)

Variance

σ = 1
N

N

∑
n=1
(x [n] − μ)2 (6)

Linear Discriminant Analysis (LDA) is applied for
dimensionality reduction, emphasizing the most informative
features for subsequent classification. Texture analysis using Gray-
Level Co-occurrence Matrix (GLCM) provides insights into ECG
pattern complexity. GLCM, or Gray-Level Co-occurrence Matrix,
is a technique used in image processing to analyze the spatial
relationships of pixels based on their intensity values. Essentially,
it quantifies how often different combinations of pixel intensities
occur within an image. Texture features from the GLCM include
Equations 7–10:

contrast =
levels−1

∑
i,j=0

P (i, j) (i− j)2 (7)

Energy = sumisumjP(i, j)
2 (8)

Homogeneity =
sumisumjP (i, j)

(1+ (i− j)2)
(9)

correlation =
sumisumj (ij∗ P (i, j) − μiμj)

(σi ∗ σj)
(10)
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FIGURE 13
ROC curves.

where.

μ : Mean, a measure of central tendency indicating the
average value of the dataset.

σ : Variance, a measure of the spread or dispersion of the
dataset around the mean.

P (i,j) : Probability matrix representing the occurrence of pixel
intensity pairs in the image.

levels : Number of intensity levels in the image.
i and j : Intensity levels in the image.

In addition to the above features, the maximum, minimum,
mean, median, and Root-Mean-Square (RMS) values are also
extracted, which are active features.

The Enhanced Gray Wolf Optimization (EGWO) method is an
improved version of the original GWO designed only for quickly
selecting binary features. In EGWO, each wolf is a binary vector, and
each bit shows whether or not a particular characteristic is chosen
(1) or not (0). The technique starts with a controlled initialization,

in which wolves are given random binary vectors that determine
certain features (for example, 30) to ensure variety. A dynamic
control parameter a goes down in a straight line across iterations,
keeping the exploration and exploitation phases in balance. A
backup plan deals with degenerate solutions: if a wolf does not
choose any features, a valid random subset is returned to it to keep
performance up. We use 5-fold cross-validation accuracy from a K-
Nearest Neighbors (KNN) classifier to check how well each feature
subset works. This helps us choose features that make predictions
more accurate.

EGWO chooses the best features and then applies them to the
training, validation, and test datasets. This makes the data much
less complex. Using num2cell (), these filtered datasets are then
changed into a sequence format that LSTM can use. The LSTM
design starts with a sequenceInputLayer that matches the number
of chosen features. Then, there is an LSTM layer with a set number
of hidden units to collect patterns over time. To helpwith overfitting,
a dropout layer is added. Then, for multi-class prediction, a fully
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TABLE 4 Statistical significance analysis of EGOLF-Net model.

Metric EGOLF-net Baseline model (CNN-SVM) p-value Statistical significance

Accuracy 99.61% 97.5% < 0.01 Yes

Sensitivity 99.4% 96.8% < 0.01 Yes

Specificity 99.64% 97.1% < 0.01 Yes

Precision 99.7% 97.3% < 0.01 Yes

F1-Score 99.5% 97.2% < 0.01 Yes

ROC-AUC 99.6% 97.4% < 0.01 Yes

TABLE 5 Comparative analysis of proposed method with related works.

Method Accuracy Sensitivity Specificity

Hybrid DNN (Recurrent and Contextual) (Midani et al., 2023) 99.46% 97.01% 99.57%

Deep Learning and Fuzzy Clustering (Kumar et al., 2023) 98.66% 98.92% 93.88%

ResNet 50 and AlexNet (Time-frequency ECG) (Daydulo et al., 2023) 99.2% 99.2% 99.6%

1D Convolutional Neural Network Ahmed et al. (2023) 99% 94% 99%

Conventional CNN (Image Analysis) (Liu et al., 2022) 85% 75.8% 96.9%

Autoencoder and SVM (Ojha et al., 2022) 99.53% 98.24% 97.58%

Coy- GWO-Deep CNN (Kumar et al., 2022) 95% 94.63% 94.63%

1D-RCNN and GWO (Singh and Mahapatra, 2024) 98.2% - -

Proposed Method 99.61% 99.4% 99.64%

connected layer, a softmax layer, and a classification layer are added.
The Adam optimizer with L2 regularization is used to train the
model, and a validation set is used to monitor how well it works.
The final examination of the test data comprises checking the
correctness of the classifications, visualizing the confusion matrix,
and using multi-class ROC curves to see how well the model
can tell the difference between classes. This combined EGWO-
LSTM architecture provides a small, easy-to-understand, and high-
performing pipeline that is perfect for biomedical classification
tasks based on ECG.

