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A model to simulate human
cardio-respiratory responses to
different fluid resuscitation
treatments after hemorrhagic
injury
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of Military Medicine, Inc., Bethesda, MD, United States

Decision-support systems based on artificial intelligence and machine learning
algorithms can enhance the capability and capacity of medics to provide
care for combat casualties during large-scale combat operations. The training
and validation of such algorithms require large amounts of vital-sign data,
which can be generated using computational models with the appropriate
fidelity. Previously, we developed and validated a human cardio-respiratory
(CR) model that captures the essential features of the cardiovascular and
respiratory responses to hemorrhage and fluid resuscitation. Here, we extended
the CR model by adding oxygen transport and fluid exchange between the
capillaries and the interstitial space, which allowed us to represent the effect of
different resuscitation fluid types, including saline, blood, and blood products,
on vital signs and blood variables. We calibrated and validated the model using
hemorrhagic-injury and resuscitation data from four experimental swine studies,
involving six different types of resuscitation fluids. We captured the general trend
of the experimental vital signs and blood variables with average root mean
square errors of 6.91 mmHg for mean arterial pressure, 0.49 L/min for cardiac
output, 0.72 g/dL for hemoglobin, and 0.70 mL/(kg·min) for delivered oxygen. In
addition, model simulations showed that oxygen delivery increased during fluid
resuscitation, regardless of the resuscitation fluid type. The extended CR model,
with its ability to account for responses to the most widely used resuscitation
fluids, will allow us to generate more realistic synthetic data of trauma
casualties.

KEYWORDS

cardiovascular system, mathematical model, hemorrhage, resuscitation fluid types,
oxygen delivery, transcapillary fluid exchange

1 Introduction

Hemorrhage remains the leading cause of preventable trauma-induced death on
the battlefield (Eastridge et al., 2012; Kotwal et al., 2018; Eastridge et al., 2019).
Identifying combat casualties at high risk for uncontrolled bleeding, providing timely
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care, and reducing evacuation time to less than 60 min have
considerably increased Warfighter survivability (Dolan et al.,
2021). However, in future large-scale combat operations (LSCO)
with a near peer in an increasingly contested battlefield with
a large number of casualties and delayed evacuation, combat
medics will need to provide prolonged casualty care in a
resource-constrained environment (Rasmussen et al., 2015;
Kharod et al., 2019; Dolan et al., 2021).

Recent advancements in the development of decision-support
systems based on artificial intelligence (AI) and machine learning
(ML) algorithms can augment the capability and capacity of combat
medics tomonitor, triage, diagnose, and treat combat casualties near
the point of injury (Jin et al., 2017; Jin et al., 2018; Craca et al.,
2023; Peng et al., 2023; Stallings et al., 2023; Jin et al., 2024;
Keller et al., 2024). However, the training and validation of AI
and ML algorithms require massive amounts of curated data,
which are not readily available from animal studies due to their
small sample size (Sondeen et al., 2011; Simovic et al., 2023)
or from clinical studies due to the limited number of measured
variables (Liu et al., 2015; Reisner et al., 2016). An alternative
solution is to create a synthetic database of battlefield injury
and treatment scenarios using validated computational models
representing human physiology.

Over the last few decades, several models of the cardio-
respiratory system have been proposed to generate insights into the
effect of hemorrhage and fluid resuscitation in healthy individuals.
These models vary substantially in both scope and size. The
majority of the small or medium-sized models (with the number
of parameters on the order of 10–100) either completely lack
or simplify one or more of the key components of the cardio-
respiratory system (e.g., the interstitial fluid compartment), the
neuronal control system, or the respiratory system (Grodins,
1959; Mardel et al., 1995; Drobin and Hahn, 1999; Batzel et al.,
2004; Tatara et al., 2007; Beard et al., 2013; Siam et al., 2014;
Bighamian et al., 2017). In contrast, some of the larger models
describe multiple organ systems and their interactions using
thousands of parameters and are too complex to calibrate and
integrate into AI and ML algorithms (Hester et al., 2011; Bray et al.,
2019). Importantly, none of these models had their vital-
sign predictions validated against experimental or clinical data
involving both hemorrhage and fluid resuscitation using multiple
fluid types.

Recently, our U.S. Department of Defense team developed and
validated a human physiological model (the cardio-respiratory CR
model) that captures the essential features of the cardiovascular
and respiratory responses to hemorrhage, fluid resuscitation, and
respiratory perturbations (Jin et al., 2023). Validation studies
demonstrated that the CR model yields equal or higher accuracy
in predicting vital-sign changes resulting from hemorrhagic injuries

Abbreviations: AI, artificial intelligence; BV, blood volume; CI, cardiac index;
CO, cardiac output; CR, cardio-respiratory; DO2, delivered oxygen; FFP, fresh
frozen plasma; FiO2, fraction of inspired oxygen; FWB, freshwhole blood; Hb,
hemoglobin; HR, heart rate; HTS, hypertonic saline; ISS, interstitial space; LR,
lactated Ringer’s solution; LSCO, large-scale combat operations; MAP, mean
arterial pressure; ML, machine learning; MV, minute ventilation; NS, normal
saline; PRBC, packed red blood cells; RBC, red blood cells; RMSE, root mean
square error; SEM, standard error of the mean; SvO2, mixed venous blood
oxygen saturation; USAISR, U.S. Army Institute of Surgical Research.

and resuscitation treatments compared with other similar-size
models as well as largermodels of the cardiovascular and respiratory
systems (Jin et al., 2023). In addition, the parsimonious nature
of the CR model (approximately 100 parameters) allows it to be
readily integrated into other applications, such as the training
and validation of ML algorithms for optimizing the utilization of
resuscitation fluids (Jin et al., 2024).

