
TYPE Review
PUBLISHED 23 June 2025
DOI 10.3389/fphys.2025.1614942

OPEN ACCESS

EDITED BY

Pierre-Marie Leprêtre,
Université de Rouen, France

REVIEWED BY

Laurent Metzinger,
University of Picardie Jules Verne, France
Yingfang Wang,
GDPU, China

*CORRESPONDENCE

Zhongyuan Deng,
dzy@zzu.edu.cn

Jie Cao,
caojie77@naver.com

†These authors have contributed equally

to this work

RECEIVED 20 April 2025
ACCEPTED 10 June 2025
PUBLISHED 23 June 2025

CITATION

Niu S, Yin X, Cao Q, Huang K, Deng Z and
Cao J (2025) miRNAs involved in the
regulation of exercise fatigue.
Front. Physiol. 16:1614942.
doi: 10.3389/fphys.2025.1614942

COPYRIGHT

© 2025 Niu, Yin, Cao, Huang, Deng and Cao.
This is an open-access article distributed
under the terms of the Creative Commons
Attribution License (CC BY). The use,
distribution or reproduction in other forums is
permitted, provided the original author(s) and
the copyright owner(s) are credited and that
the original publication in this journal is cited,
in accordance with accepted academic
practice. No use, distribution or reproduction
is permitted which does not comply with
these terms.

miRNAs involved in the
regulation of exercise fatigue

Siyuan Niu1†, Xiupeng Yin2†, Qinglei Cao3, Kaiyu Huang2,
Zhongyuan Deng4* and Jie Cao5*
1College of Physical, Sungshin University, Seoul, Republic of Korea, 2College of Science and
Technology, Zhengzhou University, Zhengzhou, China, 3Department of Physical Education, University
of Science and Technology Beijing, Beijing, China, 4School of Agriculture, Zhengzhou University,
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Exercise-induced fatigue refers to a temporary decline in physiological function
resulting from prolonged or high-intensity exercise, which is characterized by
decreased muscle strength, diminished exercise performance, and heightened
subjective feelings of fatigue. The study of exercise fatigue holds significant
importance not only in competitive sports and public health, but also extends
to medicine, military applications, and occupational safety. MicroRNA (miRNA)
represents a class of non-coding RNA that plays a pivotal role in the
regulation of gene expression. The involvement of miRNAs in exercise-induced
fatigue has garnered increasing attention within the scientific community.
This article provides an overview of fundamental concepts and biological
functions associated with miRNAs, defines and classifies exercise fatigue while
outlining its physiological changes, emphasizes alterations in miRNA expression
during episodes of exercise-induced fatigue, and conducts an in-depth analysis
regarding the mechanisms through which miRNAs influence this phenomenon
via modulation of energy metabolism, inflammatory responses, and oxidative
stress. Furthermore, this article anticipates future research directions as well
as potential clinical applications for miRNAs concerning exercise-induced
fatigue. This review holds significant importance for elucidating the molecular
mechanisms underlying exercise-related fatigue while fostering advancements
within sports medicine and rehabilitation science.
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1 Introduction

Exercise-induced fatigue typically refers to the phenomenon of reduced exercise
capacity resulting from a temporary imbalance in physiological functions during
continuous or high-intensity physical activity (Gandevia, 2001). It is characterized
by decreased contractility of skeletal muscles, decreased efficiency of neural drive,
and increased subjective fatigue perception. Exercise fatigue can be categorized
into peripheral fatigue (such as dysfunction within the muscular system) and
central fatigue (such as abnormal regulation by the nervous system), based on its
location. These two forms of fatigue interact dynamically through the neuromuscular
coupling system (Carroll et al., 2017). There are several factors contributing to
the phenomenon of exercise-induced fatigue. The most prominent reasons include
an imbalance between the resynthesis rate and consumption rate of adenosine
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triphosphate (ATP), disturbances in the internal environment
of muscle cells resulting from high-intensity exercise, dynamic
fluctuations in neurotransmitter levels within pathways involving
the prefrontal cortex, basal ganglia, and cerebellum, as well as
heat stress (Renaud et al., 2023).

MicroRNAs (miRNAs) are a class of endogenous small non-
coding RNA molecules, typically ranging from 18 to 24 nucleotides
in length. In 1993, researchers first identified the microRNA lin-
4 in the nematode Caenorhabditis elegans, which regulates larval
development by inhibiting the translation of its target gene lin-
14 through incomplete base pairing (Lee et al., 1993). In 2000, a
secondmicroRNA, let-7, was discovered; it also plays a crucial role in
regulating developmental timing in nematodes and has been shown
to be highly conserved across different species (Reinhart et al., 2000).
The 2024 nobel prize in physiology or medicine has been awarded
jointly to Victor Ambros andGary Ruvkun for their groundbreaking
discovery of microRNAs—small non-coding RNA molecules that
regulate gene expression. Their seminal work, beginning with the
identification of lin-4 (Lee et al., 1993) and let-7 (Reinhart et al.,
2000) in C. elegans, revealed an entirely new layer of genetic
regulation conserved across species. This paradigm-shifting finding
not only transformed our understanding of developmental timing
and cellular communication but also opened new avenues for
diagnosing and treating diseases, including cancer and neurological
disorders. In 2001, researchers formally introduced the term
“microRNA” and predicted the existence of hundreds of such
molecules in animals (Lagos-Quintana et al., 2001). By 2002, it
was established that microRNAs mediate target mRNA degradation
or translational repression via the RNA-induced silencing complex
(RISC) (Hutvágner and Zamore, 2002). In 2005, the miRBase
database was launched as an authoritative resource for miRNA
annotation. In the past decade,microRNAs (miRNAs) have emerged
as significant regulators of gene expression and have gradually
gained recognition in the field of exercise physiology. During
physical activity, miRNAs influence various cellular metabolic
pathways, including energy acquisition, inflammation, oxidative
stress, andnumerous other cellular processes. Additionally, they play
crucial roles in cell proliferation, development, and anti-apoptotic
mechanisms. These diverse functions underscore the importance
of miRNAs as essential molecules for understanding exercise-
induced fatigue (Safdar et al., 2016).