3.3 EGOLF-NET model development

The EGOLF-Net Model combines the Enhanced Gray Wolf
Optimization (EGWO) algorithm with the Long Short-Term
Memory (LSTM) model for effective classification tasks like
ECG arrhythmia detection. Figure 2 shows the class diagram
of the EGOLF-Net Model. This model is the main component
that utilizes EGWO for optimizing key hyperparameters like
learning rate and batch size through advanced search strategies,
gradient-based optimization, and constraint handling. The

LSTM class, responsible for sequence learning and classification,
includes attributes such as input and output shapes, number
of layers, and neurons per layer, with training, prediction,
and evaluation methods. Figure 2 highlights how the EGOLF-
Net Model uses both EGWO for optimization and LSTM
for classification, demonstrating their roles and interactions
within the architecture.

The choice of EGOLF-Net as the model for the arrhythmia
classification network is apt for several reasons, as shown in Figure
3. Firstly, it succinctly encapsulates the core components of
the methodology, combining Enhanced Gray Wolf Optimization
(EGO) with LSTM Fusion, which is integral to the network’s
effectiveness. Including ”O" for Optimization emphasizes the
systematic refinement of the model’s performance, ensuring it
leverages the most informative features for accurate classification.
Additionally, the acronym is memorable and reflects the innovative
approach taken in integrating advanced optimization techniques
with deep learning methodologies.

The LSTM network consists of several critical layers, each
playing a pivotal role in processing sequential data. The input
layer is the initial point where the input sequence data is
received. This layer prepares the data for further processing by
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the LSTM units. The core of the LSTM network lies in its
LSTM layers, which consist of multiple LSTM units designed
to capture temporal dependencies and learn patterns over time.
Each LSTM unit includes a cell state and three gates: the
forget gate, the input gate, and the output gate. The forget gate
determines which information from the previous cell state should
be discarded, while the input gate decides what new information
should be added. The cell state is then updated accordingly.
Finally, the output gate determines the next hidden state, crucial
for making predictions.

Features extracted from the ECG signals serve as inputs to the
proposedmodel EGOLF-Netmodel. After following themechanism
of EGWO, the selected features are fed to LSTM. The LSTM
network processes extracted and selected feature sequences, learning
to recognize patterns and features that indicate Arrhythmia or a
healthy heart. It then classifies the type using the Equations 11–16.

LSTM Input Gate:
it = σ(Wt. [ht−1,xt] + bi) (11)

LSTM Forget Gate:
ft = σ(W f . [ht−1,xt] + b f) (12)

LSTM Cell State Update:
C′t = tanh(Wt. [ht−1,xt] + bc) (13)

Ct = ft ∗Ct−1 + It ∗C
′
t (14)

LSTM Output Gate:
Ot = σ(WO. [ht−1,xt] + bO) (15)

ht = Ot ∗ tanh(Ct) (16)

Where.

• Wt,bi,b f ,bc,bo: Weights and biases used in the LSTM gates and
cell state update equations.
• ht−1,xt, it, ft,Ct,Ot,ht: variables representing the previous

hidden state, current input, input gate, forget gate, cell state,
output gate, and current hidden state of the LSTM network
respectively.

After processing through the LSTM layers, the data reaches the
output layer. The output layer provides the final prediction based
on the learned patterns from the LSTM layers. It culminates in
a SoftMax layer that classifies the signals based on Arrhythmia
type. By combining EGWO for hyperparameter optimization
and LSTM layers for capturing temporal dependencies, the
EGOLF-Net Model offers a powerful and efficient framework for
analyzing and classifying sequential data, such as ECG signals, to
detect arrhythmias accurately. This integrated approach leverages
optimization and deep learning techniques, resulting in a highly
effective model for various applications. Equation 17 presents the
mathematical expression for the softmax layer:

P(yk|x) =
exp(Olk)

∑
n
exp(Oln)

(17)

Where P(yk|x):Probability of the output class given the
input data.