In the original CR model, we only considered the hydrostatic
pressure exerted by a generic resuscitation fluid to predict changes
in vital signs resulting from resuscitation interventions after a
hemorrhagic injury. This simplification limited the model’s ability
to capture the effects of different fluid resuscitation treatments
with different salt and protein concentrations. To overcome this
limitation, we extended the CR model to represent resuscitation
fluids as a mixture of its constituents, including salt and proteins,
which allowed us to account for both the hydrostatic and oncotic
pressures of saline, blood, and blood products. In addition, we
also modified the descriptions of transcapillary fluid exchange and
physiology-based oxygen transport in the model (Figure 1A). We
calibrated and validated the extended CR model using swine data
from four different experimental studies, involving six different
types of resuscitation fluids and their effects on vital signs, including
mean arterial pressure (MAP), heart rate (HR), and cardiac output
(CO), as well as on blood variables, including hemoglobin (Hb)
concentration, delivered oxygen (DO2), and mixed venous blood
oxygen saturation (SvO2). Finally, we illustrated the applicability
of the model by performing simulations to identify the volume
required by these various resuscitation fluid types to reach a given
treatment target.

2 Methods

2.1 Computational model

The original CR model (Jin et al., 2023) represents the
cardiovascular and respiratory systems and their regulatory
mechanisms (via 74 ordinary differential and algebraic equations
with 98 parameters) and predicts the time-dependent evolution
of vital signs resulting from hemorrhagic injury and subsequent
fluid resuscitation (Figure 1B). Here, we extended the model
by incorporating the effects that six different fluid resuscitation
types [normal saline (NS), hypertonic saline (HTS), lactated
Ringer’s solution (LR), fresh frozen plasma (FFP), fresh whole
blood (FWB), and packed red blood cells (PRBC)] transfused
following hemorrhage have on the vital signs. To this end, we
updated two key elements of the CR model: the transcapillary
fluid exchange component and the phenomenological oxygen-
dissociation relationship used in modeling the gas exchange and
metabolism (Figure 1B, shaded blocks). For a comprehensive
overview of the original CRmodel formulation and implementation,
we direct the reader to Jin et al. (2023).

2.1.1 Transcapillary exchange model
The transport of water and solutes between the capillaries and

the interstitial space (i.e., the transcapillary fluid exchange) is driven
by the differences in both the hydrostatic pressure (previously
considered in the CR model) and the oncotic pressure between
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FIGURE 1
Schematic showing (A) the study workflow, including the model extension, model calibration, model validation, and simulation; (B) the structure of the
cardio-respiratory (CR) model, with the shaded boxes indicating the CR model extensions; and (C) the compartments in the fluid exchange model. CO:
cardiac output; FiO2: fraction of inspired O2; HR: heart rate; MAP: mean arterial pressure; MV: minute ventilation.
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the two spaces (Kedem and Katchalsky, 1958). To incorporate the
effect of oncotic pressure on the transcapillary fluid exchange,
we first represented blood as a uniform mixture of hematocrit,
plasma proteins, and salt, with the latter two contributing to
the oncotic pressure. Next, based on the computational model
developed by Mazzoni et al. (1988), we partitioned the capillaries
and the space surrounding them into five uniformly mixed
compartments (Figure 1C). We divided the space within the
capillaries into two compartments, the red blood cells (RBC)
and the plasma, and the space outside the capillaries into two
compartments, the interstitial space (ISS) and the tissue cells. As
the fifth compartment, we represented a layer of endothelial cells
that formed the boundary between the capillaries and the ISS.
We assumed that the hydrostatic pressure values of RBC, plasma,
and endothelial cells as well as those of the ISS and tissue cell
compartments were always equal. In addition, we assumed that the
membranes separating the five compartments were permeable to
water and that the membrane between the capillaries and the ISS
also allowed for the transport of salt and albumin.

We used the empirical relationships provided by Mazzoni et al.
(1988) andNitta et al. (1981) to compute the oncotic pressure π of the
model compartments for a given average concentrationCof proteins
and salt in each of the five compartments, as shown inEquations 1–3:

πalb = 2.8× 10‐1(Calb) + 1.8× 10‐3(Calb)2 + 1.2× 10‐5(Calb)3 (1)

πglob = 2.1× 10‐1(Calb +Cglob) + 1.6× 10‐3(Calb +Cglob)2

+ 0.9× 10‐6(Calb +Cglob)3‐πalb (2)

πsalt = 6.27× 102 (Csalt) (3)

where the superscripts alb and glob denote albumin and globulin,
respectively.

We used a modified version of Starling’s equations (Kedem and
Katchalsky, 1958) to describe the volumetric flow rate ofwater Jw and
themass flow rates of solutes (Jsalt for salt and Jalb for albumin) across
the membranes and used the equations provided by Mazzoni et al.
(1988) to describe the lymphatic flow JwL from the ISS to the plasma,
as shown in Equations 4–11:

JwPl‐EC = LPl‐ECSPl‐EC[π
salt
EC ‐(π

alb
Pl + π

glob
Pl + π

salt
Pl )] (4)

JwEC‐ISS = LEC‐ISSSEC‐ISS[PPl ‐PISS + (π
alb
ISS + π

salt
ISS)‐π

salt
EC ] (5)

JwPl‐ISS = LPl‐ISSSPl‐ISS[PPl ‐PISS + σ
alb
Pl‐ISS(π

alb
ISS ‐π

alb
Pl ) + σ

salt
Pl‐ISS(π

salt
ISS ‐π

salt
Cap)‐σ

glob
Pl‐ISSπ

glob
Pl ]

(6)

JwPl‐RBC = LPl‐RBCSPl‐RBC[π
salt
RBC ‐(π

alb
Pl + π

glob
Pl + π

salt
Cap)] (7)

JwISS‐Tcell = LISS‐TcellSISS‐Tcell[π
salt
Tcell ‐(π

alb
ISS + π

salt
ISS)] (8)

JwL =
{{{{
{{{{
{

JwL0,

7.35PISS + J
w
L0,

JwL0 + 29.40,

PISS < 0

0 ≤ PISS < 4

PISS ≥ 4

(9)

JsaltPl‐ISS = C
salt
Pl‐ISS(1 ‐σ

salt
Pl‐ISS)J

w
Pl‐ISS +PS

salt
Pl‐ISSΔC

salt
Pl‐ISS (10)