Previous studies have established that microRNAs (miRNAs)
play a significant role in the onset and progression of exercise-
induced fatigue.The alterations in the expression levels of miRNA-1
and miRNA-21 following exercise fatigue are negatively correlated
with muscle damage and repair (Meeusen et al., 2021). Specifically,
miR-23amay exacerbate exercise-induced fatigue by targeting PGC-
1α, thereby inhibiting mitochondrial biosynthesis (Wada et al.,
2011). Conversely, miR-146amitigates inflammation by suppressing
TRAF6/NF-κB signaling pathways post-exercise (Baggish et al.,
2011). Furthermore, miRNAs are frequently utilized as biomarkers
for assessing exercise fatigue (Guescini et al., 2015; Bye et al.,
2013). Collectively, these findings suggest that miRNAs represent
key molecular players in elucidating the mechanisms underlying
exercise fatigue through their regulation of muscle repair, energy
metabolism, and inflammatory responses (Baek et al., 2024).

Exercise fatigue is a multi-dimensional and complex
phenomenon that involves physiological, metabolic, and nervous

systems. As key regulators of gene expression, miRNAs target genes
associated with muscle repair, energy metabolism, inflammatory
responses, and central nervous system function. They elucidate
their regulatory networks at various levels, thereby contributing to
the construction of a more comprehensive molecular mechanism
regulatory network. This article reviews the research advancements
concerning miRNAs in exercise fatigue. Such insights not
only enhance our understanding of exercise fatigue but also
provide theoretical support and technical groundwork for fields
such as sports medicine, rehabilitation science, and the health
industry. Looking ahead, with the progression of precision
medicine and molecular diagnostic technologies, miRNA-
based monitoring and intervention strategies for fatigue are
anticipated to emerge as one of the core research directions within
sports science.

2 Basic concepts and biological
functions of miRNA

MicroRNAs are widely distributed across both plant and
animal kingdoms and play crucial roles in various biological
processes by regulating gene expression.miRNAs can be categorized
based on their genomic location into intergenic miRNA and
intragenic miRNA, as well as based on evolutionary conservation
into conserved miRNA and non-conserved miRNA. The genes
encoding miRNAs are transcribed by RNA polymerase II to
produce primary miRNAs (pri-miRNAs), which are subsequently
processed by the Drosha enzyme complex into precursor miRNAs
(pre-miRNAs). These pre-miRNAs are then transported to the
cytoplasm via Exportin-5, where they undergo cleavage by Dicer
enzymes to generate mature miRNA duplexes. The resulting
double-strandedmaturemiRNA unwinds, with one strand—known
as the guide strand—binding to Argonaute proteins to form
the RNA-induced silencing complex (RISC). miRNAs induce
mRNA degradation when there is full complementarity with
their target mRNA, while partial complementarity leads to
inhibition of mRNA translation (Figure 1). Numerous studies
have demonstrated that miRNAs participate in diverse cellular
activities such as cell proliferation, differentiation, and programmed
cell death. Additionally, they play significant roles in various
disease-related pathophysiological processes including cancer,
cardiovascular diseases, metabolic disorders (Ambros, 2004;
Bartel, 2004; He and Hannon, 2004; Falabrègue et al., 2021;
Ma et al., 2021).

The miRNAs play a crucial role in the regulation of various
cellular processes, including proliferation, apoptosis, differentiation,
metabolism, immune response, stress response, migration and
invasion, as well as aging (Figure 1). miR-21 enhances cell
proliferation and inhibits apoptosis by downregulating the
expression of the tumor suppressor gene PTEN (Esquela-Kerscher
and Slack, 2006). Conversely, the miR-34 family promotes apoptosis
through modulation of the p53 pathway, thereby inhibiting tumor
growth (Garzon et al., 2010). Moreover, miR-145 is involved
in smooth muscle cell differentiation while miR-133 regulates
cardiomyocyte differentiation. Additionally, both miR-1 and miR-
133 are essential for skeletalmuscle differentiation (Chen et al., 2006;
Ivey and Srivastava, 2010).ThemiR-33 family influences cholesterol

Frontiers in Physiology 02 frontiersin.org

https://doi.org/10.3389/fphys.2025.1614942
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Niu et al. 10.3389/fphys.2025.1614942

FIGURE 1
Process of miRNA Formation and Its Mechanism of Action.

metabolism by regulating sterol regulatory element-binding protein
(SREBP). Notably, miR-122 is highly expressed in the liver and
participates in lipidmetabolism and cholesterol synthesis regulation
(Rayner et al., 2010; Rottiers and Näär, 2012). Furthermore, miR-
155 plays a significant role in B cell and T cell immune responses.
miR-146a mitigates inflammatory responses by modulating the
NF-kB pathway (Taganov et al., 2006; O’Connell et al., 2007). miR-
210 is implicated in hypoxic conditions through its regulation
of the HIF-1α pathway (Crosby et al., 2009). Similarly, miR-
34a promotes cellular apoptosis following DNA damage via its
influence on the p53 pathway (Kulshreshtha et al., 2007). The
members of the miR-200 family inhibit tumor cell migration and
invasion by obstructing epithelial-mesenchymal transition (EMT)
through suppression of ZEB1/2 expression (Gregory et al., 2008).
Conversely, miR-9 enhances tumor metastasis by regulating E-
cadherin expression levels (Ma et al., 2010). Furthermore, miR-34a
facilitates cellular senescence via SIRT1 modulation while the
miR17–92 cluster delays senescence through inhibition of p21
(Boehm and Slack, 2005; Bhaumik et al., 2009). In summary,
miRNAs play a crucial role in various cellular physiological
processes by regulating gene expression. Future research is expected
to further elucidate the role of miRNAs in the onset and progression
of diseases and to provide new targets for disease diagnosis and
treatment.

