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Background: Acute respiratory distress syndrome (ARDS) is a prevalent clinical 
complication among patients with sepsis, characterized by high incidence and 
mortality rates. The definition of ARDS has evolved over time, with the new global 
definition introducing significant updates to its diagnosis and treatment. Our 
objective is to develop and validate an interpretable prediction model for the 
prognosis of sepsis patients complicated by ARDS, utilizing machine learning 
techniques in accordance with the new global definition.
Methods: This study extracted data from the MIMIC database (version MIMIC-
IV 2.2) to create the training set for our model. For external validation, this 
study used data from sepsis patients complicated by ARDS who met the new 
global definition of ARDS, sourced from the Affiliated Hospital of Xuzhou Medical 
University. Lasso regression with cross-validation was used to identify key 
predictors of patient prognosis. Subsequently, this study established models to 
predict the 28-day prognosis following ICU admission using various machine 
learning algorithms, including logistic regression, random forest, decision tree, 
support vector machine classifier, LightGBM, XGBoost, AdaBoost, and multi-
layer perceptron (MLP). Model performance was assessed using ROC curves, 
clinical decision curves (DCA), and calibration curves, while SHAP values were 
utilized to interpret the machine learning models.
Results: A total of 905 patients with sepsis complicated by ARDS were 
included in our analysis, leading to the selection of 15 key variables for model 
development. Based on the AUC of the ROC curve, as well as DCA and 
calibration curve results from the training set, the support vector classifier 
(SVC) model demonstrated strong performance, achieving an average AUC of 
0.792 in the internal validation set and 0.816 in the external validation set.
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Conclusion: The application of machine learning methodologies to construct 
prognostic prediction models for sepsis patients complicated by ARDS, informed 
by the new global definition, proves to be reliable. This approach can assist 
clinicians in developing personalized treatment strategies for affected patients.
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sepsis, ARDS, machine learning, 28-day, ICU mortality 

1 Introduction

Sepsis is a systemic inflammatory response syndrome typically 
triggered by infection. The persistent systemic inflammatory 
response and the imbalance of immune regulatory mechanisms 
represent the core pathological and physiological processes 
underlying sepsis, often resulting in severe multi-organ dysfunction 
and posing a significant threat to life (Singer et al., 2016). A recent 
study examining patients with sepsis and septic shock from 2009 
to 2019 indicated that conservatively, there are over 30 million new 
cases of sepsis globally each year, with approximately 6 million 
patients succumbing to sepsis or septic shock (Bauer et al., 2020). 
Additionally, a cross-sectional study conducted in China revealed 
that patients admitted to the ICU with sepsis had a 90-day mortality 
rate of around 35.5% (Xie et al., 2020).

The lungs are the first and most commonly affected organ in the 
progression of sepsis. Patients with sepsis may develop acute lung 
injury (ALI) or even acute respiratory distress syndrome (ARDS), 
which is characterized by refractory hypoxemia and respiratory 
distress. ARDS is a serious and potentially fatal respiratory failure 
marked by increased permeability of alveolar capillary membranes 
due to various direct or indirect injurious factors, resulting in edema 
in the alveoli and interstitial, as well as alveolar hemorrhage and the 
formation of hyaline membranes. These changes ultimately lead to 
hypoxemia and respiratory distress.

The combination of sepsis and ARDS is thought to be linked 
to mechanisms such as systemic inflammatory cytokine storms 
triggered by infection (Zhu et al., 2022), monocyte-macrophage 
activation (Lv and Liang, 2025), oxidative stress (Liu Y. et al., 
2021), and a reduction in pulmonary surfactant or alterations in 
its composition (Whitsett et al., 2015), all of which may result in 
irreversible lung damage.

The clinical definition of ARDS has undergone several revisions, 
with the Berlin definition published in 2012 playing a pivotal role 
in clinical diagnosis and management. This definition emphasizes 
mechanical ventilation, the oxygenation index (PaO2/FiO2 ratio), 
and pulmonary imaging as essential parameters for diagnosing 
ARDS and assessing its severity (Ranieri et al., 2012). However, over 
the past decade, numerous medical professionals have identified 
limitations within the Berlin definition during clinical practice. 
In response, 32 critical care experts from around the world 
jointly published a new global definition of ARDS in May 
2023. This updated definition broadens the diagnostic criteria for 
ARDS in patients receiving non-invasive ventilation and high-
flow oxygen therapy (HFNO). It identifies non-invasive pulse 
oximetry, specifically the SpO2/FiO2 index, as a crucial indicator 
for diagnosing ARDS, replacing the traditional oxygenation index 
that relies on arterial blood gas analysis. Furthermore, pulmonary 

ultrasound has also been added as a supplementary tool for 
pulmonary imaging diagnosis (Matthay et al., 2024).

This new global definition significantly expands the application 
of ARDS clinical criteria, implementing important updates in 
diagnostic standards, scope, and imaging evaluation. The aim is 
to enhance the accuracy and universality of ARDS diagnosis, 
ultimately improving treatment and patient prognosis.

Sepsis complicated by ARDS is a leading cause of mortality 
in patients with sepsis in the intensive care unit (ICU). Reports 
indicate that annually, approximately 150,000 to 200,000 individuals 
worldwide succumb to sepsis complicated by ARDS. The mortality 
rate for patients experiencing this dual condition is estimated 
to be 30%–40% higher than that for patients with sepsis alone 
(Englert et al., 2019; Eworuke et al., 2018). Given the significant 
incidence and mortality associated with sepsis and ARDS (S-ARDS), 
establishing a reliable and effective clinical prognosis prediction 
model is essential. Such a model would provide intuitive, evidence-
based information to assist medical professionals in identifying 
high-risk groups and enhancing the management of such patients.

Machine Learning (ML), a branch of artificial intelligence, 
enables computer systems to learn autonomously and make 
decisions through data analysis and pattern recognition. It is 
characterized by powerful data processing capabilities, automatic 
recognition functions, and continuous learning and optimization. 
In recent years, ML has become increasingly important in 
the development of clinical prognosis prediction models. For 
instance, Pappada SM et al. created a machine learning model 
for the early identification of ICU-acquired sepsis, achieving 
specificity and sensitivity rates of 83.8% and 73.3%, respectively 
(Pappada et al., 2024). Additionally, Fan Z et al. utilized machine 
learning techniques to develop a clinical prognosis model 
for patients with sepsis complicated by acute kidney injury, 
successfully validating it externally and achieving favorable clinical 
prediction outcomes (Fan et al., 2023).

In the realm of clinical prognostic model research for patients 
with sepsis and ARDS, although Mu S et al. have developed a 
prognostic model using data from the MIMIC-III database and 
the Berlin definition of ARDS, there remains a notable lack in 
research focusing on the clinical characteristics, prognosis, risk 
factor identification, and model development for sepsis patients with 
ARDS based on the latest global definition of ARDS.