JalbPl‐ISS = C
alb
Pl‐ISS(1 ‐σ

alb
Pl‐ISS)J

w
Pl‐ISS +PS

alb
Pl‐ISSΔC

alb
Pl‐ISS (11)

where P represents the hydrostatic pressure in a compartment, σ
denotes the reflection coefficient of salt or a protein, L represents
the hydraulic conductivity and S denotes the total surface area
of a membrane, JwL0 represents the lymphatic flow at nominal
conditions, PS represents the product of the permeability and
the surface area of a membrane, and C and Δ C represent the
average concentration and the difference between concentrations of
solutes in two adjacent compartments, respectively.The superscripts
denote the type of solute (alb, albumin; glob, globulin; or salt).
The subscripts for P and π denote the compartment type (EC,
endothelial cells; ISS, interstitial space; Pl, plasma; RBC, red
blood cells; or Tcell, tissue cells), and for the other quantities,
the subscripts denote the membrane separating two adjacent
compartments (e.g., LPl‐RBC denotes the hydraulic conductivity
of the membrane separating the plasma and the red blood
cells). We also assumed that the concentrations of solutes
(albumin and salt) in the lymphatic fluid were equal to those
in the ISS.

In the ISS, we defined the change in the hydrostatic pressure
from its nominal value ΔPISS as a function of the change in the ISS
volume from its nominal value ΔVISS, as shown in Equation 12:

ΔPISS =
{{{{
{{{{
{

ΔVISS/1.7,

ΔVISS/1.2,

2(ΔVISS ‐4.8) + 4,

ΔVISS < 0.0

0.0 ≤ ΔVISS < 4.8

ΔVISS ≥ 4.8

(12)

Finally, based on previous computational studies (Simpson et al.,
1996; Batzel et al., 2004; Michel et al., 2020), we applied a constraint
on the maximum volume of water that can be absorbed from the
ISS into the plasma during hemorrhage. Accordingly, we scaled the
volumetric flow rate of water Jw in Equations 4, 7 based on the
volume of water absorbed Vrefill, to compute the final flow rate Jw

′
,

as shown in Equation 13:

Jw
′

j =
{{{
{{{
{

Jwj (1 ‐
Vrefill

Vmax
refill
)
2
, Jwj ≤ 0andVrefill ≥ 0

Jwj , otherwise

Vrefill = ∫−(J
w′
Pl−ISS + J

w′
Pl−EC)dt (13)

where the subscript j = Pl-ISS or Pl-EC represents the flow from
the plasma to the ISS or from the plasma to the endothelial cells,
respectively, and Vmax

refill denotes the maximum value of Vrefill.

2.1.2 Oxygen dissociation model
Tomodel the exchange of oxygen and carbon dioxide that occurs

in the lungs and in the body tissues, we calculated the blood oxygen
concentration CO2 and the carbon dioxide concentration CCO2 for
a given partial pressure of these gases. In the original CR model,
we described the equations representing this phenomenon under
the assumption that the concentration of hemoglobin Hb remained
constant. Here, we modified these equations to reflect changes in
Hb concentration due to resuscitation with different fluid types.
In the modified equations, we assumed that the concentration of
oxygen in the blood was proportional to the Hb concentration.
However, because carbon dioxide is primarily dissolved in the
plasma and its concentration does not change substantially
with Hb concentration, we did not update the equations
describing its dissolution in blood. The modified Equations 14, 15
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are as follows:

Cj,O2 = 0.0227c1
F

1
a1
j,O2

1+ F
1
a1
j,O2

Hb
Hb0

(14)

Cj,CO2 = 0.0227c2
F

1
a2
j,CO2

1+ F
1
a2
j,CO2

(15)

where the subscript j represents either arterial or venous
blood and Hb0 represents the hemoglobin concentration
under nominal condition. FO2 and FCO2 are each a function
of both the partial pressure of oxygen and carbon dioxide
in the blood, and the constants a1, a2, c1, and c2 represent
parameters given by Spencer et al. (1979) after fitting the relation to
experimental data.

This extension added 30 new equations and 20 new parameters
to the original CR model for a total of 104 ordinary differential
and algebraic equations and 118 parameters. The model inputs
include the rate of hemorrhage, resuscitation fluid type, rate of
fluid resuscitation, minute ventilation, and fraction of inspired
oxygen. The model generates as outputs the arterial blood pressures
[systolic, diastolic, and mean], HR, CO, blood volume (the net
volume of fluid in the vasculature), Hb concentration, partial
pressure of end-tidal carbon dioxide, and oxygen saturation. The
complete set of model equations and the associated parameter
values are available in the Supplementary Material, Sections 1 and
2, respectively. We performed all simulations using MATLAB 24.2
(MathWorks, Natick, MA, United States) and solved the model’s
system of equations using Euler’s method (Griffiths and Higham,
2010) with a time step of 4.17 × 10−4 min.

2.2 Model calibration and validation

We selected the four animal experimental studies listed in
Table 1 to calibrate and validate the model because their protocols
involved a range of hemorrhagic injuries (31%–79% of total
blood volume) followed by resuscitation treatment with up to six
commonly used fluids. In addition, these studies provided sufficient
information for us to computationally simulate the experimental
protocols and reported the values of vital signs predicted by the CR
model. We selected Study 1 for model calibration because it had
information from three fluid types (i.e., NS, HTS, and FFP), which
was sufficient to determine the oncotic pressures and transcapillary
exchange of all six fluid types. We selected Studies 2-4 for model
validation because they involved additional fluid types (e.g., FWB),
their combination (e.g., a mixture of albumin and HTS), and their
administration at different rates, which allowed us to more broadly
challenge the model. Study 4 was conducted more than a decade
ago but was never reported in the open literature. The study was
conducted at the U.S. Army Institute of Surgical Research (USAISR)
in Fort SamHouston, Texas, in a facility certified by the Association
for the Assessment and Accreditation of Laboratory Animal Care
International. The study was approved by the Institutional Animal
Care and Use Committee of the USAISR and was performed in
compliance with the AnimalWelfare Act and in accordance with the

Guide for the Care and Use of Laboratory Animals.The protocol for
this study is described in section of the Supplementary Material.