3 Physiological mechanisms of
exercise fatigue

3.1 Definition and classification of exercise
fatigue

Exercise fatigue is typically defined as a temporary decline
in physical function following engagement in sports activities,
which results in diminished athletic performance. This form of
fatigue can manifest as either physical or psychological. Physical
exercise fatigue arises from the depletion of muscle energy reserves,
the accumulation of metabolites (such as lactic acid), and a
reduction in nerve conduction efficiency. In contrast, psychological
exercise fatigue is associated with various psychological factors
including emotion, attention, and motivation. Based on different
classification criteria for exercise fatigue, it can be categorized into
acute exercise fatigue and chronic exercise fatigue (Table 1). Acute
exercise fatigue refers to the sensation of tiredness experienced
immediately after a single bout of high-intensity exercise; this type
of fatigue generally resolves within a short period. Conversely,
chronic exercise fatigue denotes persistent exhaustion resulting
from prolonged high-intensity training or activity, characterized by
an extended recovery time and potentially accompanied by other
health issues (Lehninger et al., 2005). Furthermore, according to
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TABLE 1 Comparison of key characteristics of different types of exercise fatigue.

Type Definition Reason Recovery time Other characteristics

Physiological fatigue Fatigue caused by
psychological factors such as
emotion, attention and
motivation

Long-term mental stress,
insufficient psychological
recovery, lack of motivation,
emotional instability and so on

The recovery time is long and
may require psychological
intervention

It affects performance,
decision-making ability,
emotional state and so on

Acute fatigue Fatigue occurring immediately
after a high-intensity exercise

Muscle energy reserve
consumption, accumulation of
metabolites (such as lactic
acid), and reduced nerve
conduction efficiency

Usually recovered in a short
time

Mainly temporary and does
not lead to long-term health
problems

Chronic fatigue Persistent fatigue caused by
long-term intensive training or
exercise

Long-term high-intensity
exercise, over-training,
insufficient recovery, etc

A long recovery time may be
accompanied by health
problems

It may be associated with other
health problems (such as
decreased immune function,
anxiety, etc.)

Central fatigue Fatigue originating from the
central nervous system

Insufficient regulation of the
nervous system, resulting in
decreased motor performance

Recovery time depends on the
specific cause

Affect motor performance,
mood, attention, and
motivation

Peripheral fatigue Fatigue originating from the
muscle tissue

Muscle energy expenditure,
lactate accumulation,
metabolites

Short recovery time,
depending on the exercise
intensity

Mainly affecting muscle
strength and endurance

the site of origin, exercise fatigue can also be classified into central
exercise fatigue (Table 1) (originating from the central nervous
system) and peripheral exercise fatigue (stemming from muscle
tissue). There are notable differences in physiological mechanisms
between these two types of exercise-induced fatigues. The following
is a comprehensive summary of the classification and characteristics
associated with exercise-induced fatigue.

3.2 Physiological changes of exercise
fatigue

Exercise fatigue is a phenomenon characterized by a decline
in bodily function following prolonged or high-intensity exercise.
The physiological changes associated with this condition involve
multiple systems, including interactions among the nervous
system, muscular system, and endocrine system (Table 2). During
physical activity, energy depletion serves as the primary factor
contributing to exercise fatigue; the muscle’s energy supply
predominantly relies on the oxidation of glycogen and fat. When
exercise fatigue manifests, it primarily presents as a reduction
in muscle glycogen levels and ATP consumption, which leads
to decreased muscle contractility (Bergström et al., 1967; Fitts,
1994). Additionally, the accumulation of metabolites such as
lactate and hydrogen ions can lower muscle pH levels and disrupt
both muscle contraction and neural signaling (Sahlin et al., 1998;
McKenna et al., 2008). Furthermore, diminished neuromuscular
function—including central nervous system fatigue and reduced
muscle excitability—further compromises motor performance
(Gandevia, 2001). Electrolyte imbalances, particularly losses of
potassium and sodium ions, also adversely affect both muscular
and neurological functions (Maughan et al., 2007). Concurrently,
exercise-induced oxidative stress results in an increase in free

radicals while weakening antioxidant defenses that are crucial
for maintaining cellular structure and function (Ji, 1995; Powers
and Jackson, 2008). Finally, hormonal fluctuations—such as
elevated cortisol levels coupled with decreased testosterone—may
suppress immune responses as well as hinder muscle repair
processes (Ji, 1995). The cumulative effects of these physiological
alterations ultimately lead to exercise fatigue that negatively impacts
athletic performance and recovery capacity. A comprehensive
understanding of the physiological mechanisms underlying
exercise fatigue is not only advantageous for athlete training and
rehabilitation but also holds significant implications for health
management within the general population. The following is a
concise overview of the physiological mechanisms underlying
exercise-induced fatigue.

3.3 Changes in miRNA expression during
exercise fatigue

Exercise-induced alterations in miRNA expression profiles
represent a multivariate dynamic process that encompasses various
physiological and biochemical activities. Following exercise, the
levels of certain miRNAs within the body undergo significant
changes, which are closely associated with energy metabolism,
inflammatory responses, oxidative stress, and muscle repair.
Investigations into changes in miRNA expression during exercise
fatigue underscore their critical role in regulating physiological
adaptation and recovery post-exercise (Figure 2). Research has
demonstrated that exosomalmiRNAs circulating in the bloodstream
exhibit substantial modifications following endurance training.
For instance, muscle-specific miRNAs such as miR-1, miR-133,
and miR-206 are upregulated after exercise and play pivotal
roles in modulating muscle differentiation and repair (Hackney,
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TABLE 2 A list of physiological changes, impacts, and mechanisms of various systems during exercise fatigue.

