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Background: Acute respiratory distress syndrome (ARDS) is a prevalent clinical
complication among patients with sepsis, characterized by high incidence and
mortality rates. The definition of ARDS has evolved over time, with the new global
definition introducing significant updates to its diagnosis and treatment. Our
objective is to develop and validate an interpretable prediction model for the
prognosis of sepsis patients complicated by ARDS, utilizing machine learning
techniques in accordance with the new global definition.

Methods: This study extracted data from the MIMIC database (version MIMIC-
IV 2.2) to create the training set for our model. For external validation, this
study used data from sepsis patients complicated by ARDS who met the new
global definition of ARDS, sourced from the Affiliated Hospital of Xuzhou Medical
University. Lasso regression with cross-validation was used to identify key
predictors of patient prognosis. Subsequently, this study established models to
predict the 28-day prognosis following ICU admission using various machine
learning algorithms, including logistic regression, random forest, decision tree,
support vector machine classifier, LightGBM, XGBoost, AdaBoost, and multi-
layer perceptron (MLP). Model performance was assessed using ROC curves,
clinical decision curves (DCA), and calibration curves, while SHAP values were
utilized to interpret the machine learning models.

Results: A total of 905 patients with sepsis complicated by ARDS were
included in our analysis, leading to the selection of 15 key variables for model
development. Based on the AUC of the ROC curve, as well as DCA and
calibration curve results from the training set, the support vector classifier
(SVC) model demonstrated strong performance, achieving an average AUC of
0.792 in the internal validation set and 0.816 in the external validation set.
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Conclusion: The application of machine learning methodologies to construct
prognostic prediction models for sepsis patients complicated by ARDS, informed
by the new global definition, proves to be reliable. This approach can assist
clinicians in developing personalized treatment strategies for affected patients.

sepsis, ARDS, machine learning, 28-day, ICU mortality

1 Introduction

Sepsis is a systemic inflammatory response syndrome typically
triggered by infection. The persistent systemic inflammatory
response and the imbalance of immune regulatory mechanisms
represent the core pathological and physiological processes
underlying sepsis, often resulting in severe multi-organ dysfunction
and posing a significant threat to life (Singer et al., 2016). A recent
study examining patients with sepsis and septic shock from 2009
to 2019 indicated that conservatively, there are over 30 million new
cases of sepsis globally each year, with approximately 6 million
patients succumbing to sepsis or septic shock (Bauer et al., 2020).
Additionally, a cross-sectional study conducted in China revealed
that patients admitted to the ICU with sepsis had a 90-day mortality
rate of around 35.5% (Xie et al., 2020).

The lungs are the first and most commonly affected organ in the
progression of sepsis. Patients with sepsis may develop acute lung
injury (ALI) or even acute respiratory distress syndrome (ARDS),
which is characterized by refractory hypoxemia and respiratory
distress. ARDS is a serious and potentially fatal respiratory failure
marked by increased permeability of alveolar capillary membranes
due to various direct or indirect injurious factors, resulting in edema
in the alveoli and interstitial, as well as alveolar hemorrhage and the
formation of hyaline membranes. These changes ultimately lead to
hypoxemia and respiratory distress.

The combination of sepsis and ARDS is thought to be linked
to mechanisms such as systemic inflammatory cytokine storms
triggered by infection (Zhu et al., 2022), monocyte-macrophage
activation (Lv and Liang, 2025), oxidative stress (LiuY. et al,
2021), and a reduction in pulmonary surfactant or alterations in
its composition (Whitsett et al., 2015), all of which may result in
irreversible lung damage.

The clinical definition of ARDS has undergone several revisions,
with the Berlin definition published in 2012 playing a pivotal role
in clinical diagnosis and management. This definition emphasizes
mechanical ventilation, the oxygenation index (PaO2/FiO2 ratio),
and pulmonary imaging as essential parameters for diagnosing
ARDS and assessing its severity (Ranieri et al., 2012). However, over
the past decade, numerous medical professionals have identified
limitations within the Berlin definition during clinical practice.
In response, 32 critical care experts from around the world
jointly published a new global definition of ARDS in May
2023. This updated definition broadens the diagnostic criteria for
ARDS in patients receiving non-invasive ventilation and high-
flow oxygen therapy (HFNO). It identifies non-invasive pulse
oximetry, specifically the SpO2/FiO2 index, as a crucial indicator
for diagnosing ARDS, replacing the traditional oxygenation index
that relies on arterial blood gas analysis. Furthermore, pulmonary
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ultrasound has also been added as a supplementary tool for
pulmonary imaging diagnosis (Matthay et al., 2024).