2.2.1 Model calibration
To ensure that the extended CR model accurately captured

the changes in vital-sign response to hemorrhage and resuscitation
fluid type, we calibrated 13 of the 118 model parameters using the
swine study data reported by Soller et al. (2014) in Study 1. To
identify the parameters that needed to be calibrated, we performed
a local sensitivity analysis and identified five parameters of the
transcapillary fluid shift component whose changes had the greatest
effect on MAP following hemorrhage. In addition, because the
transcapillary fluid shift was one of the cardiovascular regulatory
mechanisms activated during hemorrhage and worked in tandem
with other control loops present in the CR model, we fine-tuned
eight control parameters of the original CR model, as well. For eight
of the 13 parameters, we defined their feasible ranges using available
literature data (Guyton, 1980; Mazzoni et al., 1988; Michel, 1988;
Just et al., 1998; Elstad et al., 2002; Pstras and Waniewski, 2019),
and for the other parameters whose ranges were not available in
the literature, we used ±60% of their nominal values to define their
feasible range.

For model calibration, we used the MAP and CO data reported
in Study 1, where animals were bled to ∼45% of their total blood
volume followed by resuscitation using three distinct fluid types
(NS, HTS, and FFP). Although Study 1 also reported HR data (a
vital sign predicted by the CR model), we did not use these data
for model calibration because HR dynamics are highly variable and
affected by a variety of factors, such as pain and stress, which we
do not currently account for in the model (Jin et al., 2023). Because
the experiments were performed on animals and the CR model
represents a human, we normalized the inputs before simulating the
scenarios. Based on the correlation defined by Watts et al. (2023),
we used the average body weight of the animals in each study to
compute the corresponding hemorrhage and resuscitation rates as
a percentage of the total blood volume. We then multiplied these
percentages by the blood volume of an adult (70 kg, 5 L blood)
to identify the equivalent volumetric hemorrhage and resuscitation
rates for a human adult and used them as inputs to the model.
Similarly, we also normalized the predicted outputs (MAP and CO)
because their values at the baseline conditions varied between the
different experiments as well as between the model simulations.
Accordingly, we multiplied each simulated output by the ratio of the
baseline experimental value (group mean) to the baseline simulated
value of the corresponding model output (Jin et al., 2023).

To identify the optimal parameter values, we minimized the
root mean square error (RMSE) between the experimental data
and the model-predicted MAP and CO. Because MAP and CO
represent distinct quantitieswith different units, we scaled theRMSE
values of each output with their respective standard error of the
mean (SEM). We defined the model’s “nominal parameter set” as
the final parameter values obtained after performing the calibration
procedure (Supplementary Table S1).

In addition, we assumed that in the absence of hemorrhage
or fluid resuscitation, the fluid exchange model was in dynamic
equilibrium (Xie et al., 1995; Rosalina et al., 2019). Based on
this assumption, we calculated the initial values of the lymphatic
flow rate and the concentrations of salt and protein in all five
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compartments by solving the equations in the transcapillary fluid
exchange component of themodel (Equations 4–11) after setting the
net transport of albumin, salt, and water to zero.

2.2.2 Model validation
To validate the extended model, we compared its predictions

against experimental data from three existing studies (Studies 2-4
in Table 1). Briefly, these studies involved swine models challenged
with hemorrhage ranging from 31%–79% of total blood volume and
resuscitation using six different fluid types, including NS, HTS, FFP,
LR, FWB, and PRBC, administered individually or in combination.
Study 3 consisted of a single phase of controlled hemorrhage
followed by fluid resuscitation. In contrast, Studies 2 and 4 consisted
of both controlled and uncontrolled hemorrhage, which in turn
resulted in a re-bleed phase following fluid resuscitation. In addition,
Study 4 involved fluid resuscitation at three different infusion
rates (slow, standard, and bolus infusion) for each fluid type.
The studies reported vital signs, blood variables, and the rates of
hemorrhage and resuscitation. For additional information on the
experimental protocols, we refer the reader to the original articles
(Sondeen et al., 2011; Urbano et al., 2012).

To replicate the scenarios in Studies 2-4 in silico, we provided
the corresponding hemorrhage, fluid resuscitation, and ventilation
rates as inputs to the model, after normalizing them (and the
outputs) based on the procedure described in Section 2.2.1 “Model
calibration.” To validate the model, we compared the changes in the
time course of the various model outputs (MAP, CO, HR, Hb, DO2,
and SvO2) with their corresponding experimental measurements by
computing the RMSE (Table 2).

2.3 In silico analysis of different fluid
resuscitation treatments

We used the validated extended CR model to investigate the
cardiovascular dynamics caused by changes in blood volume and
in DO2 to the tissues during different resuscitation treatment
scenarios. Specifically, we performed three simulations. In the
first, we analyzed the effect of changes in blood volume on the
cardiovascular dynamics by simulating a total hemorrhage of 2.75 L,
using the nominal parameter set. We introduced the hemorrhage
in four consecutive 10-min intervals followed by three consecutive
5-min intervals, for a total of seven hemorrhage intervals with a
constant bleeding rate of 50 mL/min. Between each of the seven
bleeding intervals, we added six 30-min non-bleeding periods so
that we could obtain CO and blood volume values after the model
had achieved steady state. In these simulations, we kept the Hb
concentration at a constant value of 12.8 g/dL. In addition, at the end
of each of the seven hemorrhage intervals, we computed the time
required by the blood to complete one-half of the body’s circulation,
i.e., the lung-to-periphery circulation time.

In the second simulation, we investigated through four scenarios
the effect of resuscitation with different fluid types on DO2 to the
tissues. Each scenario included hemorrhage of 40%of the total blood
volume over a 30-min interval followed by a 30-min non-bleeding
period.The first two scenarios involved resuscitating with FWB after
the non-bleeding period at a rate equal to that of hemorrhage until
the total infusion volume reached either 40% or 32% of the initial

blood volume. We repeated the same two simulations using FFP as
the resuscitating fluid. We chose to evaluate the effect of FWB and
FFP because they are two of themost widely recommended fluids for
hemorrhagic trauma (Holcomb et al., 2007). We compared the time
course of changes in DO2 between the four scenarios in an attempt
to differentiate between the two fluids’ ability to transport oxygen to
the tissues.