System Physiological change Influence Related mechanism

Musculation 1. Source of energy: the oxidation of
glycogen and fat

2. Glycogen consumption is accelerated,
and lactate accumulates

Lactate accumulation causes a decrease
in muscle contractility, causing pain
and discomfort

Lactate accumulation acidifies the
muscle, inhibiting the ability of the
muscle to contract

Nervous system 1. The decline in the nerve conduction
rate

2. Lower muscle excitability

Motor performance decreased, and
motor coordination ability decreased

Prolonged exercise causes functional
fatigue of the nervous system and
reduces nerve conduction and muscle
response speed

Endocrine system Stress causes elevated cortisol levels Increase in the body’s stress response,
may affect the immune system and the
ability to recover

High-intensity exercise causes increased
secretion of stress hormones that may
weaken the body’s antioxidant capacity

Antioxidant system High-intensity exercise reduces the
antioxidant capacity

Increase in oxidative stress capacity,
affecting tissue repair and regeneration
capacity

Increasing oxidative stress after exercise
and decreased oxidative antioxidant
capacity, affecting cell repair and
regeneration

2006). Additionally, the expressions of both miR-21 and miR-
146a increase post-exercise; these changes may be linked to the
regulation of inflammatory responses and could aid in mitigating
tissue damage resulting from physical activity (Yuasa et al., 2008).
Conversely, variations in the expression of miR-23a and miR-486
correlate with oxidative stress and energy metabolism. Exercise
intervention has significant tissue specificity for miRNA regulation
in adipose tissue. A study in obese women showed that 12 weeks
of combined aerobic resistance combination training significantly
upregulated the expression of miR-155-5p and miR-329-3p in
subcutaneous adipose tissue (GSAT), but not in abdominal
subcutaneous fat (ASAT) (Carmen et al., 2022). These specific
miRNAs influence mitochondrial function and antioxidant defense
mechanisms by regulating target gene expression (Nielsen et al.,
2014). Importantly, different types of exercise—such as aerobic
versus resistance training—and varying intensities can lead to
distinct differences in miRNA expression profiles. This suggests
that the regulatory functions of miRNAs concerning exercise
fatigue are complex and context-dependent (Russell et al., 2013).
Moreover, it is crucial to recognize that the expression of miRNA
is influenced by both the level and timing of physical exertion. Of
concern is that exercise-induced exosomal miRNA has emerged
as a new dimension to uncover fatigue mechanisms. A study
in 1,500 m freestyle athletes showed that miR-144-3p, miR-145-
3p and miR-509-5p were significantly upregulated in circulating
exosomes after fatigue exercise. Their target genes were enriched
in vascular endothelial growth factor (VEGF) signaling pathway
and glutathione metabolism. This change echoes the mechanism
that miR-126 improves angiogenesis by regulating VCAM-1,
suggesting that exosomal miRNA may participate in fatigue
recovery through oxidative stress regulation and vascular function
optimization (Lai et al., 2023). A separate study has demonstrated
that it is possible to regulate a specific circulating miRNA (c-
miRNA), with fluctuations in its expression correlating with
exercise intensity. This observation reflects the body’s adaptive
response to various synergistic loads imposed by different forms
of physical activity (Safdar et al., 2009). Therefore, exercise-induced

FIGURE 2
miRNA is involved in the research direction of exercise fatigue
mechanism.

alterations in the miRNA expression profile not only enhance our
understanding of the effects of exercise on the body but also establish
a foundation for future research on exercise interventions.

There are notable differences in miRNA expression associated
with various types of exercise, highlighting the complexity of muscle
adaptation within the body under different exercise modalities.
Research has demonstrated that at the molecular level, resistance
training (such as strength training) and aerobic exercise (such as
endurance training) are governed by distinct mechanisms involving
miRNA regulation. For instance, a study comparing resistance
training to aerobic exercise—specifically high-intensity interval
training—provided evidence indicating that resistance training
significantly modulates levels of miR-23a and miR-206 in muscle
tissue compared to high-intensity interval training. This disparity
may arise from the differing physiological stress responses elicited
by various forms of exercise; resistance training typically results in
greater muscle damage and subsequent repair processes, suggesting
a potential positive feedback mechanism for specific miRNAs
involved in muscle recovery. Moreover, cross-sectional studies
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examining the effects of exercise have identified gender as a
significant factor influencing miRNA responses to different types
of physical activity. There exist gender-specific variations in the
regulation of miRNA expression post-exercise, which may be linked
to underlying sex physiology (Safdar et al., 2009). Consequently,
an in-depth investigation into how different types of exercise affect
miRNA can not only provide a scientific foundation for developing
enhanced intervention and rehabilitation strategies but also offer
theoretical insights into preventing the onset and progression of
exercise-induced fatigue.