The Critical Care Medical Marketplace (MIMIC) is a 
comprehensive and publicly accessible database that includes 
extensive information on over 190,000 patients treated at the Beth 
Israel Deaconess Medical Center from 2008 to 2019. This database 
encompasses a wide range of data, including demographic details, 
vital signs, laboratory test results, imaging reports, prescriptions, 
and clinical outcomes. It serves as a robust foundation for 
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researching and developing clinical prognosis prediction models 
specifically for sepsis patients with ARDS based on the new global 
definition.

Therefore, this study aims to identify patients with sepsis 
complicated with ARDS using the new global definition from the 
MIMIC database, and collect their clinical characteristics, identify 
risk factors that affect the clinical prognosis of this population, and 
develop a clinical prognosis prediction model. In summary, the 
main contributions of this study are as follows: (1) we constructed 
an interpretable machine learning model to predict 28-day ICU 
mortality among patients with sepsis-related ARDS based on the 
new 2023 global definition; (2) we validated the model on an external 
cohort from a different hospital to demonstrate generalizability; (3) 
we adopted a nested cross-validation framework and SHAP analysis 
to ensure model robustness and interpretability; (4) we included 
mild ARDS patients who received only supplemental oxygen to align 
with the inclusive spirit of the new definition, thus improving early 
recognition and clinical applicability. 

2 Methods

2.1 Study design and data sources

We utilize the Medical Information Mart for Intensive Care 
(MIMIC) database as our primary data source, specifically version 
MIMIC-IV 2.2. Although MIMIC-IV version 3.1 was released after 
our initial data extraction, we found that the Note module, which 
includes critical radiology and clinical notes required for ARDS 
diagnosis under the new global definition, had not been updated. To 
ensure consistency and completeness of diagnostic data, we retained 
version 2.2 for our study. This open-access intensive care database 
comprises clinical data from over 190,000 patients and 450,000 
hospitalizations documented at the Beth Israel Deaconess Medical 
Center between 2008 and 2019, which includes approximately 
70,000 ICU admissions. The MIMIC-IV database contains a wealth 
of information, including patient demographic details, codes from 
both the 9th and 10th editions of the International Classification 
of Diseases (ICD-9 and ICD-10), vital signs, laboratory test 
results, imaging studies, real-time physiological monitoring data 
from the ICU, and records of clinical outcomes. Importantly, all 
personal identifying information of patients in the database is 
anonymized and kept strictly confidential. Accessing and extracting 
data from this database necessitates approval from the relevant 
review committee at MIT.

We extracted data on sepsis patients with ARDS who met 
both the Berlin definition and the updated global definition from 
our database. As we all known, sepsis is defined as a disorder 
of the host response to infection, which leads to life-threatening 
multi-organ dysfunction. Consequently, the primary criteria for 
identifying sepsis patients in our database include clinical evidence 
of infection or a high suspicion of infection, along with a Sequential 
Organ Failure Assessment (SOFA) score of ≥2 (Singer et al., 2016).

The diagnosis of ARDS according to the Berlin definition is 
based on the following criteria: 1. The onset of ARDS should 
occur within 1 week following the onset of known clinical 
abnormalities or new respiratory symptoms; 2. Chest X-rays 
or CT scans must reveal bilateral lung infiltrates or edema, 

while ruling out the effects of pleural effusion or acute heart 
failure; 3. Mechanical ventilation is required, with a positive end-
expiratory pressure (PEEP) ≥ 5 cm H2O and Oxygenation index 
(PaO2/FIO2)≤ 300 mmHg (Ranieri et al., 2012).

The new global definition of ARDS (Matthay et al., 2024) builds 
upon the Berlin definition, incorporating the following diagnostic 
criteria: 1. The onset should occur within 1 week of identified 
risk factors or the emergence of new or worsening respiratory 
symptoms, characterized by acute exacerbation or deterioration 
of hypoxemic respiratory failure; 2. Chest imaging must indicate 
bilateral lung infiltrates or edema, excluding cardiogenic pulmonary 
edema; 3. ARDS is classified under different ventilation states as 
follows: (1) Non-intubation ARDS is defined by an oxygen flow 
≥30 L/min using high-flow nasal cannula (HFNC), or PEEP ≥5 cm 
H2O when using non-invasive ventilation (NIV) or continuous 
positive airway pressure (CPAP); (2) Intubation ARDS follows 
the criteria of the Berlin definition; (3) In resource-limited 
environments, ARDS can be diagnosed based solely on oxygen 
therapy, without the necessity of specific respiratory support 
devices such as PEEP or defined oxygen flow rates. Under these 
conditions, SpO2 ≤ 97% and SpO2/FiO2 ≤ 315 are considered 
necessary for diagnosing ARDS (Matthay et al., 2024). Although 
the new global definition of ARDS introduced diagnostic criteria 
for resource-limited settings—specifically allowing diagnosis based 
on supplemental oxygen therapy—this criterion was still applied in 
our study using the MIMIC-IV dataset from Beth Israel Deaconess 
Medical Center, a tertiary academic hospital. This is because, in 
clinical reality, even in such high-resource settings, some ICU 
patients may initially present with mild ARDS and receive only 
oxygen therapy due to adequate respiratory function. These cases, 
although not meeting criteria for mechanical ventilation or non-
invasive support, are still eligible for ARDS diagnosis under the new 
global definition. Including such patients allows earlier detection of 
ARDS and enhances the model’s generalizability and clinical utility.

We extracted patients and their clinical data diagnosed with 
sepsis complicated with ARDS under the two diagnostic criteria 
mentioned above from the MIMIC database. We then analyzed the 
differences in clinical characteristics, disease severity assessments, 
and mortality rates between the patient groups defined by two 
definitions above. Furthermore, we employed machine learning 
techniques to predict the 28-day ICU mortality rate for sepsis 
patients with ARDS under the latest definition, and analyzed 
possible risk factors that may affect clinical prognosis. 

2.2 Data extraction

We initially employed Structured Query Language (SQL) to 
retrieve and extract raw data from the MIMIC-IV database using 
Navicat Premium software (version 16.3.8). This data included 
essential clinical information about patients, laboratory test results, 
imaging examinations, clinical comorbidities, critical care records, 
advanced life support therapy details, and clinical prognosis 
information.