This new global definition significantly expands the application
of ARDS clinical criteria, implementing important updates in
diagnostic standards, scope, and imaging evaluation. The aim is
to enhance the accuracy and universality of ARDS diagnosis,
ultimately improving treatment and patient prognosis.

Sepsis complicated by ARDS is a leading cause of mortality
in patients with sepsis in the intensive care unit (ICU). Reports
indicate that annually, approximately 150,000 to 200,000 individuals
worldwide succumb to sepsis complicated by ARDS. The mortality
rate for patients experiencing this dual condition is estimated
to be 30%-40% higher than that for patients with sepsis alone
(Englert et al., 2019; Eworuke et al., 2018). Given the significant
incidence and mortality associated with sepsis and ARDS (S-ARDS),
establishing a reliable and effective clinical prognosis prediction
model is essential. Such a model would provide intuitive, evidence-
based information to assist medical professionals in identifying
high-risk groups and enhancing the management of such patients.

Machine Learning (ML), a branch of artificial intelligence,
enables computer systems to learn autonomously and make
decisions through data analysis and pattern recognition. It is
characterized by powerful data processing capabilities, automatic
recognition functions, and continuous learning and optimization.
In recent years, ML has become increasingly important in
the development of clinical prognosis prediction models. For
instance, Pappada SM etal. created a machine learning model
for the early identification of ICU-acquired sepsis, achieving
specificity and sensitivity rates of 83.8% and 73.3%, respectively
(Pappada et al., 2024). Additionally, Fan Z et al. utilized machine
learning techniques to develop a clinical prognosis model
for patients with sepsis complicated by acute kidney injury,
successfully validating it externally and achieving favorable clinical
prediction outcomes (Fan et al., 2023).

In the realm of clinical prognostic model research for patients
with sepsis and ARDS, although Mu S etal. have developed a
prognostic model using data from the MIMIC-III database and
the Berlin definition of ARDS, there remains a notable lack in
research focusing on the clinical characteristics, prognosis, risk
factor identification, and model development for sepsis patients with
ARDS based on the latest global definition of ARDS.

The Critical Care Medical Marketplace (MIMIC)
comprehensive and publicly accessible database that includes

is a

extensive information on over 190,000 patients treated at the Beth
Israel Deaconess Medical Center from 2008 to 2019. This database
encompasses a wide range of data, including demographic details,
vital signs, laboratory test results, imaging reports, prescriptions,
and clinical outcomes. It serves as a robust foundation for
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researching and developing clinical prognosis prediction models
specifically for sepsis patients with ARDS based on the new global
definition.

Therefore, this study aims to identify patients with sepsis
complicated with ARDS using the new global definition from the
MIMIC database, and collect their clinical characteristics, identify
risk factors that affect the clinical prognosis of this population, and
develop a clinical prognosis prediction model. In summary, the
main contributions of this study are as follows: (1) we constructed
an interpretable machine learning model to predict 28-day ICU
mortality among patients with sepsis-related ARDS based on the
new 2023 global definition; (2) we validated the model on an external
cohort from a different hospital to demonstrate generalizability; (3)
we adopted a nested cross-validation framework and SHAP analysis
to ensure model robustness and interpretability; (4) we included
mild ARDS patients who received only supplemental oxygen to align
with the inclusive spirit of the new definition, thus improving early
recognition and clinical applicability.