3.4 Mechanism of miRNA in exercise
fatigue

3.4.1 Relationship between miRNA and energy
metabolism

As a type of non-coding RNA, miRNA has garnered significant
attention for its role in the regulation of energymetabolism.miR-223
targets glucose transporter 4 (GLUT4) and inhibits its expression,
thereby reducing glucose uptake in skeletal muscle (Li et al., 2025).
Additionally, miR-223 was implicated in inflammation and the
TLR4/NF-κB inflammatory pathway, which was important in
exercise induced inflammatory response (M’baya-Moutoula et al.,
2018). miR-375 regulates the function of islet β cells and influences
insulin secretion; its abnormal expression is closely associated with
insulin resistance (Meeusen et al., 2006). Exercise enhances skeletal
muscle insulin sensitivity and ameliorates glucose metabolism
disorders by upregulating the expression of the miR-29 family
(Lu et al., 2010). The co-expression of miR-33 and sterol regulatory
element-binding protein 2 (SREBP2) inhibits fatty acid β-oxidation
while promoting cholesterol synthesis (Keller and Perez, 2022).
Overexpression of miR-122 in the liver can decrease hepatic fat
deposition by modulating lipid metabolism-related genes such
as fatty acid synthase (FASN) and stearoyl-CoA desaturase 1
(SCD1) (Dalgaard et al., 2022). Furthermore, exercise promotes
fatty acid oxidation and mitigates lipid accumulation through
downregulation of miR-34a and activation of sirtuin 1 (SIRT1),
a deacetylase (Horie et al., 2010). Under hypoxic conditions,
upregulation of miR-210 inhibits mitochondrial respiratory chain
complex activity while promoting glycolysis—a phenomenon
known as theWarburg effect (Guo et al., 2023). Abnormal expression
levels of miR-30a-5p may lead to disturbances in myocardial
mitochondrial energy metabolism within models of pulmonary
hypertensive right heart failure (Chen et al., 2019); however,
exercise intervention could potentially restore mitochondrial
function by regulating this specific miRNA. Moreover, certain
miRNAs enriched in young plasma-derived small extracellular
vesicles (sEVs), such as miR-21, activate peroxisome proliferator
activated receptor gamma coactivator 1-alpha (PGC-1α), enhance
mitochondrial oxidative phosphorylation, and alleviate age-
related metabolic decline (Ismaeel et al., 2022). Collectively, these
findings underscore that miRNAs play critical roles in regulating
glucose metabolism, lipid metabolism, mitochondrial function, and
oxidative metabolism (Figure 3). The CRF, which can be divided
into “inflammation-driven” (high IL-6/miR-223), “leptin-related”
(high leptin/miR-34a) and “depression-related type”, in which miR-
223 exacerbates mitochondrial dysfunction by inhibiting PGC-1 α

(Schmidt et al., 2024), illustrates the complementary mechanism
of mitochondria inhibition of mitochondrial biosynthesis. This
suggests mirna intervention strategies targeting different subtypes,
such as miR-223 inhibitors for inflammatory type CRF.

Given the pivotal role of miRNAs in energy metabolism,
and considering that exercise is a process characterized by high
energy demand, the body regulates miRNA expression to maintain
homeostasis in both energy metabolism and exercise regulation
(Lv et al., 2024). Aerobic exercise significantly upregulates miR-
1 and miR-133a, which promote glucose uptake and fatty acid
oxidation in skeletal muscle (Harmon et al., 2017; Qian et al.,
2024). In contrast, resistance exercise enhances the expression of
miR-206, inhibiting genes associated with muscle atrophy (such
as HDAC4) to sustain metabolic homeostasis within muscle tissue
(Foley et al., 2006). Exercise also stimulates the release of exosomes
from both muscle and adipose tissues; these exosomes carry specific
miRNAs such as miR-30a-5p and miR-486 that can regulate the
metabolismof distant target organs (Winbanks et al., 2013; Luu et al.,
2020). For instance, exosomal miRNA derived from hypothalamic
neural stem cells has been shown to improve systemic energy
metabolism by inhibiting the TLR4/NF-κB inflammatory pathway
(Huang et al., 2019). Furthermore, physical activity alters miRNA
promoter activity through mechanisms involving DNAmethylation
and histone modification (Wu et al., 2022). The elevated levels of
miR-34a induced by a high-fat diet can be reversed through exercise
intervention, thereby restoring SIRT1-mediated metabolic balance
(Chen et al., 2019). Additionally, miR-208a inhibits the PPARα
signaling pathway, reducing the expression of fatty acid transporter
CD36 (Tong et al., 2021). This inhibition impedes lipid utilization
and forces reliance on anaerobic metabolism, resulting in lactic acid
accumulation and subsequent exercise fatigue. Conversely, miR-27b
activates theAMPKpathway to promote lipolysis andmitochondrial
β-oxidation (Hu et al., 2023); this action enhances fat-derived
energy supply efficiency while delaying energy depletion during
prolonged physical activity. Studies have demonstrated that adipose-
derived exosomal miR-124-3p inhibits hepatic lipid metabolism
by targeting PPARγ, which leads to triglyceride accumulation and
may indirectly exacerbate energy metabolism disorders during
exercise (Zhao et al., 2021). Following high-intensity exercise,
the expression patterns of certain miRNAs undergo significant
changes. The upregulation of specific miRNAs, such as miR-144-
3p and miR-145-3p, is associated with the stimulation of long-
term potentiation (LTP) and signaling pathways related to vascular
endothelial growth factor (VEGF) (You et al., 2016). Additionally,
miR-146a-5p targets Table 1 to inhibit the NF-κB pathway, thereby
reducing the release of inflammatory factors (Chen et al., 2022).This
action protects mitochondria from oxidative damage and alleviates
exercise-induced fatigue. Collectively, these studies suggest that
miRNAs play a crucial role in regulating energy metabolism
following exercise.

3.4.2 The role of miRNA in inflammatory
response

In recent years, an increasing number of studies have
demonstrated that miRNAs play a crucial role in the regulation
of inflammatory responses. These miRNAs can modulate the
activation and inhibition of inflammatory signaling pathways
by targeting genes associated with inflammation. For instance,
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FIGURE 3
miRNAs involved in human regulation of energy metabolism, inflammatory responses, and oxidative stress.

miR-124 facilitates the polarization of macrophages towards
the anti-inflammatory M2 phenotype by targeting C/EBP-α
(Ponomarev et al., 2011). Similarly, miR-155 promotes the
differentiation of Th1 cells while inhibiting the differentiation
of Th2 cells through its action on c-Maf (Rodriguez et al.,
2007). These findings indicate that miRNAs are integral to
inflammatory responses by regulating inflammatory signaling
pathways, mediators, and immune cell functions.