For this study, we included patients who met the following 
criteria: 1. They were experiencing their first admission to the ICU; 
2. Their ICU stay exceeded 24 h; 3. They were over 18 years old at the 
time of admission; 4. They were diagnosed with sepsis within 24 h of 
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admission, in accordance with the Sepsis-3.0 diagnostic criteria. To 
identify sepsis patients in the MIMIC-IV database, we utilized ICD-
9 codes (78,552, 99,591, and 99,592), ICD-10 codes (R65.20 and 
R65.21), and the SOFA score recorded within the first 24 h of ICU 
admission; 5. Moreover, the patients were also diagnosed with Acute 
Respiratory Distress Syndrome (ARDS) within 24 h of admission, 
based on the Berlin definition or the new global definition. Detailed 
diagnostic criteria can be referenced in the definitions and the data 
extraction process illustrated in Figure 1. To ensure that the ARDS 
cases included in our study were induced by sepsis, we required 
that both the diagnosis of sepsis and ARDS occurred within the 
first 24 h of ICU admission. Sepsis was identified using ICD-9/10 
codes (e.g., 78,552, R65.20) and a SOFA score ≥2, indicating organ 
dysfunction due to infection. Non-infectious causes of ARDS—such 
as trauma, aspiration, or pancreatitis—were excluded by design 
through this definition. ARDS was diagnosed using SpO2/FiO2 or 
PaO2/FiO2 indices and chest imaging findings recorded in the same 
24-h window.

Regarding the extraction process of ARDS patients that meets 
the Berlin definition and the new global definition, we referred to 
the open-source code by Qian F et al., which includes extracting: 
1. The initial ventilation treatment status of patients upon ICU 
admission; 2. Results from pulmonary imaging (chest X-ray or chest 
CT), specifically textual information indicating bilateral pulmonary 
edema, such as “bilateral infiltration” and “edema”; 3. PaO2/FiO2 
and SpO2/FiO2 (Qian et al., 2024). Reasonable modifications were 
made to certain codes, for instance, we defined the PaO2/FiO2 and 
SpO2/FiO2 as the worst values recorded within the first 24 h of 
ICU admission for patients under initial ventilation treatment. If the 
duration of initial ventilation treatment was less than 24 h, the worst 
value during that treatment period was considered for the diagnostic 
criteria. Additionally, we employed ICD codes “428” and “I50” along 
with their lower-level codes to identify and exclude cases of acute 
cardiogenic pulmonary edema.

The data we extracted encompasses the following key elements:1. 
Basic Clinical Information: This includes age, gender, weight, 
and height at the time of admission.2. Intensive Care Records: 
This section details the duration of ICU hospitalization and 
vital signs recorded within the first 24 h of admission. Key 
measurements include blood pressure, heart rate, respiratory rate, 
body temperature, blood oxygen saturation, urine output, and blood 
glucose levels.3. Laboratory Test Results: Within the first 24 h of ICU 
admission, we collected laboratory test results, including complete 
blood counts, liver and kidney function tests, coagulation profiles, 
and arterial blood gas analyses.4. Advanced Life Support Therapy: 
This includes information on renal replacement therapy, mechanical 
ventilation, and the administration of vasoactive drugs.5. Imaging 
Examinations: we focused on the textual descriptions of pulmonary 
imaging results, such as chest X-rays and chest CT scans.6. Patient 
Death Records: The database contains records of patient mortality, 
with a positive outcome defined as death occurring within 28 days 
of ICU admission. In the study, vital signs and laboratory test 
results from the intensive care records were analyzed as independent 
features by utilizing their maximum, minimum, and/or mean values.

We included patients with sepsis complicated by ARDS who 
met the criteria of the new global definition and were admitted 
to Xuzhou Medical University Affiliated Hospital from March 
2022 to October 2024. The exclusion criteria were consistent 

with those used in the training cohort. Clinical data for patients 
in the external validation cohort were collected based on 15 
features selected from the training cohort after model training. 
These features included admission age, average SpO2, average body 
temperature, average respiratory rate, average heart rate, red blood 
cell distribution width (RDW), presence of metastatic solid tumors, 
lactate levels, urine output, international normalized ratio (INR), 
alkaline phosphatase levels, average red blood cell volume, logistic 
organ dysfunction score (LODS score), presence of rheumatic 
diseases, and platelet count. The inclusion and exclusion criteria 
for the external validation cohort were identical to those applied 
to the MIMIC-IV cohort. Therefore, a separate flowchart was not 
presented to avoid redundancy. 

2.3 Statistical analysis

In the baseline analysis section, we employed the Shapiro-Wilks 
test to assess the normality of the data distribution. For continuous 
variables that exhibited a normal distribution, we represented them 
using the mean and standard deviation, and compared groups using 
an independent sample t-test. Conversely, for continuous variables 
that did not adhere to a normal distribution, we used the median 
and interquartile range for representation and utilized the Wilcoxon 
rank sum test for comparisons. Categorical data is presented as 
counts and percentages, with comparisons made using the chi-
square test. A p-value of less than 0.05 is considered statistically 
significant.

Based on the survival status of patients 28 days after their 
admission to the ICU, we categorized them into a survival group and 
a death group. Additionally, patients were classified into two groups: 
the “Berlin definition group” and the “new global definition group,” 
according to their alignment with the Berlin definition or the new 
global definition of ARDS.

In building our machine learning models, we utilize Python 
version 3.11.7 along with Jupyter Notebook as our coding 
environment. The key packages and versions included: scikit-
learn 1.4.0, miceforest 5.6.4, scikit-optimize 0.9.0, imbalanced-
learn 0.12.0, SHAP 0.44.1, numpy 1.26.3, matplotlib 3.8.3. During 
the data preprocessing phase, illustrated in Figure 2, we employ 
the missing no module to visualize missing data. Each column 
in the visualization represents a clinical variable, with the white 
spaces indicating the presence of missing values. The density of the 
black lines in each column correlates with the number of available 
data points for the respective clinical variable; thus, The denser 
the black lines in each column, the fewer missing values for the 
clinical variable.

To enhance the accuracy and performance of our model 
predictions, we decided to exclude clinical variables with more 
than 30% missing values, such as bicarbonate and albumin. For 
the remaining missing values, we applied miceforest multiple 
imputation, which effectively captures complex relationships among 
variables by utilizing a random forest model. Through multiple 
iterations, the missing values are predicted in a manner that 
aligns with the distribution characteristics of the original dataset, 
thereby minimizing bias as much as possible. For continuous 
variables, we implement MinMaxScaler normalization to scale 
them appropriately, which helps eliminate dimensional effects and 
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FIGURE 1
Flowchart of screening.

improves model efficiency. Additionally, we use OneHotEncoder to 
encode categorical variables effectively.

During the training and validation phases of our machine 
learning models, we evaluated several widely recognized and highly 
effective algorithms based on the results of feature selection using 
Lasso CV. These algorithms included logistic regression (LR), 
random forest (RF), decision tree (DT), support vector machine 

(SVM), lightweight gradient boosting machine (LightGBM), 
extreme gradient boosting machine (XGBoost), adaptive boosting 
machine (AdaBoost), and multilayer perceptron (MLP).