This classification step is critical because it converts the complex,
learned representations of ECG signals into a clinically relevant
ailment related to Arrhythmia. Trained on labeled ECG records, this
model identifies patterns associated with various arrhythmias and
cardiac conditions. Upon classification, the system delivers detailed
feedback, specifying the detected arrhythmia or cardiac condition.
This feedback guides further clinical assessment and intervention,
providing visual and textual information and annotations on
ECG plots and alerts advising potential clinical actions based
on classification results. Finally, performance evaluations are
performed. This comprehensive methodology integrates advanced
signal processing techniques and the proposed EGOLF-Net
approach to provide a robust tool for diagnosing and understanding
cardiac conditions through ECG data analysis, adaptable across
various medical diagnostic platforms.

Thenovelty of the EGOLF-Net lies in its integration of Enhanced
Gray Wolf Optimization with LSTM Fusion for arrhythmia
classification. This hybrid approach combines the strengths of
evolutionary optimization and deep learning, enabling the model to
effectively learn complex patterns from ECG data while dynamically
adapting its parameters for optimal performance. By leveraging
the complementary advantages of both techniques, EGOLF-
Net achieves enhanced accuracy and robustness in arrhythmia
classification, paving the way for more reliable and efficient
diagnostic tools in clinical practice.However, themodel’s complexity
can lead to increased computational requirements, which may pose
challenges in resource-constrained environments. Additionally,
while the EGWO enhances feature selection, it requires careful
tuning to avoid potential overfitting, especially in datasets with high
dimensionality or noise.

3.4 Algorithm of the proposed model

Algorithm 1 describes the application of the EGOLF-Net
model, a complex machine-learning framework intended to
improve the precision of arrhythmia detection with ECG data.
The ECG data is loaded first, then pre-processed—normalization
and band-pass filtering are two steps to get the data ready
for feature extraction. The integration of Enhanced Gray Wolf
Optimization (GWO), in which a population of simulated wolves
iteratively optimizes the selection of features based on their
fitness, finally identifying the most effective set for arrhythmia
classification, makes this model unique. These optimized
features are applied following the configuration of an LSTM
network with multiple layers to handle temporal dependencies
present in ECG data. The model’s accuracy, sensitivity, and
specificity are assessed following training of the network with the
Adam optimizer.

The fitness function used in EGOLF-Net is the Accuracy
Maximization Function which aims to maximize the classification
accuracy of the Long Short-Term Memory (LSTM) model
by optimizing feature subsets from the Electrocardiogram
(ECG) signals. The search space, the High-Dimensional Feature
Combination Space, includes all possible combinations of extracted
features such as time-domain, frequency-domain, and non-
linear features from the ECG signals, making it complex and
vast. Simple search methods like Sequential Feature Selection
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1: Initialize EGOLF-Net Model Parameters

Load ECG data: ECG_data←load (’ECG_dataset.mat’)

Set learning rate: learningRate← 0.01

Set batch size: batchSize← 100

Set regularization factor:

regularizationFactor ← 0.001

2: Preprocess ECG Data

Normalize data: normalizedData←normalize(ECG_data)

Apply band-pass filter:

filteredData←bandpassFilter (normalizedData,

[0.5,40])

Segment data into heartbeats:

segmentedData←segmentECG(filteredData)

3: Feature Extraction

Extract

features: features←extractFeatures(segmentedData)

4: Apply Enhanced GWO for Feature Optimization

Set number of wolves: numWolves← 30

Set maximum iterations: maxIter← 100

Initialize alphawolf, betawolf, and deltawolf:

 alphaWolf←initializeWolf(features)

 betaWolf←initializeWolf(features)

 deltaWolf←initializeWolf(features)

Foriter = 1 to maxIterdo

 Fori = 1 to numWolvesdo

  Update wolf position: wolf←updateWolfPosition

(alphaWolf, betaWolf, deltaWolf, features)

   Evaluate fitness: fitness←evaluateFitness

(wolf, features)

   Update leaders: [alphaWolf, betaWolf,

deltaWolf] ←updateLeaders (wolf, fitness,

alphaWolf, betaWolf, deltaWolf)

  end for

 end for

Set optimal features: optimalFeatures← alphaWolf

Step 5: Configure LSTM Layers

Define LSTM layers: layers = [… sequenceInputLayer

(size (optimalFeatures,1)) lstmLayer

(50,’OutputMode’,’last’) fullyConnectedLayer (5)

five classes for arrhythmia types SoftmaxLayer

classificationLayer];

Set training options: options =

trainingOptions(′adam′,… ’MaxEpochs’,30,

’MiniBatchSize’,batchSize,

’InitialLearnRate’,learningRate,

L2Regularization’,regularizationFactor,’Plots’,’

training-progress’);

6: Train LSTM Network

Train network: net←train network (segmentedData,

optimalFeatures, layers, options)

7: Model Evaluation

Classify data: predictedLabels←classify (net,

segmentedData)

 performance←evaluateModel (predictedLabels,

ECG_data.Labels) Evaluate model performance

8: Output Results

disp(’Model training complete.’)

disp ([’Accuracy: ’, num2str(performance.accuracy)])

disp ([’Sensitivity: ’,

num2str(performance.sensitivity)])

disp ([’Specificity: ’,

num2str(performance.specificity)])

Algorithm 1. EGOLF-Net Model.