Finally, in the third simulation, we assessed a wide range
of hemorrhage scenarios (10%–35% of blood volume) with
resuscitation treatments involving distinct fluid types (NS, FFP,
FWB, and PRBC). This included a 30-min hemorrhage period
followed by a 30-min non-bleeding period, followed by a 30-
min resuscitation period. In each of the hemorrhage and fluid-
treatment scenarios, we computed the minimum volume of
resuscitation fluid required to restore DO2 to 80% of its baseline
value, while using an upper bound of 3 L (60% of blood volume)
as the maximum amount of fluid that could be infused.

3 Results

3.1 Model calibration

Based on the local sensitivity analysis, we identified five
parameters of the transcapillary fluid exchange component for
calibration, including the hydraulic conductivity LPl‐ISS, the
reflection coefficient of salt σsaltPl‐ISS, the permeability-surface area
product of albumin PSalbPl‐ISS, the upper bound on the transcapillary
refill Vmax

refill, and the coefficient kcp used for calculating the
hydrostatic pressure in the capillaries. We calibrated the values of
these parameters, along with eight parameters from the original CR
model (Supplementary Table S1). We verified that after calibration
the estimated values of two keymodel parameters, the product of the
surface area and hydraulic conductivity of the plasma-ISS boundary
and the Peclet number for albumin transport along the same
boundary, were similar to those identified by other computational
models [6.5 mL/(min·mmHg) vs. 5.0to9.0 mL/(min·mmHg) and
0.03 vs. 0.01 to 0.07, respectively (Tatara et al., 2007; Pstras and
Waniewski, 2019; Rosalina et al., 2019)].

We used the experimental data reported in Study 1 to calibrate
the parameters of the extended CR model. The study reported
changes in MAP and CO of swine studies performed for three
distinct experimental groups, with each group using a different
resuscitation fluid type (NS, HTS, or FFP), following hemorrhage
of ∼45% of their total blood volume. Figure 2 shows the calibrated
(solid line) and experimentally measured (filled circles) MAP
and CO data, which indicate similar trends and a reasonable
agreement. For example, both values decreased by ∼55% of their
nominal values during hemorrhage and returned to ∼80% after
resuscitation. The results indicate that the model captured the
general trend of experimental data with RMSEs smaller than
12.31 mmHg for MAP and 0.76 L/min for CO. Table 2 shows
the individual RMSEs for each of the three experimental groups
and the error for other vital signs (HR) and blood variables
(Hb and DO2), which we did not use for model calibration.
Supplementary Figures S1A–C in the Supplementary Material show
the simulated (solid line) and experimentally measured (filled
circles) HR data.
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TABLE 2 Root mean square error (RMSE) between model-predicted vital signs and blood variables and the corresponding experimental data.

Study Fluid type/Infusion rate RMSE

MAP
(mmHg)

CO (L/min) HR
(beats/min)

Hb (g/dL) DO2
[ml/(kg·min)]

SvO2 (%)

1

Normal saline 8.85a 0.41a 40.03 0.64 0.88 -

Hypertonic saline 12.31a 0.76a 49.90 0.82 1.31 -

Fresh frozen plasma 8.59a 0.45a 31.20 0.78 1.56 -

2

Lactated Ringer’s solution 6.76 0.38 33.73 0.74 1.30 -

Fresh frozen plasma 5.60 0.42 52.26 0.92 0.88 -

Fresh whole blood 3.38 0.40 57.89 1.09 1.27 -

Plasma-PRBC (1:1) 2.48 0.41 50.63 1.69 0.67 -

Plasma-PRBC (1:4) 2.18 0.29 72.48 1.64 0.80 -

3

Normal saline 5.53 0.87b 41.06 - - 5.28

Hypertonic saline 11.14 0.57b 42.65 - - 8.12

Albumin + hypertonic saline 4.20 0.78b 24.50 - - 7.07

4

Normal saline

Standard
infusion

8.61 0.48 49.83 0.40 0.58 -

Slow infusion 11.47 0.57 37.24 0.42 0.60 -

Bolus infusion 6.48 0.53 49.75 0.45 0.71 -

Fresh frozen
plasma

Standard
infusion

8.53 0.57 31.05 0.29 0.92 -

Slow infusion 7.15 0.46 44.20 0.27 0.35 -

Bolus infusion 10.16 0.46 36.51 0.40 0.73 -

Fresh whole
blood

Standard
infusion

9.22 0.38 37.71 0.65 0.47 -

Slow infusion 6.88 0.33 48.60 0.76 0.24 -

Bolus infusion 7.72 0.39 46.67 0.32 0.33 -

Average RMSE, Studies 2–4 6.91 0.49 44.52 0.72 0.70 6.82

CO, cardiac output; DO2, delivered oxygen; Hb, hemoglobin concentration; HR, heart rate; MAP, mean arterial pressure; PRBC, packed red blood cells; SvO2, mixed venous blood oxygen
saturation.
aData used to calibrate the model.
bRMSE for cardiac index (L/min/m2).

3.2 Model validation

To validate the computational model, we compared its
predictions of the time course of changes in vital signs (MAP,
CO, and HR) and blood variables (Hb, DO2, and SvO2) with the
corresponding experimental data from Studies 2-4 in Table 1. Study
2 reported changes in MAP, CO, HR, Hb, and DO2 across five
distinct experimental groups, with each group using a different

fluid type [LR, FFP, FWB, FFP-PRBC (1:1), or FFP-PRBC (1:4)]
for resuscitation following hemorrhage. For brevity, we only show
the comparisons for three out of the five groups, but we provided
the RMSEs for all five groups in Table 2. Figure 3 shows the model
predictions (solid lines) for MAP, CO, HR, Hb, and DO2 and the
corresponding experimental data (filled circles). The predictions for
MAP and CO showed reasonable agreement with the experimental
data, with nearly 90% of the predictions falling within 2 SEM of
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FIGURE 2
Comparison of the experimental vital-sign data from Study 1 and the corresponding model fits. (A-C) Mean arterial pressure (MAP) and (D-F) cardiac
output (CO). The left panels show the results for infusion of normal saline (NS), the middle panels for 3% hypertonic saline (HTS), and the right panels
for fresh frozen plasma (FFP). The timeline at the top of each panel illustrates the hemorrhagic shock protocol, wherein H represents the hemorrhage
period, M denotes the monitoring period, and R represents the resuscitation period. The error bars denote two standard errors of the mean. BV: blood
volume; RMSE: root mean square error.

the experimental data. However, for HR, we observed considerable
differences between the model predictions and the experimental
data (10% of the model predictions fell within 2 SEM of the
experimental data; average RMSE = 53 beats/min. For Hb and DO2,
54% of the model predictions fell within 2 SEM.