Exercise-induced fatigue can be categorized into central fatigue
and peripheral fatigue, with the latter being closely associated
with muscle damage and inflammatory responses. High-intensity
or prolonged exercise can trigger an inflammatory response in
muscle tissue, characterized by the release of inflammatory factors
(such as IL-6 and TNF-α) and the infiltration of immune cells.
This inflammatory response is not only a necessary process for
the body to repair damage but may also exacerbate fatigue
and delay recovery. For instance, NF-κB serves as a central
transcription factor in the inflammatory response. miR-146a
negatively regulates the NF-κB signaling pathway and inhibits
inflammation by targeting TRAF6 and IRAK1 (Taganov et al.,
2006). The upregulation of miR-146a may mitigate inflammation-
mediatedmuscle damage during exercise-induced fatigue. Similarly,
miR-21 reduces activation of the MAPK signaling pathway by
targeting PDCD4, thereby diminishing the inflammatory response
(Sheedy et al., 2010). Additionally, miR-206 inhibits inflammation

through its action on IL-6 (McCarthy et al., 2007). In cases of
exercise-induced fatigue, increased expression of miR-206 and
miR-210 may alleviate symptoms by reducing the release of pro-
inflammatory factors. These microRNAs have potential therapeutic
roles in addressing exercise-related fatigue by modulating either
inflammatory responses or the secretion of inflammatorymediators.
However, it is important to note that certain miRNAs can
also contribute to exacerbating exercise-induced fatigue via their
influence on inflammation. The miR-155 enhances the JAK/STAT
signaling pathway and promotes the production of inflammatory
factors by targeting SOCS1 (O’Connell et al., 2007). In the context
of exercise-induced fatigue, the upregulation of miR-155 expression
may exacerbate the inflammatory response, thereby contributing to
increased fatigue. Conversely,miR-126 inhibitsmonocytemigration
to sites of inflammation by targeting VCAM-1 (Harris et al., 2008).
During exercise fatigue, elevated levels of miR-126 may mitigate
inflammation-mediated muscle damage through a reduction in
immune cell infiltration. Additionally, miR-34a elevates oxidative
stress and inflammation by targeting SIRT1(Yamakuchi et al., 2008).
In cases of exercise fatigue, an increase in miR-34a expression
could worsen oxidative stress and inflammatory responses, further
intensifying feelings of fatigue. It is worth noting that miRNA
also shows the potential for cross-system regulation in neurological
disease-related fatigue. For example, inmultiple sclerosis (MS),miR-
126 suppresses immune cell infiltration into the CNS by targeting
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vascular cell adhesion molecule 1 (VCAM-1), thereby reducing
neuroinflammation-mediated fatigue. A study based on wearable
sensors showed that fatigue in ms patients was positively correlated
with sympathetic activity (e.g., reduced heart rate variability), but
negatively with miR-126 expression level. This mechanism is highly
similar to the role of mir-126 in alleviating muscle inflammatory
injury by inhibiting vcam-1 during exercise fatigue (Moebus et al.,
2024) In post-infection ME or CFS patients, HHV-6 viral load was
positively correlated with mir-155 expression, which promotes pro-
inflammatory factor (e.g., TNF- α) release through activation of the
JAK or STAT pathway (Gravelsina et al., 2022). Also confirmed the
mechanism by which miR-155 enhances the inflammatory response
by targeting socs1, suggesting that miR-155 can be used as an early
warningmarker for fatigue associatedwith viral infection.Moreover,
miR-21 is found to be upregulated in patients with chronic fatigue
syndrome (CFS) and facilitates inflammatory responses by targeting
PDCD4 (Bjersing et al., 2015). Both miR-1 and miR-133 are also
upregulated following muscle injury due to exercise; they play
crucial roles in regulatingmuscle repair processes by targeting genes
associated with inflammation (Chen et al., 2006).

Overall, miRNA significantly influence exercise-related fatigue
through their regulation of inflammatory signaling pathways and
mediators. Abnormal expression patterns of these miRNA are
closely linked to both the onset and progression of exercise-induced
fatigue. Investigating the specific regulatory mechanisms employed
by miRNA within the context of inflammation during exercise-
induced fatigue presents a promising avenue for research within
sports medicine and rehabilitation.

3.4.3 Interaction between miRNA and oxidative
stress

Oxidative stress is a condition characterized by an imbalance
between the production and clearance of intracellular reactive
oxygen species (ROS), which is closely associated with the onset and
progression of various diseases, including cardiovascular diseases,
neurodegenerative disorders, and cancer.ThemiRNAs play a crucial
role in oxidative stress by modulating the expression of genes
related to oxidative stress and influencing both the production and
elimination of ROS. For instance, miR-34a andmiR-1 are implicated
in regulating ROS production, while miR-146a and miR-21 are
involved in ROS clearance (Figure 4). Additionally, miR-133a and
miR-499 regulate mitochondrial function. Furthermore, miRNAs
significantly contribute to oxidative stress-related diseases.ThemiR-
210 inhibits mitochondrial function, increases ROS production, and
exacerbates myocardial ischemia-reperfusion injury by targeting
ISCU (Chan et al., 2009). Similarly, miR-155 impairs the antioxidant
defense system, elevates oxidative stress levels, and facilitates the
progression of Alzheimer’s disease through its interaction with Nrf2
(Guedes et al., 2014). By targeting ZEB1, miR-200c diminishes
the activity of antioxidant enzymes, enhances ROS generation, and
promotes apoptosis in cancer cells (Magenta et al., 2011). These
studies underscore the pivotal role that miRNAs play in oxidative
stress as well as their underlying mechanisms; moreover, abnormal
expression patterns of these molecules are closely linked to the
development and advancement of various diseases.