(SFS) and Grid Search Cross-Validation are computationally
expensive and impractical for navigating this complex space due
to their exhaustive and non-adaptive nature. In contrast, Enhanced
Gray Wolf Optimization (EGWO) efficiently navigates the High-
Dimensional Feature Combination Space using heuristic-driven
exploration and exploitation strategies, significantly reducing
computation time while enhancing the LSTM model’s predictive
performance. This approach ensures the selection of the most
relevant feature subsets, thereby improving the overall accuracy and
efficiency of the model.

4 Results and analysis

The experiments were conducted in a MATLAB R2023a
environment using the system shown in Table 1. All ECG signal
preprocessing, feature extraction, EGWO optimization, and LSTM
training were performed on the same platform. To enhance the
performance of the EGOLF-Net model in categorizing arrhythmias,
the training parameters are carefully set as shown in Table 2. The
learning rate is configured at 0.01, enabling themodel to significantly
adjust weights during each iteration while maintaining a balance
between convergence speed and stability. To achieve a suitable level
of learning without overfitting, the model is trained for 30 epochs
with a batch size of 100, effectively balancing training speed and
memory efficiency. An L2 regularization factor of 0.001 punishes big
weights to improve the model’s generalization capabilities further.
A total of 50 LSTM units are configured to ensure the network can
accurately capture the temporal relationships in ECG data.

The normal initialization is employed for the weights,
specifically designed for ReLU activation functions, to ensure a
consistent signal variance across the network. To avoid overfitting,
the Adam optimizer is selected for its adjustable learning rate,
effective management of sparse gradients, and a dropout rate of
0.2. The feature selection process is guided by Enhanced Gray
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Wolf Optimization (EGWO), which iteratively improves the input
features to guarantee that the most pertinent data is included
in the classification procedure. By meticulously choosing these
parameters, the EGOLF-Net model’s resilience and effectiveness in
real-time arrhythmia detection are significantly improved.

The diagnostic system’s performance is assessed using accuracy,
sensitivity, specificity, predictive values, and likelihood ratios, as
defined in Equations 18–21, ensuring its reliability and efficacy for
clinical application.

Accuracy

Accuracy = TP+TN
TP+TN+ FP+ FN

(18)

Sensitivity (True Positive Rate):

Sensitivity = TP
TP+ FN

(19)

Specificity (True Negative Rate):

Speci ficity = TN
TN+ FP

(20)

Area Under the ROC Curve (AUC):

AUC =
1

∫
0

TPR(d′)dFPR (21)

where TPR is depicted as the True Positive Rate whereas FPR is the
False Positive Rate as a function of threshold t.

Figure 4 presents the fused ECG signals. This fusion
process integrates signals from multiple subjects into a single,
comprehensive dataset, shown here with overlaid signals that
enhance the representation for analysis. Figure 5 shows the
optimized fused signals fromFigure 4, where optimization processes
have been applied to enhance diagnostic features, reduce noise,
and suppress irrelevant information. The result is a cleaner, more
diagnostic-friendly signal, highlighting key features crucial for
effective arrhythmia detection.

Figure 6 illustrates the clustering of optimized ECG signals, with
various symbols and colors denoting different clusters.These clusters
are formed based on characteristics identified in the ECG signals
that correspond to distinct arrhythmic conditions or signal patterns.

Table 3 lists the dynamic features extracted from the ECG signals
of ten subjects (S-1 to S-10). It includes maximum and minimum
values, mean, median, and RMS (RootMean Square).These features
capture the essential statistical properties of the ECG signals which
are critical for training the EGOLF-Net in pattern recognition
associated with normal and abnormal cardiac functions.

Figure 7 is a confusion matrix that categorizes the classification
performance of the EGOLF-Net model across five types of
arrhythmias. It quantifies the model’s accuracy in predicting each
arrhythmia type, with true positives highlighted on the diagonal
and classification errors in the off-diagonal cells. Figure 8 specifically
demonstrates a Supraventricular Tachycardia (SVT) event detected
in the ECG data for Subject 2. It highlights how the model isolates
and identifies specific types of arrhythmias based on the learned
patterns from the training data.