In both the experimental data and our simulations, we only
observed modest differences in the changes in the vital signs (MAP,
CO, and HR) across the five different types of resuscitation fluid.
However, Hb was sensitive to fluid type. For example, for the
same degree of hemorrhage in Study 2, the concentration of Hb
decreased by 21% after FFP infusion but increased by 11% after
FFP-PRBC (1:4) infusion, which the model captured (Figures 3J,L).
However, during hemorrhage (the first 50 min of the simulation),
the model predicted a 14% drop in Hb concentration, which was
not observed in the experiments. Finally, we observed that fluid
resuscitation always resulted in an increase in DO2, regardless of
fluid type (Figures 3M–O).

Study 3 reported changes in four outputs (HR, MAP, cardiac
index, and SvO2) across three distinct experimental groups, with
each group using a different resuscitation fluid type (NS, HTS,
or Albumin + HTS) following hemorrhage. For brevity, we only
show the comparisons for two (MAP and SvO2) of the four
outputs (Figure 4), with the other results reported in Table 2
and Supplementary Figures S1D–F (Supplementary Material). In
general, the predictions for both MAP and SvO2 showed reasonable
agreement with the experimental data, with 33% of the predictions
falling within 2 SEM. For each of the three groups, we observed
considerable differences in the experimentally measured values

of MAP (∼79%–88% of their baseline values; Figures 4A–C, filled
circles) and SvO2 (∼47%–74%of their baseline values; Figures 4D–F,
filled circles) for the same hemorrhagic injury before the
start of the resuscitation, which might have contributed
large RMSEs between the model predictions and the mean
experimental values.

Study 4 investigated the effects of three fluid types (NS, FFP, and
FWB), where each fluid was administered at each of three different
resuscitation rates (slow, standard, and bolus infusion), and reported
changes in five outputs (HR,MAP,CO,Hb, andDO2) across the nine
distinct experimental groups. For brevity, Figure 5 only shows the
comparisons for two outputs (MAP and CO) from six experimental
groups (slow or standard infusion for each of the three different
fluid types). We show the HR comparisons for each of the six
groups in Supplementary Figure S2 (Supplementary Material) and
all the RMSEs in Table 2. In both the experimental data and our
simulations, we observed that when different resuscitation fluids
were transfused at their standard infusion rates [1.7 mL/(kg·min)
for NS and 1.2 mL/(kg·min) for both FFP and FWB], resuscitation
resulted in MAP returning to ∼75% of its nominal value. However,
after resuscitation, we observed that NS resulted in a sharp
drop in MAP in the absence of additional active hemorrhage
(Figures 5A–C). In contrast, when these fluids were infused at
a slower rate [0.4 mL/(kg·min) for NS, 0.3 mL/(kg·min) for FFP,
and 0.1 mL/(kg·min) for FWB], resuscitation by all fluid types
resulted in a smaller recovery in MAP (returning to ∼60% of its
nominal value). However, for all infusions,MAP remained relatively
stable after resuscitation (Figures 5D–F). In these comparisons,
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FIGURE 3
Comparison of model predictions of vital signs and blood variables from Study 2 and the corresponding experimental data. (A–C) Mean arterial
pressure (MAP), (D–F) cardiac output (CO), (G–I) heart rate (HR), (J–L) hemoglobin concentration (Hb), and (M–O) delivered oxygen (DO2). The left
panels show the results for infusion of fresh frozen plasma (FFP), the middle panels for fresh whole blood (FWB), and the right panels for FFP and
packed red blood cells (PRBC) in a 1:4 ratio [FFP-PRBC (1:4)]. The timeline at the top of each panel illustrates the hemorrhagic shock protocol, wherein
H represents the hemorrhage period, M denotes the monitoring period, and R represents the resuscitation period. The error bars denote two standard
errors of the mean. BV: blood volume; RMSE: root mean square error.

on average, 49% of the model predictions for MAP and CO fell
within 2 SEM.

Overall, for the validation studies (Studies 2–4), we observed
that the experimental data and the model predictions demonstrated
similar trends, i.e., as expected the values of MAP, CO, DO2,
and SvO2 decreased during hemorrhage and increased during
fluid resuscitation (regardless of fluid type), while the values for
HR increased during hemorrhage and decreased during fluid
resuscitation. In contrast, changes inHb concentration depended on
the resuscitation fluid type. Furthermore, the RMSEs between the
different model outputs and the corresponding experimental data
were in ranges similar to those obtained during model calibration
with Study 1 (Table 2).

3.3 Simulation results

3.3.1 Oxygen delivery increased with fluid
resuscitation

To investigate the effect of changes in blood volume on
cardiovascular dynamics, we simulated a scenario of progressive
hypovolemia, i.e., a blood loss that increased from 0% to 55% of
the initial blood volume. Figure 6A shows the variations in CO
(filled circles) and the lung-to-periphery circulation time (open
squares) as a function of blood volume in the body. As expected,
we observed that CO monotonically increased and that lung-
to-periphery circulation time monotonically decreased with an
increase in blood volume.
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FIGURE 4
Comparison of model predictions of a vital sign and a blood variable from Study 3 and the corresponding experimental data. (A-C) Mean arterial
pressure (MAP) and (D-F) mixed venous blood oxygen saturation (SvO2). The left panels show the results for infusion of normal saline (NS), the middle
panels for 3% hypertonic saline (HTS), and the right panels for 5% albumin plus 3% hypertonic saline (Albumin + HTS). The timeline at the top of each
panel illustrates the hemorrhagic shock protocol, wherein H represents the hemorrhage period, M denotes the monitoring period, and R represents the
resuscitation period. The error bars denote two standard errors of the mean. BV: blood volume; RMSE: root mean square error.