To improve the stability and generalizability of the models, 
we employed a repeated nested cross-validation strategy. In this 
approach, the outer loop involved a 5-fold cross-validation, where 
the dataset was randomly split into five subsets. One fold was used 
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FIGURE 2
Missing value visualization: Each column represents a clinical variable, and the white lines represent missing values.

as the outer test set, while the remaining four served as the outer 
training set. Within the training set, a 10-fold inner cross-validation 
was conducted to perform hyperparameter tuning. This entire 
nested cross-validation process was repeated five times, with the 
dataset reshuffled before each repetition, resulting in 25 independent 
models per machine learning algorithm. The final performance for 
each algorithm was calculated as the average performance across the 
25 models, which helps reduce variance due to data partitioning and 
ensures a more reliable model selection.

To mitigate the effects of imbalanced positive and negative 
outcomes on the model, we implemented the Synthetic Minority 
Over-sampling Technique (SMOTE) and the Tomek Link technique. 
These methods effectively balance the data, reduce the risk of 
overfitting, and enhance the model’s generalization capability. For 
hyperparameter optimization, we employed Bayesian Optimization 
to determine the optimal hyperparameter combinations. The tuned 
hyperparameters and search paces were as follows:

• LR: c (10−4 to 10−2)
• RF: max_depth (3–30), n_estimators (100–1,000), min_

samples_split (2–10)
• DT: max_depth (3–30), min_samples_split (1–10)
• SVM: gamma (10−4 to 1)
• LightGBM: max_depth (3–30), num_leaves (20–200), 

learning_rate (0.001–0.2), n_estimators (100–1,000)
• XGBoost: n_estimators (100–1,000), colsample_bytree (0.5–1), 

max_depth (3–30), subsample (0.5–1)
• AdaBoost: n_estimators (50–500), learning_rate (0.01–1)
• MLP: hidden_layer_size (tuple: (50–300, 1-3 layers)).

The performance of the predictive models was assessed using 
various metrics, including the ROC curve, area under the curve 
(AUC), accuracy, sensitivity, specificity, recall, and F1 score.

In the realm of predictive model interpretation, SHAP serves 
as a robust tool for elucidating machine learning algorithms 
(Lv et al., 2023; Zhuo et al., 2023). Grounded in the Shapley 
value from game theory, SHAP seeks to clarify the contribution of 
each feature to the prediction outcomes. This approach mitigates 
the black box nature of machine learning models and improves 
their interpretability. In our study, we calculated and visualized the 
SHAP values for the SVC model, which demonstrated the highest 
predictive capability, as indicated by its AUC score. 

3 Results

This study comprised 905 sepsis patients with ARDS who met 
the criteria of the new global definition (referred to as the new 
global definition group) and 598 sepsis patients with ARDS who 
met the Berlin definition (referred to as the Berlin definition group). 
Based on their 28-day survival status after ICU admission, the 
patients were categorized into two groups: a survival group and a 
non-survival group. 

3.1 Baseline characteristic

Table 1 presents the distribution of patients according to varying 
degrees of disease severity in both the new global definition group 
and the Berlin definition group. In the new global definition group, 
there were 102 patients (11.27%) classified as mild, 278 patients 
(30.72%) as moderate, and 525 patients (58.01%) as severe, with 
a total of 336 ICU deaths (37.13%) occurring within 28 days. 
In contrast, the Berlin definition group consisted of 58 patients 
(9.85%) with mild symptoms, 208 patients (35.31%) with moderate 
symptoms, and 323 patients (54.84%) with severe symptoms, 
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TABLE 1  Classification of ARDS severity and 28-day ICU mortality.

Group Total Mild Moderate Severe 28-day ICU mortality

New Global
Definition

905 102 (11.27%) 278 (30.72%) 525 (58.01%) 336 (37.13%)

Berlin Definition 589 58 (9.85%) 208 (35.31%) 323 (54.84%) 228 (38.71%)

TABLE 2  Comparison of mortality rates for ARDS with invasive ventilation.

Invasive Vent Mild, n (%) Moderate, n (%) Severe, n (%) p-value

ARDS with PaO2/FiO2 ratio 16 (35.56%) 55 (28.95%) 140 (46.20%)
0.597

ARDS with SpO2/FiO2 ratio 18 (30.58%) 63 (37.50%) 130 (41.80%)

TABLE 3  Comparison of mortality rates for New Global Definition Group.

Ventilation status Mild, n (%) Moderate, n (%) Severe, n (%) p-value

ARDS with invasive ventilation 21 (31.82%) 68 (38.20%) 134 (41.36%)
0.439

ARDS with oxygen 9 (25.71%) 27 (27.00%) 74 (37.56%)

resulting in 228 ICU deaths (38.71%) at 28 days. Compared with 
the Berlin definition, the new global definition classified a slightly 
higher proportion of patients as severe (58.01% vs. 54.84%) and 
fewer as moderate (30.72% vs. 35.31%). This indicates a modest shift 
in severity stratification under the new definition.

Additionally, we identified 538 patients who required invasive 
mechanical ventilation and had both PaO2/FiO2 and SpO2/FiO2 
indices by extracting cross subsets from two datasets. We then 
compared the 28-day ICU mortality rates among patients with 
varying severity levels as determined by these indices (see Table 2). 
A chi-square test was conducted to compare the mortality rates of 
the subsets, yielding a p-value of 0.597. This indicates that there was 
no statistically significant difference in mortality rates between the 
two diagnostic criteria for ARDS severity classification, which aligns 
with the findings reported by Qian et al. (2024).

Finally, we compared the mortality rates between the invasive 
mechanical ventilation subgroup and the oxygen-only subgroup 
using the new global definition, as presented in Table 3. The chi-
square test yielded a p-value of 0.439. In contrast to the findings of 
Qian F et al. (Qian et al., 2024), our analysis indicated that the global 
new definition criteria neither underestimated nor overestimated 
the mortality rate of sepsis patients with ARDS who received 
supplemental oxygen therapy.

Table 4 presents the baseline characteristics of patients in the 
global new definition group, encompassing essential clinical data, 
vital signs, laboratory test results, clinical comorbidities, and records 
of advanced life support therapy. The overall mortality rate for this 
group is 37.12%. In the univariate analysis, significant differences 
were observed between the two groups in various factors, including 
age, weight, urine output, mean pulse oxygen saturation, mean 
arterial pressure, body temperature, pH, arterial oxygen partial 

pressure, lactate levels, oxygenation index, and the SpO2/FiO2 ratio, 
with a P-value of less than 0.001.

3.2 Feature selection

In the feature selection and screening section, we employed 
Lasso regression with cross-validation (Lasso CV) to evaluate 
various features. Lasso regression is a linear regression technique 
utilized for both feature selection and regularization. Its effectiveness 
in feature filtering primarily relies on examining the coefficients 
assigned to each feature within the model. Features with coefficients 
of zero are deemed to make no contribution to the model’s predictive 
power. Furthermore, Lasso regression addresses the issue of feature 
collinearity to some extent, with the lambda value in the regression 
equation governing the strength of regularization.