The convergence curves shown in Figure 9 illustrate the
performance of the Enhanced Gray Wolf Optimization (EGWO)
and Particle Swarm Optimization (PSO) over 100 iterations. The
curves show how the fitness values improve as the number of
iterations increases. EGWOdemonstrates a more rapid convergence

than PSO, highlighting its effectiveness in optimizing feature
selection in the EGOLF-Net model. Figure 10 charts the training
and validation loss over 28 epochs, marking the epochs where
the validation performance was optimal. This point, where the
validation loss is minimized to approximately 0.19854 at epoch
22, indicates the most effective balance between learning and
generalization.

Figure 11 tracks the gradient magnitude and validation checks
across the training epochs. The gradient plot shows the model’s
learning rate, with a notable gradient value of about 0.064519 at
epoch 28, suggesting effective learning steps without instability.
The validation check graph illustrates the model’s performance
improvement stops after six validation checks without further gain,
indicating a possible point for halting training to prevent overfitting.

Figure 12 shows the Error Histogram with 20 Bins. It depicts
the distribution of prediction errors for both training and validation
phases in the EGOLF-Netmodel. Each bin on the x-axis represents a
range of error values between the predicted and actual outputs, with
the y-axis displaying the number of instances in each bin. The zero-
error line represents perfect prediction accuracy. The histogram
shows a concentration of instances near the zero error, particularly
for the validation set, indicating a good model fit. However, there
are also instances with higher errors, highlighting areas where the
model may need further refinement or indicating the presence of
more complex arrhythmic patterns.

Figure 13 shows the Receiver Operating Characteristic (ROC)
curves from several datasets for five kinds of arrhythmias. The
one-vs-rest ROC curves for Classes 1 through 5 (Class 1:
Atrial Fibrillation, Class 2: Supraventricular Tachycardia, Class 3:
Bradycardia, Class 4: Premature Ventricular Contractions, Class 5:
Atrial Flutter) are displayed in each subplot in the following datasets:
(a) Training, (b) Validation, (c) Testing, and (d) Combined. Strong
generalization of the suggested EGOLF-Net model is indicated by
the curves’ consistent performance throughout all stages, withAUCs
well above the random guessing baseline (diagonal).

The baseline CNN-SVM model, which combines Convolutional
Neural Networks (CNN) for feature extraction and Support Vector
Machines (SVM) for classification, serves as the comparative
model. This model includes a common strategy for categorizing
arrhythmias, however, it lacks the complex optimization and
temporal pattern recognition skills in EGOLF-net.

The statistical significance analysis in Table 4 demonstrates
that the EGOLF-Net model invariably surpasses the baseline
CNN-SVM model in all assessed measures, such as accuracy,
sensitivity, specificity, precision, F1-score, and ROC-AUC. Since
the p-values for all comparisons are below 0.01, the performance
enhancements of EGOLF-Net are statistically significant.This strong
performance highlights the efficacy of combining Enhanced Gray
Wolf Optimization with LSTM networks, confirming the model’s
superior diagnostic abilities in detecting arrhythmias.

4.1 Comparative analysis with
state-of-the-art models

We compared EGOLF-Net’s performance with several advanced
models, including hybrid deep neural networks, CNN-SVM
architectures, and optimization-based classifiers to assess its
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efficacy. Table 5 of the publication demonstrates that EGOLF-
Net attained an exceptional accuracy of 99.61%, surpassing
prominent methods such as the ResNet50-AlexNet fusion (99.2%),
hybrid autoencoder-SVM (99.53%), and the Coy-GWO-CNN
model (95%).

Although several comparative models use conventional
CNNs or recurrent architectures, emerging transformer-based
frameworks—such as Vision Transformers (ViT) and hybrid
attention-convolution models—have shown superior efficacy in
ECG classification. Nevertheless, these models often need extensive
training datasets and considerable computer resources. Conversely,
EGOLF-Net attains excellent accuracy on a constrained dataset
by using Enhanced Gray Wolf Optimization for optimum feature
selection and LSTM for temporal pattern recognition, effectively
balancing efficiency and accuracy.

In future endeavors, we want to broaden the assessment of
EGOLF-Net by comparing it with contemporary transformer-based
and attention-driven models using bigger ECG datasets (e.g., PTB-
XL) to enhance its scalability and therapeutic significance.