Next, we investigated the effect of different resuscitation fluid
types on DO2. Figure 6B shows the model-generated changes in
DO2 following hemorrhage and resuscitation with two different
fluids: FWB (with Hb; solid line and dashed-dotted line) or FFP
(without Hb; dashed line and dotted line). At the end of hemorrhage
(40% of blood volume between 0 and 30 min), DO2 decreased to
33% of its nominal value. At the end of fluid resuscitation (40% of
blood volume between 60 and 90 min), DO2 returned to 100% of
its original value when we used FWB as the resuscitation fluid but
to only 67% when we used FFP. We observed a similar trend when
we used a lower resuscitation volume (32% blood volume), but the
corresponding recovery in DO2 was also lower (85% for FWB and
60% for FFP).

3.3.2 Volume of resuscitation fluid required to
restore oxygen delivery varied with the fluid type

We performed simulations to determine the infusion volume of
different resuscitation fluids required to meet a treatment target, i.e.,
to restore DO2 to 80% of its original value following hemorrhage
ranging from 10% to 35% of total blood volume. Figure 6C shows
the predicted volumes required to achieve the DO2 target for
different resuscitation fluids (i.e., NS, FFP, FWB, or PRBC). Based
on these results, we found that when resuscitating with PRBC
(Figure 6C, open circles) or FWB (Figure 6C, crosses), the amount
of fluid volume required to meet the target increased linearly with
hemorrhage severity. However, compared with FWB, resuscitation
with FFP (Figure 6C, squares) required 65%–100% more fluid, and
the slope of the curve increased with hemorrhage severity. Finally,

we found that, even for a mild hemorrhage scenario (13% of blood
volume), resuscitation with NS (Figure 6C, filled circles) required
fluid volumes greater than 10 times those required for FWB to
meet the same DO2 target. In addition, in the simulations where
hemorrhage resulted in a total blood loss greater than 13% of blood
volume, we found that even when we used 3 L of NS infusion, the
resuscitation failed to restore DO2 to 80% of its nominal value.

4 Discussion

Given the numerous challenges combat medics will face
during prolonged casualty care in LSCO, including high casualty
rates, large casualty-to-provider ratios in a resource-constrained
environment, and delayed evacuation, AI technologies that optimize
and accelerate decision-making on the battlefield will become
increasingly essential to aid combat medics in the delivery of
care (Jin et al., 2023). The development of such technologies
requires accurate predictive models that can reliably reproduce the
physiological responses to major battlefield injuries, in particular
hemorrhage, the leading cause of preventable death on the battlefield
(Eastridge et al., 2012; Kotwal et al., 2018; Eastridge et al., 2019).
To address this gap, we previously developed and validated the
CR model and used it to generate synthetic data of hemorrhagic
trauma patients and resuscitation treatments using a nonspecific
fluid type that only considered changes in the volume of the infused
fluid (Jin et al., 2023). We subsequently used the synthetic data
to develop and assess AI algorithms that optimize fluid utilization
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FIGURE 5
Comparison of model predictions of vital signs from Study 4 and the corresponding experimental data. (A-C) Mean arterial pressure (MAP) for standard
infusion, (D-F) MAP for slow infusion, (G-I) cardiac output (CO) for standard infusion, and (J-L) CO for slow infusion. The left panels show the results
for infusion of normal saline (NS), the middle panels for fresh frozen plasma (FFP), and the right panels for fresh whole blood (FWB). The timeline at the
top each subplot illustrates the hemorrhagic shock protocol, wherein H represents the hemorrhage period, M denotes the monitoring period, and R
represents the resuscitation period. The error bars denote two standard errors of the mean. BV: blood volume; RMSE: root mean square error.

in resource-constrained mass-casualty scenarios (Jin et al., 2024).
Here, we extended the CR model by incorporating the effects of six
different types of resuscitation fluids (NS, LR, HTS, FFP, PRBC, and
FWB) on vital signs (MAP, CO, and HR) and blood variables (blood
volume, Hb, DO2, and SvO2), and validated the results using three
distinct experimental studies. In addition to volumetric changes,
each fluid accounted for its oncotic pressure, which depends on the
concentration of proteins and salt in the fluid, thus enhancing the
capability of the CR model to simulate a broader range of treatment
scenarios following hemorrhage.

We assessed the performance of the extended CR model
by comparing its predictions with experimental data reported

by three different studies, involving a total of six different
types of resuscitation fluids in various hemorrhage scenarios.
On average, the RMSEs between the model predictions and the
corresponding experimental values forMAP (RMSE= 6.91 mmHg),
CO (0.49 L/min), Hb (0.72 g/dL), DO2 [0.70 mL/(kg·min)], and
SvO2 (6.82 mmHg) were between 5% and 11% of the average
values in humans (Hall and Hall, 2020). However, not surprisingly,
the model predictions for HR showed substantial differences
from the experimental data (the RMSE varied from 25 to 72
beats/min). Accurate prediction of HR is notoriously challenging
during transient conditions, as previously observed in our ownwork
(Jin et al., 2023) as well as in other modeling efforts (Kanal et al.,
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FIGURE 6
Results of simulations performed to investigate changes in blood volume (BV) and delivered oxygen (DO2) for different resuscitation treatment
scenarios. (A) Cardiac output (CO) and blood circulation time as a function of BV in the body. (B) DO2 during hemorrhage followed by resuscitation
using fresh whole blood (FWB) or fresh frozen plasma (FFP). (C) Fluid required to achieve a final DO2 of 80% of its original value. The timeline at the top
of (B) illustrates the hemorrhagic shock protocol, wherein H represents the hemorrhage period, M denotes the monitoring period, and R represents the
resuscitation period. NS: normal saline; PRBC: packed red blood cells.