Lasso CV integrates Lasso regression with cross-validation, 
automatically exploring different lambda values and utilizing 
cross-validation to identify the optimal alpha value. This process 
maximizes the balance between model complexity and fit, as 
illustrated in Figure 3, while also ranking the features according 
to their importance. We initially selected 64 candidate features 
based on clinical relevance identified through literature review and 
consultation with two intensivists, data availability in both internal 
and external datasets, and their accessibility within the first 24 h of 
ICU admission. These features covered demographics, vital signs, 
laboratory indicators, ventilator parameters, severity scores (e.g., 
SAPS II, SOFA), and comorbidities. Subsequently, we identify 37 
features with non-zero coefficients using Lasso CV algorithm.

To mitigate model complexity and reduce the risk of overfitting, 
we selected the top 15 features based on the absolute values of 
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TABLE 4  Baseline characteristics of patients in New Global Difinition Group.

Variable Survival (n = 569) Non-survival (n = 336) p-value

Age (year) 62.57 (50.50–73.43) 67.15 (57.51–78.87) <0.001

Gender (%) 0.072

  Male 343 (60) 182 (54)

  Female 226 (40) 154 (46)

Height (cm) 170.00 (163.00–178.00) 168.00 (160.00–175.00) 0.003

Weight (kg) 84.00 (69.30–100.50) 78.45 (62.80–96.73) <0.001

Urineoutput (mL) 1,320.00 (790.00–2,213.00) 890.00 (362.75–1,416.50) <0.001

heart_rate_mean (min-1) 95.53 (83.30–106.80) 98.68 (87.85–107.58) 0.10

resp_rate_mean (min-1) 22.00 (19.15–25.15) 22.98 (19.44–26.44) 0.021

spo2_mean (%) 96.57 (95.12–97.83) 95.92 (94.26–97.84) <0.001

mbp_mean (mmHg) 73.88 (69.44–79.55) 71.59 (66.91–76.26) <0.001

Temperature (°C) 37.14 (36.76–37.56) 36.87 (36.50–37.34) <0.001

ph_min 7.26 (7.18–7.34) 7.22 (7.13–7.33) <0.001

po2_min (mmHg) 57.00 (41.00–77.00) 47.50 (38.00–68.25) <0.001

pco2_max (mmHg) 48.00 (41.00–58.00) 48.00 (41.00–58.00) 0.87

lactate_max (mmol/L) 2.30 (1.50–3.90) 3.60 (2.00–6.50) <0.001

baseexcess_min (mmol/L) −6.00 (−10.00–1.00) −7.00 (−13.00–2.00) <0.001

aniongap_max (mmol/L) 17.00 (15.00–21.00) 20.00 (16.00–24.00) <0.001

pao2fio2ratio_min 109.00 (72.00–172.00) 88.66 (63.75–142.13) <0.001

spo2fio2ratio_min 131.43 (94.00–190.00) 97.00 (91.00–186.00) <0.001

hematocrit_min (%) 30.20 (25.80–34.70) 28.00 (23.48–34.20) <0.001

hemoglobin_min (g/dL) 9.90 (8.50–11.50) 9.20 (7.50–10.93) <0.001

wbc_max (109/L) 16.90 (10.90–24.10) 16.10 (10.25–22.65) 0.19

platelets_min (109/L) 162.00 (104.00–226.00) 128.00 (61.75–210.00) <0.001

rdw_max (%) 15.00 (14.00–16.50) 16.15 (14.70–18.43) <0.001

mch_min (pg) 29.80 (28.40–31.20) 30.20 (28.60–31.83) 0.011

mchc_min (pg/L) 32.20 (31.20–33.30) 31.80 (30.58–33.10) 0.001

mcv_min (fl) 91.00 (86.00–95.00) 92.00 (87.00–98.00) <0.001

alt_max (mmol/L) 36.00 (19.00–88.00) 47.00 (23.00–182.25) <0.001

ast_max (mmol/L) 59.00 (31.00–139.00) 104.50 (40.00–382.25) <0.001

alp_max (mmol/L) 91.00 (66.00–145.00) 110.50 (77.00–180.00) <0.001

bilirubin_total_max (mmol/L) 1.00 (0.50–2.60) 1.20 (0.50–3.40) 0.040

(Continued on the following page)
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TABLE 4  (Continued) Baseline characteristics of patients in New Global Difinition Group.

Variable Survival (n = 569) Non-survival (n = 336) p-value

creatinine_max (mmol/L) 1.50 (0.90–2.70) 1.70 (1.10–3.00) 0.014

bun_max (mmol/L) 29.00 (19.00–48.00) 38.00 (26.00–56.25) <0.001

pt_max(s) 15.50 (13.70–19.30) 18.35 (14.50–26.93) <0.001

ptt_max(s) 34.90 (29.80–45.70) 41.50 (31.90–63.95) <0.001

inr_max 1.40 (1.20–1.80) 1.70 (1.30–2.50) <0.001

glucose_mean (mmol/L) 136.67 (112.25–170.50) 136.73 (110.58–181.68) 0.76

sodium_min (mmol/L) 137.00 (133.00–140.00) 136.00 (132.00–140.00) 0.17

sodium_max (mmol/L) 140.00 (137.00–143.00) 139.00 (136.00–144.00) 0.55

calcium_min (mmol/L) 7.40 (6.90–8.00) 7.40 (6.90–8.00) 0.88

calcium_max (mmol/L) 8.20 (7.70–8.70) 8.30 (7.70–8.80) 0.13

potassium_min (mmol/L) 3.80 (3.40–4.20) 3.90 (3.40–4.40) 0.16

potassium_max (mmol/L) 4.50 (4.10–5.10) 4.80 (4.20–5.40) <0.001

chloride_max (mmol/L) 108.00 (103.00–112.00) 106.00 (101.00–112.00) 0.24

chloride_min (mmol/L) 103.00 (98.00–107.00) 101.00 (96.00–106.00) 0.016

Sapsii 45.00 (36.00–56.00) 55.00 (46.00–66.00) <0.001

Sofa 10.00 (7.00–13.00) 12.00 (9.00–15.00) <0.001

Lods 8.00 (6.00–11.00) 10.00 (8.00–13.00) <0.001

myocardial_infarct,n (%) 49 (8.6) 48 (14) 0.008

peripheral_vascular_disease, n (%) 30 (5.3) 32 (9.5) 0.014

cerebrovascular_disease, n (%) 48 (8.4) 37 (11) 0.20

chronic_pulmonTary_disease, n (%) 155 (27) 94 (28) 0.81

rheumatic_disease, n (%) 26 (4.6) 7 (2.1) 0.054

diabetes_with_cc, n (%) 35 (6.2) 17 (5.1) 0.50

diabetes_without_cc, n (%) 123 (22) 73 (22) 0.97

renTal_disease, n (%) 102 (18) 55 (16) 0.55

malignTant_cancer, n (%) 87 (15) 91 (27) <0.001

metastatic_solid_tumor, n (%) 30 (5.3) 62 (18) <0.001

mild_liver_disease, n (%) 123 (22) 116 (35) <0.001

severe_liver_disease, n (%) 52 (9.1) 65 (19) <0.001

aki_2 day, n (%) 436 (77) 298 (89) <0.001

vasoactive_drugs_use, n (%) 389 (68) 268 (80) <0.001

rrt_use, n (%) 35 (6.2) 34 (10) 0.030

(Continued on the following page)
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TABLE 4  (Continued) Baseline characteristics of patients in New Global Difinition Group.