During exercise, particularly during high-intensity or prolonged
activities, the activity of the mitochondrial electron transport chain
is enhanced, resulting in an excessive production of ROS. When

ROS levels exceed the body’s antioxidant capacity, oxidative stress
is triggered. This can lead to lipid peroxidation, protein oxidation,
andDNAdamage within cell membranes, ultimately causingmuscle
fatigue and functional decline. The miRNAs play a crucial role in
regulating both the production and clearance of ROS by targeting
genes associated with oxidative stress; thus, they influence the onset
and progression of exercise-induced fatigue. There are conflicting
reports regarding the impact of miRNAs on exercise fatigue. The
following miRNAs may exacerbate its occurrence and development:
miR-34a targets SIRT1 and inhibits its expression, leading to
mitochondrial dysfunction and an overproduction of reactive
oxygen species (ROS) (Yamakuchi et al., 2008). In the context of
exercise-induced fatigue, the upregulation of miR-34a expression
may exacerbate oxidative stress and worsen feelings of fatigue.
Similarly, miR-1 reduces the activity of antioxidant enzymes by
targeting superoxide dismutase 1 (SOD1) and superoxide dismutase
2 (SOD2), thereby increasing ROS production (Chen et al., 2006).
During episodes of exercise-related fatigue, elevated levels of
miR-1 may further intensify oxidative stress, resulting in muscle
damage and heightened sensations of fatigue. Furthermore, miR-
133a impairs mitochondrial biosynthesis and function through
its action on peroxisome proliferator-activated receptor gamma
coactivator 1-alpha (PGC-1α), contributing to excessive ROS
generation (Safdar et al., 2009). In scenarios involving exercise-
induced fatigue, increased expression levels of miR-133a could
aggravate both mitochondrial dysfunction and oxidative stress.
The following miRNA may mitigate the onset and progression
of exercise-induced fatigue. miR-146a inhibits NADPH oxidase
activity and reduces reactive oxygen species (ROS) production by
targeting NOX4 (Cheng et al., 2013). In the context of exercise
fatigue, upregulation ofmiR-146a expressionmay alleviate oxidative
stress and diminish fatigue symptoms. Notably, miRNA exhibits a
similar neural-oxidative stress-inflammation interaction regulatory
mechanism in neurodegenerative diseases (e.g., Alzheimer’s disease
AD, Parkinson’s disease PD). For example, miR-124-3p relieves
neuronal damage in the ad model by targeting the MAPK pathway
to inhibit microglial activation, reduce ROS generation and the
release of neuroinflammatory factors (e.g., IL-6), while mir-132
enhances mitochondrial antioxidant enzyme activity by regulating
BDNF expression and improves dopaminergic neuronal function in
the PD model (Azam et al., 2024). Similarly, miR-21 enhances the
Nrf2 signaling pathway and promotes the expression of antioxidant
enzymes by targeting PDCD4 (Rodriguez et al., 2007). During
episodes of exercise fatigue, increased levels of miR-21 may help
reduce oxidative stress through bolstering the antioxidant defense
system. Furthermore, miR-499 facilitates mitochondrial function
recovery while decreasing ROS production by targeting Sox6
(Wang et al., 2011) (Figure 4). In cases of exercise fatigue, elevated
expression of miR-499 could enhance mitochondrial functionality
and lower oxidative stress. Additionally, miRNAs play a significant
role in diseases associatedwith exercise-related fatigue. For instance,
in patients with chronic fatigue syndrome, downregulation of miR-
16 leads to inhibited activity of antioxidant enzymes and heightened
oxidative stress via its target SOD2 (Bjersing et al., 2015). Conversely,
after muscle injury induced by exercise, there is an upregulation of
miR-206 whichmitigates inflammation and oxidative stress through
its action on IL-6 (Sheedy et al., 2010). Oxidative stress represents
one criticalmechanismunderlying exercise-induced fatigue; it arises
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FIGURE 4
miRNAs involved in the regulation of exercise fatigue.

from excessive ROS production coupled with an imbalance in the
antioxidant defense system. Thus, miRNA plays a pivotal role in
regulating both ROS generation and clearance as well asmaintaining
the integrity of the antioxidant defense system; any aberration in
their expression is closely linked to the emergence and progression
of exercise-related fatigue.

3.5 Future research directions and clinical
applications

As a class of small non-coding RNA molecules, miRNAs
play a crucial role in the life processes of eukaryotes. miRNAs
can inhibit the translation and degradation of target mRNA by
binding to it, and they can also influence gene expression through
the regulation of DNA methylation and histone modification.
Consequently, miRNAs are integral to various cellular functions
including proliferation, differentiation, apoptosis, metabolism,

and stress responses. Moreover, miRNAs regulate the onset
and progression of exercise-induced fatigue by modulating
oxidative stress, inflammatory responses, energy metabolism, and
neuroendocrine pathways. For instance, miR-34a targets SIRT1
to regulate cellular oxidative stress by inhibiting mitochondrial
function and increasing reactive oxygen species (ROS) production
(Yamakuchi et al., 2008). Similarly, miR-146a inhibits the NF-
κB signaling pathway by targeting TRAF6 and IRAK1, thereby
reducing inflammation (Taganov et al., 2006). Additionally, miR-
133a regulates energy metabolism through its action on PGC-1α
while inhibiting mitochondrial biosynthesis (Safdar et al., 2009).
These specific miRNAs are pivotal regulators in the context of
exercise fatigue. To further elucidate the functional mechanisms
underlying these effects of miRNA on exercise fatigue, high-
throughput sequencing combined with bioinformatics analysis will
be employed to identify relevant miRNAs along with their target
genes associated with this condition. Furthermore, verification of
their functional mechanisms is essential. The intricate regulatory
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network involving miRNA in relation to oxidative stress response as
well as inflammatory reactions warrants additional investigation. In
terms of epigenetic regulationmechanisms related to exercise fatigue
mediated by miRNA continue to be explored actively. Moreover,
attention has been directed towards understanding how factors
such as exercise intensity, duration, and type impact the expression
levels of specific miRNAs. miRNA only one class of small non-
coding RNA molecules, there are other type non-coding RNA
play a important role in exercise. Such as long non-coding RNAs
(lncRNAs), which transcripts >200 nucleotides with no protein-
coding potential in mediating the body’s response to exercise. These
molecules regulate gene expression epigenetically, transcriptionally,
and post-transcriptionally, influencing metabolic, cardiovascular,
and musculoskeletal adaptations.