2022). A potential reason for these differences is that HR dynamics
are affected by several factors, such as pain and distress, that we
currently do not account for in the CR model due to a lack
of understanding of their underlying mechanisms (Tousignant-
Laflamme et al., 2005; Jin et al., 2023). In the future, conducting
a prospective validation study, where we make predictions and
then perform experiments to validate the model predictions, would
further substantiate the reliability and generalizability of the model
predictions.

A primary goal of fluid resuscitation after hemorrhage is to
recover and maintain blood pressure in the arteries by increasing
blood volume (Watts, 1998; Kuo and Palmer, 2022). We observed
that, after resuscitation, the amount of blood volume expansion
varied with fluid type. For example, as reported in Studies 1 and 4
(Figures 2A,C, 5A–C), during the resuscitation phase, the volume
of NS required to maintain MAP was three times greater than that
of FFP or FWB. Unlike these fluids, when resuscitating with NS,
a substantial portion of the fluid moved from the capillaries into
the ISS, requiring a larger volume of NS to restore MAP to the
same levels. Our model simulations showed that this difference
arose due to the absence of plasma proteins (large molecules) in
NS. These proteins, which are present in blood and blood products,
exert an oncotic pressure that prevents the fluid from moving
from the capillaries into the ISS. It is noteworthy that in Studies 1
and 4, for the same reason (i.e., absence of plasma proteins), the
post-resuscitation decrease in MAP was also much greater when
NS was used as the infusion fluid (∼24% of nominal; Figures 2A,
5A) compared with those observed using FFP or FWB (∼10% of
nominal; Figures 2C, 5B,C).

In addition to maintaining blood pressure, a key goal of any
fluid resuscitation treatment is to maintain DO2 (Kuo and Palmer,
2022), which is the product of COand arterial oxygen concentration.
During resuscitation with fluids that do not contain Hb (e.g.,
NS, LR, or FFP), even though CO increases as a result of an
increase in blood volume, the simultaneous hemodilution can lead
to a decrease in arterial oxygen concentration (Siam et al., 2014;
Quispe-Cornejo et al., 2022). The net change in DO2, therefore,

depends on the magnitude of these two counteracting effects.
Except for a few studies that show a reduction in oxygen delivery
locally in specific tissues in the body [e.g., cerebral (Prough et al.,
1986) or renal (Wan et al., 2007)], in general, it is expected
that the increase in CO during fluid resuscitation surpasses the
decrease caused by hemodilution, resulting in a net increase
in DO2 (Quispe-Cornejo et al., 2022). Our results corroborate
this effect because we also observed that as CO increased with
increases in blood volume, the lung-to-periphery circulation time
monotonically decreased (Figure 6A, open squares). Hence, during
fluid resuscitation, even if the infused fluid (e.g., NS) introduced
no additional Hb molecules, the mere expansion of the blood
volume enabled the available Hb molecules to circulate through the
cardiovascular system faster, achieving a higher DO2 comparedwith
its pre-resuscitation value.

Computational models have the potential to augment decision-
making in trauma care. For example, choosing the appropriate
combination of resuscitation fluid type and volume with which
to treat mass casualties, especially when resources are limited, is
both crucial and challenging (Jin et al., 2024). In such situations,
computational models could be used to identify the optimal
treatment strategy for different scenarios. To illustrate this, using
the nominal model representing a single “average” casualty, we
performed a set of simulations to identify the volume of different
fluid types required to meet a given treatment target (i.e., returning
DO2 after hemorrhage to at least 80% of its nominal value). For
mild hemorrhage, we found that the volumes of FFP or NS required
to restore DO2 were, in general, substantially higher (>1.6 times)
than those of FWB or PRBC. However, for moderate or severe
hemorrhage (i.e., hemorrhage of >13% blood volume), the FFP
volume needed increased to 2 times that of FWB or PRBC, and
it was not feasible to restore DO2 using NS (Figure 6C), even
when we used 3 L of resuscitation fluid. Because neither NS nor
FFP contains Hb, their use leads to dilution of Hb in the blood
and higher volume requirements to maintain the same DO2 level
compared with FWB or PRBC. In addition, as discussed above, the
loss of fluid from the capillaries when using NS resulted in greater
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volume requirements to achieve the same DO2 target and, in severe
hemorrhage, extended beyond the 3-L limit set in our simulation.
In the future, we could potentially use the CR model to investigate
different treatment targets, such as arterial pressure values, or add
constraints on the volume and types of fluid that are available to
mimic a resource-constrained environment.

Although by and large the extended CR model captured the
variations in vital signs and blood variables during hemorrhage and
resuscitation, it does have several limitations due to simplifying
assumptions we had to make during model development. First,
we calibrated and validated the model using swine data due
to the lack of clinical human data. We attempted to overcome
this limitation by normalizing the experimental inputs and the
model outputs to an average human. Second, while the model
captures the majority of the key cardiovascular and respiratory
responses to hemorrhagic trauma and fluid resuscitation at the
physiological level, it does not account for the cellular and
molecular mechanisms arising from hemorrhagic shock, such as
coagulopathy, ischemia-reperfusion injury, endothelial cell injury,
glycocalyx disruption, and tissue-level CO2 retention (Hess et al.,
2008; Abassi et al., 2020; Endo et al., 2021). Therefore, the model
currently cannot capture the contribution of these mechanisms to
changes in the vital signs. Third, the CR model does not account for
the effects of pain, anxiety, or medications provided during trauma,
because we currently do not have a precise understanding of the
mechanisms through which these factors affect vital signs. When
such data become available, we will incorporate them in the model
to increase its accuracy.

In summary, we extended and validated our previously
developed CR model to predict the time course of an individual’s
vital-sign changes following hemorrhagic trauma and account for
the volumetric and oxygen delivery effects of different resuscitation
fluid types. This extension will allow for the generation of a large
population of synthetic trauma casualties and the design of optimal
fluid allocation strategies for hemorrhagic trauma, considerably
expanding treatment options to train and assess the performance of
AI algorithms to aid combat medics during prolonged casualty care.
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