Variable Survival (n = 569) Non-survival (n = 336) p-value

vent_status, n (%) 0.042

  Oxygen 222 (39) 110 (33)

  Highflow 1 (0.2) 1 (0.3)

  Noninvasive 0 (0) 2 (0.6)

  Invasive 346 (61) 223 (66)

their coefficients for inclusion in the machine learning model. 
These features comprised admission age, average SpO2, average 
body temperature, red blood cell distribution width (RDW), 
merged metastatic solid tumors, lactate levels, urine output, average 
respiratory rate, international normalized ratio (INR), alkaline 
phosphatase, average heart rate, average red blood cell volume, 
the Logistic Organ Dysfunction Score (LODS score), combined 
rheumatic system diseases, and platelet count. 

3.3 Model performance comparison

We utilized the 15 selected features to construct machine 
learning models, resulting in 25 independent models corresponding 
to 8 different machine learning algorithms. This process included 
hyperparameter tuning through five iterations of 5-fold nested 
cross-validation, aimed at maximizing the models’ generalization 
ability. To comprehensively evaluate model performance, we 
calculated the average values and 95% confidence intervals for the 
area under the curve (AUC), F1 score, recall, precision, accuracy, 
sensitivity, and specificity of the 8 machine learning models, as 
detailed in Table 5.

As illustrated in the table above, the SVC model demonstrates 
the highest AUC (95% CI) of 0.792 (95% CI: 0.76–0.84) among 
the eight machine learning models assessed, with the MLP model 
following closely behind. Additionally, other evaluation metrics, 
including the F1 score, recall rate, accuracy, precision, sensitivity, 
and specificity, indicate that the SVC model generally outperforms 
the other models.

To further compare and visualize the performance and 
clinical applicability of each model, we plotted receiver operating 
characteristic (ROC) curves, clinical decision curves (DCA), 
and calibration curves (as shown in Figure 4). The ROC curve 
primarily assesses the classification capability of the model, 
illustrating its performance across various thresholds. Meanwhile, 
the calibration curve evaluates the accuracy of model predictions, 
ensuring that the outputs can be reliably interpreted as actual
probabilities.

Among the eight machine learning models evaluated, SVM 
model exhibited relatively strong and stable performance. One 
possible explanation lies in the characteristics of SVM: it relies 
on margin maximization and distance-based computation, which 
makes it particularly effective when data are well-normalized 
and high-dimensional. Given that all features in this study were 

standardized prior to modeling, this may have favored SVM’s 
ability to find optimal separating hyperplanes. Furthermore, SVM’s 
capacity to handle non-linear boundaries via kernel tricks may have 
also contributed to its competitiveness in mortality prediction. 

3.4 External validation

We conducted an external validation of the SVC model on 100 
sepsis patients with ARDS who met the criteria outlined in the new 
global definition and were admitted to Xuzhou Medical University 
Affiliated Hospital between March 2022 and October 2024 (please 
refer to the Supplementary Materials for a baseline comparison 
of the external validation cohort). Importantly, the data from the 
external validation cohort and the training cohort do not overlap, 
which enhances the assessment of the model’s generalization and 
predictive capabilities in real-world scenarios. The performance of 
the SVC model in the external validation cohort is presented in 
Table 6, where we observed that the model continues to demonstrate 
strong overall performance (Figure 5). This indicates that the 
predictive model developed using machine learning methods has a 
robust ability to forecast 28-day ICU mortality outcomes for patients 
with sepsis complicated by ARDS under the context of the new 
global definition in clinical practice.

3.5 Interpretability analysis

Given the outstanding performance of the SVC model, we 
computed and visualized the SHAP values to elucidate the influence 
of each variable on the outcomes predicted by this model. 
First, we examined the overall interpretability of the model by 
calculating the average SHAP value for each feature and ranking 
their importance (see Figure 6A). This analysis illustrates the 
overall distribution of the impact that each feature has on the 
model’s output.

The bee swarm plot (see Figure 6B) further displays the 
characteristics of data distribution by arranging numerous data 
points at the same horizontal position. In this plot, the X-axis 
represents the SHAP values of the features, while the colors indicate 
the magnitude of the feature values—red signifies larger feature 
values, and blue indicates smaller ones. Each point corresponds to 
a specific sample’s feature value and SHAP value; thus, the farther 
a point is from the X-axis, the greater its impact on the output 
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FIGURE 3
Feature selection using Lasso regression with cross-validation. (A) Determination of the optimal lambda value; (B) The variation of variable coefficients 
with the lambda value, the black dashed line indicates the coefficients of each variable at the optimal lambda value; (C) The ranking of variable 
coefficients.

result. Additionally, the density of points reveals the distribution 
of the data.

Moreover, the relationship between the color of the points 
(which represents the size of the feature values) and the SHAP 

values indicates the direction of the feature’s effect. For instance, 
with respect to age, larger feature values correlate with a more 
significant positive impact on predicting favorable outcomes, while 
urine output exhibits the opposite effect.
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TABLE 5  Prediction Performance of the 8 kinds of machine leaning algorithms.

Model AUC F1-score Recall Precision Accuracy Sensitivity Specificity

Logistic 
Regression

0.787 
(0.74–0.833)

0.644 (0.587–0.7) 0.71 
(0.643–0.788)

0.592 
(0.516–0.672)

0.709 
(0.645–0.764)

0.71 
(0.643–0.788)

0.708 
(0.635–0.795)

Decision Tree 0.705 
(0.664–0.768)

0.586 
(0.521–0.648)

0.643 
(0.504–0.808)

0.549 
(0.488–0.621)

0.666 
(0.615–0.717)

0.643 
(0.504–0.808)

0.679 
(0.519–0.807)

Random Forest 0.786 
(0.742–0.842)

0.645 
(0.586–0.71)

0.681 
(0.57–0.776)

0.615 
(0.563–0.684)

0.723 
(0.682–0.772)

0.681 
(0.57–0.776)

0.748 
(0.696–0.796)

LightGBoost 0.755 
(0.719–0.79)

0.603 
(0.558–0.655)

0.616 
(0.537–0.699)

0.594 
(0.533–0.649)

0.7 (0.656–0.735) 0.616 
(0.537–0.699)

0.749 
(0.684–0.814)