It is of significant clinical importance to investigate the role of
miRNA in exercise-induced fatigue. miRNA has the potential to
serve as a diagnostic biomarker for exercise fatigue, allowing for
the assessment of both the severity and recovery from such fatigue
through the analysis of miRNA expression profiles in blood, urine,
or saliva. Various combinations of miRNAs have been screened
to enhance the accuracy and specificity of diagnosing exercise-
related fatigue. Moreover, miRNAs can be targeted therapeutically
for managing exercise fatigue; specific agonists (e.g., miR-30e
agonists) and inhibitors (e.g., miR-34a inhibitors) have been
developed to modulate signaling pathways associated with exercise
fatigue. Utilizing CRISPR/Cas9 technology enables precise editing
of miRNA genes, rendering them effective targets for addressing
exercise-induced fatigue. Gene therapy using adeno-associated virus
(AAV) vectors has emerged as a leading approach for delivering
therapeutic genes, while microRNAs (miRNAs) offer precise
gene regulation. Combining these technologies enables targeted,
durable treatments for exercise related diseases (Wang, et al.,
2019). Personalized exercise regimens may be formulated based on
individual miRNA profiles, facilitating tailored training programs
that optimize performance while minimizing feelings of exhaustion
post-exercise. Additionally, research has explored the involvement
of miRNAs in sports nutrition interventions—specifically regarding
antioxidants and anti-inflammatory agents. The investigation into
the role of miRNAs in exercise-related fatigue offers novel insights
into both diagnosis and treatment strategies. Future research
directions should focus on elucidating functional mechanisms,
regulatory processes governing expression levels, and individual
variability among different subjects concerning their respective
miRNA profiles. In clinical practice, leveraging miRNAs as
diagnostic markers and therapeutic targets presents a promising
strategy for achieving.

4 Conclusions and outlook

Studies in the field of sports fatigue have increasingly focused
on the circulation features of miRNA, thereby further confirming its
significant biological value. Current literature indicates that miRNA
is involved in regulating various cellular processes, including energy
metabolism, inflammatory responses, and oxidative stress. These
mechanisms not only provide an objective explanation for the
physiological causes of exercise-induced fatigue but also open new
avenues for understanding this concept.

The findings from recent studies demonstrate a correlation
between miRNA levels and exercise fatigue. This suggests that
different types of miRNAs may serve distinct regulatory functions
across various forms of exercise-related fatigue; therefore, when
investigating biomarkers associated with exercise fatigue, it is
essential to consider these diverse aspects and relevant findings in
a coordinated manner. Future research should focus on establishing
causal relationships between miRNA and exertion, which is crucial
for comprehending the specific roles this molecule plays in
regulating adaptation and recovery processes related to exercise.
In a similar vein, the challenges associated with the potential
of miRNA as a biomarker should not be underestimated. The
analysis of specific miRNAs in human serum has the capacity to
predict both the degree of exercise-induced fatigue and recovery
status. This provides a scientific foundation for athlete training
and rehabilitation, facilitating the development of individualized
training programs that enhance athletic performance and mitigate
sports injuries. However, it is crucial to acknowledge that while
the properties of miRNA appear advantageous for investigating
exercise fatigue, further empirical research is necessary to validate
its prospects in clinical practice. Continued emphasis on scientific
inquiry into the physiological functions ofmiRNArelated to exercise
is essential, as this will help expand its application potential and
future developments concerning exercise fatigue.

Autophagy, a critical cellular recycling process, has emerged as
a key mechanism in exercise-induced fatigue regulation. During
prolonged exercise, autophagy clears damaged organelles (e.g.,
dysfunctional mitochondria) and protein aggregates, maintaining
cellular homeostasis. miRNAs intricately regulate autophagy
pathways: for instance, miR-30e suppresses autophagy initiation
by targeting BECN1 (beclin-1), while miR-223 enhances autophagic
flux via FOXO3 modulation. Impairments in exercise-triggered
autophagy exacerbate oxidative stress and energy depletion,
accelerating fatigue onset. Notably, endurance training upregulates
miR-30e, promoting mitochondrial biogenesis through PGC-
1α activation while fine-tuning autophagic activity to balance
clearance and conservation of cellular resources. Future studies
should explore miRNA-mediated autophagy as a therapeutic
target to delay fatigue and enhance recovery (Safdar et al.,
2016). The gut-muscle axis represents a novel frontier in
exercise fatigue research. Gut microbiota dysbiosis during intense
exercise impairs intestinal barrier integrity, increasing systemic
inflammation and oxidative stress. miRNAs modulate this axis:
miR-146a downregulates TLR4/NF-κB signaling in gut epithelial
cells, reducing inflammation-induced fatigue, while miR-21
targets PDCD4 to maintain mucosal homeostasis. Conversely,
microbial metabolites (e.g., short-chain fatty acids) influence host
miRNA expression—butyrate upregulates∗miR-200c∗, enhancing
mitochondrial function in skeletal muscle. Exercise-induced shifts
in Firmicutes/Bacteroidetes ratio correlate with circulating miR-
486 levels, suggesting microbiota-driven miRNA regulation of
energy metabolism. Harnessing this crosstalk via probiotics or
miRNA-targeted interventions may mitigate fatigue (Li et al., 2025).

In conclusion, a deeper understanding of the functions and
regulatory mechanisms governing miRNAs will provide more
robust theoretical support and effective references for advancing
sports medicine.
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