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Editorial on the Research Topic
Biological and digital markers in sleep, circadian rhythm and epilepsy
using artificial intelligence
s

Sleep is critical to many organ systems, including the brain (Gottesman et al.,
2024), cardiovascular system (Malhotra and Loscalzo, 2009), metabolism (Feeney et al.,
2025), and immune system (Irwin, 2019). Therefore, recording the sleep state provides
rich physiological data, allowing a window into health and disease (Sun et al., 2024).
Polysomnogram is the cornerstone of sleep diagnostics; therefore, the sleep field has
amassed many multidimensional, time series electrophysiological data (Zhang et al., 2018;
Zhang et al., 2024). Additionally, given the ubiquity ofmulti-sensor consumer sleep tracking
devices, longitudinal data comprised of various signal modalities is passively collected
during sleep in the home environment at scale. Therefore, artificial intelligence (AI) is well-
suited to discover biological and digital markers that track and predict health conditions
(Bandyopadhyay and Goldstein, 2023; Bandyopadhyay et al., 2024; Sun et al., 2025).

Here, we discuss four studies on this Research Topic. Each addresses a key question:
making sleep staging more generalizable across different settings from Van Der Aar et al.,
improving home diagnosis of sleep apnea with autonomic signals from Ross et al.,
extending sleep staging to children with epilepsy from Proost et al., and using sleep
electroencephalography (EEG) to measure brain aging in people with epilepsy from
Hadar et al.

Sleep staging AI models trained on a limited number of data sets may demonstrate
reduced effectiveness when deployed across diverse demographics and recording settings.
Pre-trained models, especially foundation models (Thapa et al., 2024; Moor et al.,
2023), serve as feature extractors but require specialized heads to adapt to different
tasks. Van Der Aar et al. analyzed strategies to mitigate these mismatches using
deep transfer learning. They found that fine-tuning often has a higher accuracy with
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fewer target data, improving Cohen’s kappa by 0.15 in patients with
REM sleep behavior disorder (RBD). However, targeted training
was necessary using different signal channels, leading to an average
Cohen’s kappa improvement of 0.17.The authors concluded that pre-
training extensive datasets with specific adaptations enables robust
sleep staging for diverse populations and recording scenarios. Their
results align with other transfer learning studies in sleep research
(Ganglberger et al., 2024; Radha et al., 2021; Olsen et al., 2024).
While fine-tuning necessitates labeled data from the new domain,
this study outlines an essential framework for heterogeneous
data sources.

Home sleep apnea testing (HSAT) has replaced a large portion
of laboratory testing to diagnose obstructive sleep apnea (OSA),
given its convenience. However, HSATs do not stage sleep as defined
by EEG, and they often use recording time as the denominator to
calculate the apnea-hypopnea index (AHI). This practice leads to
underestimating the AHI and falsely negative HSAT results. Ross
et al. developed an AI model to infer sleep stages and arousal from
heart rate and breathing using 245 participants (148 with HSATs).
Incorporation of objective sleep estimates into the AHI improved
obstructive sleep apnea classification from 70% to 80% and reduced
AHI underestimation from 19% to 7%, without losing specificity.
The results support reliable and portable diagnostics, potentially
identifying more mild-to-moderate cases of obstructive sleep apnea
outside of the sleep laboratory.

Another challenge in accurate sleep analysis is the confounding
effect of diseases, such as epilepsy, according to Proost et al. Sleep
and epilepsy form a vicious cycle (Maganti and Jones, 2021; Halász
and Szűcs, 2020): epileptic discharges disrupt sleep, resulting in
fragmentation, reduced slow wave activity (SWA), and reduced
spindle density. Conversely, apnea and sleep instability can trigger
seizures, leading to abnormal K-complexes or severe electrical
status epilepticus of sleep. Proost et al. studied 176 children aged
4–18  years with drug-resistant epilepsy (DRE) and well-controlled
epilepsy (WCE). They addressed two key gaps: the absence of
automated sleep analysis in pediatric epilepsy and the feasibility
of minimal electrode use. However, following the findings from
Van Der Aar et al., the model should be tested for accuracy in
at-home settings using wearable EEGs for long-term monitoring.
This would enable tracking sleep quality over multiple nights,
correlate with seizure patterns, and enhance sleep management in
epilepsy care.

Beyond sleep staging, sleep can reflect brain aging. Hadar et al.
employed the sleep EEG-based brain age index (BAI) (Sun et al.,
2019), an AI-driven metric integrating age-dependent changes in
sleep, quantifying how much the sleep EEG deviates from the
chronological age. A positive BAI indicates an “older” brain. The
hypothesis is that neurological stress from epilepsy is associated
with accelerated brain aging.They studied 138 epilepsy patients and
age-matched controls, finding that those with epilepsy had a BAI
of about +5 years, while healthy participants had a near-zero BAI.
The results support the hypothesis, especially in patients with severe
epilepsy: generalized seizures had a higher BAI (5.5 years older)
than focal seizures (3.3 years older). While this study cannot prove
causality, it suggests AI analysis of sleep EEG may serve as brain
health markers.

However, these papers do not comprehensively address the
Research Topic, particularly the molecular markers. While various

omics studies of health outcomes exist, the (multi-)omic bases
of sleep are still unexplored. Since sleep and circadian rhythms
are vital to many biological functions, we anticipate meaningful
omic biomarkers linked to sleep patterns that indicate functional
and health outcomes. For example, BACE1 was found to promote
the cleavage of the GABAA receptor and contribute to neural
hyperexcitability in Alzheimer’s disease (Bi et al., 2025), which
likely alters sleep EEG microstructures. The omic biomarkers
could serve as potential intervention targets to enhance sleep
physiology and outcomes. Another limitation is the inability of the
discussed methods to account for cause-and-effect relationships
between sleep disturbances and diseases. Although the big
datasets in the sleep and circadian fields are critical for AI
development (Zhang et al., 2018; Zhang et al., 2024), many
are cross-sectional and do not support causal inference. We
encourage longitudinal studies and novel applications of causal
discovery to understand the causal nature, thus providing insights
into mechanisms and decision-making. Finally, multimodal
data integration should be used. Sleep and circadian systems
demonstrate multi-organ interactions. For example, sleep apnea
has consequences across multiple organ systems (Azarbarzin et al.,
2024), including oxygen levels (Azarbarzin et al., 2019), heart rate
(Azarbarzin et al., 2021), and cortical arousal (Eckert and Younes,
2014). Therefore, multimodal wearable technologies comprised
of sensors that monitor respiratory function, cardiac autonomic
activity, motion and body position, and temperature will enable
real-time, longitudinal tracking of sleep and circadian parameters
simultaneously with other physiological processes associated with
disease states. In summary, utilizing suchAI-based sleep biomarkers
will allow the integration of sleep data into comprehensive health
assessments.
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