4.2 Discussion

Statistical Robustness and ROC Analysis to improve the
statistical validity of our assessment, further efforts will include
confidence intervals (CIs) and standard deviation calculations for
essential performance indicators, including accuracy, sensitivity,
and specificity. These metrics were first presented as single-point
estimates, which constrain the assessment of model dependability
over several samples. We want to use bootstrapping or cross-
validation for variance estimation to calculate 95% confidence
intervals for each measure, enhancing the performance analysis’s
robustness.

The Test ROC curve now displays a near-diagonal line,
ostensibly indicating performance akin to random guessing. This
behavior is ascribed to the restricted size of the test set and potential
class imbalance within that subset. Upon further examination, the
model exhibits elevated sensitivity and specificity for each class,
as shown by the confusion matrix and AUC metrics throughout
the training and validation stages. The test ROC plot will be
reconstitutedwith a bigger, balanced holdout set and recalculated for
each class to represent real-world performance accurately. Stratified
k-fold validation will also stabilize ROC curves across test folds and
reduce variation resulting from test subset composition.

5 Conclusion and future scope

The present work involved developing and validating the
EGOLF-Net model as a reliable instrument for the real-time
identification of arrhythmias using electrocardiogram results. The
proposed model combines Enhanced Gray Wolf Optimization
(EGWO) with Long Short-Term Memory (LSTM) networks,
utilizing sophisticated optimization and deep learning methods to
improve the precision and dependability of diagnostics. EGOLF-Net
tackles significant obstacles in interpreting ECG signals, including
noise, high dimensionality, and the intricacy of arrhythmic patterns
through successfully integrating feature optimization and temporal

pattern recognition. The model exhibited outstanding performance,
attaining an accuracy of 99.61%, sensitivity of 99.4%, and specificity
of 99.64%, well surpassing the performance of current approaches
in the literature. The demonstrated results highlight the potential
of EGOLF-Net as a very efficient and dependable instrument
for categorizing arrhythmias, thereby providing substantial
enhancements in clinical diagnostics. This work emphasizes the
benefits of combining metaheuristic optimization algorithms such
as EGWO with deep learning models, offering a comprehensive
methodology that can be tailored to different medical diagnostic
applications.

5.1 Limitations and future enhancements

The EGOLF-Net model attained a classification accuracy of
99.61%, although this research used a subset of 3,000 ECG data
from the MIT-BIH Arrhythmia Database. Despite the meticulous
curation of this subgroup to include a vast array of arrhythmia
classes and regular rhythms, the restricted dataset size may limit the
model’s generalizability to wider populations and multiple clinical
contexts. Future research will expand the assessment by including
the MIT-BIH dataset and supplementary datasets like PTB-XL and
INCART to guarantee wider application and strengthen the model’s
resilience.

Absence ofCross-ValidationMethodology:The current research
used a static data partitioning strategy (70% training, 15%
validation, and 15% testing) for performance assessment. To
enhance generality and mitigate the risk of overfitting, future
research will use k-fold cross-validation techniques, namely, 5-fold
or 10-fold cross-validation. This will provide a more statistically
rigorous performance evaluation and reduce volatility caused by
data partitioning, which is particularly crucial when handling
relatively minor datasets.

Ablation Study and EGWO Quantification: The Enhanced
Gray Wolf Optimization (EGWO) method, incorporated into the
EGOLF-Net framework, markedly enhanced the optimization of
feature selection and model parameters. Although the convergence
performance of EGWO relative to Particle Swarm Optimization
(PSO) has been shown in Figure 9, a specific ablation study
distinguishing the contributions of EGWO from standard GWOhas
not been included in the present edition. To enhancemethodological
rigor, further research will consist of extensive ablation experiments
contrasting EGWO, regular GWO, and other metaheuristic
methods. This analysis will evaluate feature optimization quality,
convergence velocity, and resultant classification efficacy to measure
EGWO’s impact distinctly.

It is possible to investigate numerous approaches to improve the
EGOLF-Net model further and broaden its range of applications.
An avenue for further development is expanding the model to
encompass broader and more varied datasets, such as multi-
lead ECG signals. Another potential field for further investigation
is incorporating the EGOLF-Net model into wearable health
monitoring devices to enable continuous and real-time detection
of arrhythmias. By enabling early diagnosis and intervention, this
has the potential to enhance patient outcomes greatly. Furthermore,
additional research on the model’s capacity to be applied to other
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cardiac disorders, such as myocardial infarction or heart failure,
could expand its practical use in clinical settings.
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