AdaBoost 0.765 
(0.726–0.826)

0.63 
(0.583–0.696)

0.677 
(0.612–0.744)

0.592 
(0.527–0.677)

0.705 
(0.655–0.762)

0.677 
(0.612–0.744)

0.722 
(0.649–0.805)

XGBoost 0.771 
(0.722–0.83)

0.628 
(0.559–0.676)

0.628 
(0.559–0.676)

0.589 
(0.529–0.647)

0.704 
(0.655–0.746)

0.676 
(0.573–0.773)

0.735 
(0.642–0.77)

MLP 0.791 
(0.741–0.841)

0.644 
(0.577–0.698)

0.71 
(0.634–0.776)

0.591 
(0.521–0.648)

0.709 
(0.65–0.756)

0.71 
(0.634–0.776)

0.708 
(0.633–0.779)

SVM 0.792 (0.76–0.84) 0.654 
(0.588–0.711)

0.717 
(0.613–0.818)

0.606 
(0.554–0.658)

0.72 
(0.675–0.767)

0.717 
(0.613–0.818)

0.722 
(0.661–0.786)

From this analysis, we can conclude that factors such as age, 
red blood cell distribution volume, presence of metastatic tumors, 
logistic organ function score, blood lactate level, international 
normalized ratio (INR), average red blood cell volume, average heart 
rate, alkaline phosphatase, and average respiratory rate are positively 
correlated with 28-day mortality in patients. Conversely, other 
indicators, including urine output and average body temperature, 
show a negative correlation with 28-day mortality. From a 
clinical perspective, adequate urine output suggests preserved renal 
perfusion and responsiveness to fluid resuscitation, both of which 
are favorable prognostic indicators in critically ill septic patients. 
Similarly, fever is typically a manifestation of an active inflammatory 
response. Previous studies have shown that moderate hyperthermia 
may be protective in sepsis (Beverly et al., 2016), whereas 
hypothermia is often linked to immune suppression and increased 
mortality. Therefore, these findings are biologically plausible and 
consistent with current understanding of sepsis pathophysiology.

Secondly, we investigated the complex linear and nonlinear 
relationships between the various features and prognostic outcomes. 
To achieve this, we created scatter plots of SHAP values against 
feature quantities for 13 quantitative data types, excluding rheumatic 
diseases and metastatic solid tumors among the 15 features. 
Additionally, we employed LOWESS fitting curves and local 
weighted regression to generate fitting curves, which visually 
represent the trend of data distribution. As depicted in Figure 7, 
the yellow curve indicates the fitting curve, and we highlighted the 
intersection point, where the SHAP value equals zero, with a blue 
dashed line alongside the corresponding feature value.

Using age as an example, we observed a nonlinear relationship 
between age and 28-day ICU mortality in patients. As age increases, 
its contribution to the model transitions from negative to positive, 
with the intersection point occurring at 65.71 years. This implies that 

patients older than 65.71 years are considered a risk factor for 28-day 
mortality. 

4 Discussion

In this study, we employed machine learning techniques to 
develop and validate a predictive model for the prognosis of 
sepsis patients with ARDS who met the new global definition. 
Our model is built upon a comprehensive analysis of 64 
patient features, which include basic clinical data, vital signs, 
laboratory test results collected within the first 24 h of ICU 
admission, records of advanced life support treatments, and clinical
comorbidities.

To address missing data, we utilized the Miceforrest multiple 
imputation method. By integrating the Lasso cross-validation 
method with feature importance ranking, we ultimately selected 15 
key features for constructing the machine learning model. During 
the model development phase, we employed the SMOTETomek 
resampling technique to balance the dataset and utilized 
Bayesian optimization to fine-tune the model’s hyperparameters. 
Additionally, nested cross-validation techniques were applied to 
enhance the generalization ability of various models.

Among the eight machine learning models assessed, the Support 
Vector Classifier (SVC) exhibited the best performance. We further 
elucidated the key features influencing the prognosis of sepsis 
patients with ARDS using SHAP values and visualization graphs. 
The final ROC curve and calibration curve indicate that the SVC 
model outperforms other models in terms of prediction accuracy. 
However, it is important to note that a high-performing machine 
learning model does not always translate to effective clinical 
recognition.
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FIGURE 4
ROC (A), DCA (B) and Calibration curves (C) comparison of eight models.

To evaluate and compare the clinical utility of the 
predictive models, we also generated DCA curves. We tested 
the predictive performance of the SVC model in an external 
validation cohort and confirmed its strong performance in 
real-world settings. Overall, our prognosis prediction model 
for sepsis complicated by ARDS, based on the SVC model, 

demonstrates robust performance and significant clinical
applicability.

Secondly, we utilized SHAP values to elucidate the final machine 
learning prediction model. The feature importance map illustrates 
the overall influence of each feature on the predicted outcome. 
Meanwhile, the bee colony plot depicts the distribution of features 
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TABLE 6  Prediction performance of SVC model in External validation cohort.

Model AUC F1-score Recall Precision Accuracy Sensitivity Specificity

Logistic 
Regression

0.785 
(0.742–0.828)

0.640 
(0.595–0.688)

0.701 
(0.631–0.785)

0.591 
(0.526–0.652)

0.707 
(0.655–0.746)

0.701 
(0.631–0.785)

0.712 
(0.642–0.786)

Decision Tree 0.682 
(0.606–0.759)

0.565 
(0.512–0.653)

0.624 
(0.516–0.788)

0.521 
(0.453–0.603)

0.646 
(0.586–0.716)

0.624 
(0.516–0.788)

0.659 
(0.551–0.774)

Random Forest 0.772 
(0.724–0.824)

0.624 
(0.552–0.683)

0.655 
(0.582–0.749)

0.598 
(0.520–0.671)

0.706 
(0.648–0.76)

0.655 
(0.582–0.749)

0.736 
(0.649–0.812)

LightGBoost 0.750 
(0.706–0.812)

0.597 
(0.538-0.675

0.605 
(0.515–0.717)

0.592 
(0.530–0.648)

0.698 
(0.652–0.746)

0.605 
(0.515–0.717)

0.736 
(0.649–0.812)

AdaBoost 0.758 
(0.698–0.819)

0.627 
(0.571-0.691

0.680 
(0.569-0.749

0.585 
(0.519–0.652)

0.700 
(0.648–0.754)

0.680 
(0.569–0.749)

0.712 
(0.623–0.772)

XGBoost 0.763 
(0.721–0.818)

0.617 
(0.561–0.664)

0.670 
(0.605–0.728)

0.575 
(0.508–0.642)

0.691 
(0.636–0.738)

0.670 
(0.605–0.728)

0.821 
(0.611–0.786)

MLP 0.790 
(0.739-0.829

0.644 
(0.581–0.689)

0.706 
(0.615–0.788)

0.594 
(0.539–0.661)

0.710 
(0.663–0.756)

0.706 
(0.615–0.788)

0.713 
(0.642–0.780)

SVM 0.816 
(0.796–0.829)

0.726 
(0.699–0.766)

0.702 
(0.659–0.750)

0.758 
(0.738–0.776)

0.771 
(0.75–0.798)

0.702 
(0.659–0.750)

0.825 
(0.804–0.839)

along with the direction of their impact on the predicted results. 
Additionally, the combination of fitting curves and SHAP values 
effectively highlights the intricate relationships between individual 
features and outcomes, thereby facilitating more informed clinical 
decision-making.

In this study, we investigated the factors influencing the 28-
day mortality rate of sepsis patients with ARDS who meet the new 
global criteria for ICU admission. From the feature importance 
map, we identified the five most significant factors affecting patient 
prognosis: red blood cell distribution width (RDW), presence of 
metastatic solid tumours, age, Logistic Organ Dysfunction Score 
(LODS), and urine output. Our results demonstrate a positive 
correlation between elevated RDW levels and increased 28-day 
mortality. RDW serves as an indicator of the variation in red blood 
cell volume, and numerous studies have established that a high RDW 
is linked to adverse outcomes in various diseases, including ARDS, 
cardiovascular diseases, autoimmune disorders, and malignancies 
(Xanthopoulos et al., 2022; Wang et al., 2019; Arkew et al., 2022; 
Deng et al., 2021). A recent study also highlighted the strong 
association between high RDW and negative outcomes in sepsis, 
which aligns with our findings. This correlation may stem from 
the inflammatory response associated with sepsis, microcirculatory 
dysfunction leading to shortened red blood cell lifespan, and 
disruptions in iron metabolism (Lorente et al., 2021).

Moreover, age plays a critical role in patient prognosis, 
which is easily understandable. Factors such as diminished 
immune function, malnutrition, and organ dysfunction can 
contribute to the elevated mortality risk observed in older patients 
suffering from sepsis combined with ARDS. The hypoxia and 
microcirculatory dysfunction induced by sepsis in conjunction with 
ARDS can result in inadequate oxygen supply to organs, leading 
to necrosis of renal tubular epithelial cells and subsequent renal 

dysfunction (Lankadeva et al., 2019). Additionally, urine output 
is a key indicator of microcirculatory function; thus, oliguria 
is a significant risk factor for mortality in patients with sepsis
and ARDS.

Blood lactate levels, which indicate microcirculatory 
dysfunction and tissue hypoxia, are also positively correlated with 
adverse outcomes. The LODS score is utilized to evaluate the severity 
of organ dysfunction in ICU patients. While we included the SAPSII 
score and SOFA score in our analysis, LODS appears to have a more 
substantial impact on outcome prediction compared to the other two 
measures. Furthermore, high Mean Corpuscular Volume (MCV) is 
positively associated with adverse outcomes in our model. Although 
there is currently no literature directly linking MCV to sepsis, studies 
indicate that the combination of MCV and RDW can enhance the 
predictive accuracy for sepsis prognosis (Zhang et al., 2023).

The International Normalized Ratio (INR), which reflects 
coagulation function, is also closely related to poor prognoses. 
Similar to the findings of Schupp et al., our results indicate a 
positive correlation between high INR and mortality outcomes in 
sepsis patients (Schupp et al., 2022). The INR holds significant 
value in the early screening, diagnosis, and prognosis of sepsis-
related coagulation disorders (Lyons et al., 2018; Zhang et al., 
2021). Additionally, basic vital sign indicators—such as body 
temperature, blood oxygen saturation, average heart rate, and 
respiratory rate—are closely associated with the prognosis of sepsis 
patients with ARDS. Higher blood oxygen saturation indicates 
better preservation of lung oxygenation function. In our model, 
blood oxygen saturation appears to be a more effective predictor 
of outcomes in sepsis and ARDS patients than the oxygenation 
index. Although ARDS diagnosis and severity primarily depend 
on the oxygenation index, the continuous, cost-effective, and non-
invasive nature of blood oxygen saturation measurement, along 
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FIGURE 5
ROC (A), DCA (B)and Calibration curves (C)of the SVM model in the external validation set.

with its derived SpO2/FiO2 index, plays a crucial role in assessing 
ARDS severity (Wick et al., 2022).

Additionally, hypothermia was identified as a risk factor for 
patient mortality in this study, with the onset of hypothermia 
within 24 h of ICU admission potentially linked to 28-day mortality, 
mirroring the findings of Han et al. (2024) and Beverly et al. 
(2016). Lastly, we observed that the development of metastatic 
tumours may pose a significant risk for 28-day mortality outcomes. 
Research indicates that cancer patients are at a higher risk of 
developing sepsis, with increased mortality rates following sepsis 

onset (Liu M. A. et al., 2021). This heightened risk is believed to 
result from immune dysfunction due to the tumour itself and 
or cancer treatments (Williams et al., 2023). Further research is 
necessary to ascertain whether the notable impact of metastatic 
tumours in our model correlates with more severe immune 
dysfunction, aggressive anti-tumour therapies, or poorer nutritional 
status in these patients.

Conversely, our findings suggest that rheumatic diseases may 
act as protective factors in sepsis combined with ARDS. However, 
the relationship between rheumatic diseases and sepsis remains 
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FIGURE 6
From a global perspective, we calculated the average SHAP value for 
each feature and used a swarm plot to display the distribution of 
features and SHAP values. (A) Plot of Features Importance; (B)
Swarm Plot.

unclear. For instance, Li H et al. found in observational studies 
that rheumatic diseases did not correlate with an increased 28-day 
mortality rate in sepsis patients, except for rheumatoid arthritis, 
which showed a strong association with sepsis onset (Li et al., 2023). 
It is possible that our findings are influenced by biases related to the 
small sample size included in our study.

However, our research does have certain limitations. Firstly, the 
patient data in the database we utilized for model training primarily 
originated from Western countries, which differs significantly from 
our external validation cohort. Secondly, we focused solely on 
commonly used clinical data for model construction and did not 
perform a more comprehensive analysis of the database, potentially 
leading to the omission of some critical details. Finally, our study 

FIGURE 7
Linear or nonlinear effects of quantitative type data on 
prognostic outcomes.

is observational and retrospective, which may introduce potential 
errors or biases. Nevertheless, our model demonstrated strong 
predictive performance in the external validation cohort. 

5 Conclusion

In summary, machine learning methods serve as reliable 
tools for predicting the prognosis of sepsis patients with ARDS. 
Considering the current global definition of ARDS, we have 
refined our machine learning clinical prediction model specifically 
for this patient group. Additionally, we will employ model 
explanatory techniques to interpret the underlying information of 
the SVC model. This approach has the potential to significantly 
enhance clinical practice, assisting clinicians in developing precise,
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personalized treatments aimed at maximizing the survival rates of 
sepsis patients with ARDS.
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