2 Methods
2.1 Study design and data sources

We utilize the Medical Information Mart for Intensive Care
(MIMIC) database as our primary data source, specifically version
MIMIC-1V 2.2. Although MIMIC-IV version 3.1 was released after
our initial data extraction, we found that the Note module, which
includes critical radiology and clinical notes required for ARDS
diagnosis under the new global definition, had not been updated. To
ensure consistency and completeness of diagnostic data, we retained
version 2.2 for our study. This open-access intensive care database
comprises clinical data from over 190,000 patients and 450,000
hospitalizations documented at the Beth Israel Deaconess Medical
Center between 2008 and 2019, which includes approximately
70,000 ICU admissions. The MIMIC-IV database contains a wealth
of information, including patient demographic details, codes from
both the 9th and 10th editions of the International Classification
of Diseases (ICD-9 and ICD-10), vital signs, laboratory test
results, imaging studies, real-time physiological monitoring data
from the ICU, and records of clinical outcomes. Importantly, all
personal identifying information of patients in the database is
anonymized and kept strictly confidential. Accessing and extracting
data from this database necessitates approval from the relevant
review committee at MIT.

We extracted data on sepsis patients with ARDS who met
both the Berlin definition and the updated global definition from
our database. As we all known, sepsis is defined as a disorder
of the host response to infection, which leads to life-threatening
multi-organ dysfunction. Consequently, the primary criteria for
identifying sepsis patients in our database include clinical evidence
of infection or a high suspicion of infection, along with a Sequential
Organ Failure Assessment (SOFA) score of 22 (Singer et al., 2016).

The diagnosis of ARDS according to the Berlin definition is
based on the following criteria: 1. The onset of ARDS should
occur within 1 week following the onset of known clinical
abnormalities or new respiratory symptoms; 2. Chest X-rays

or CT scans must reveal bilateral lung infiltrates or edema,
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while ruling out the effects of pleural effusion or acute heart
failure; 3. Mechanical ventilation is required, with a positive end-
expiratory pressure (PEEP) > 5cm H,O and Oxygenation index
(PaO2/F102)< 300 mmHg (Ranieri et al., 2012).

The new global definition of ARDS (Matthay et al., 2024) builds
upon the Berlin definition, incorporating the following diagnostic
criteria: 1. The onset should occur within 1 week of identified
risk factors or the emergence of new or worsening respiratory
symptoms, characterized by acute exacerbation or deterioration
of hypoxemic respiratory failure; 2. Chest imaging must indicate
bilateral lung infiltrates or edema, excluding cardiogenic pulmonary
edema; 3. ARDS is classified under different ventilation states as
follows: (1) Non-intubation ARDS is defined by an oxygen flow
>30 L/min using high-flow nasal cannula (HFNC), or PEEP >5 cm
H,0 when using non-invasive ventilation (NIV) or continuous
positive airway pressure (CPAP); (2) Intubation ARDS follows
the criteria of the Berlin definition; (3) In resource-limited
environments, ARDS can be diagnosed based solely on oxygen
therapy, without the necessity of specific respiratory support
devices such as PEEP or defined oxygen flow rates. Under these
conditions, SpO2 < 97% and SpO2/FiO2 < 315 are considered
necessary for diagnosing ARDS (Matthay et al., 2024). Although
the new global definition of ARDS introduced diagnostic criteria
for resource-limited settings—specifically allowing diagnosis based
on supplemental oxygen therapy—this criterion was still applied in
our study using the MIMIC-IV dataset from Beth Israel Deaconess
Medical Center, a tertiary academic hospital. This is because, in
clinical reality, even in such high-resource settings, some ICU
patients may initially present with mild ARDS and receive only
oxygen therapy due to adequate respiratory function. These cases,
although not meeting criteria for mechanical ventilation or non-
invasive support, are still eligible for ARDS diagnosis under the new
global definition. Including such patients allows earlier detection of
ARDS and enhances the model’s generalizability and clinical utility.

We extracted patients and their clinical data diagnosed with
sepsis complicated with ARDS under the two diagnostic criteria
mentioned above from the MIMIC database. We then analyzed the
differences in clinical characteristics, disease severity assessments,
and mortality rates between the patient groups defined by two
definitions above. Furthermore, we employed machine learning
techniques to predict the 28-day ICU mortality rate for sepsis
patients with ARDS under the latest definition, and analyzed
possible risk factors that may affect clinical prognosis.

2.2 Data extraction

We initially employed Structured Query Language (SQL) to
retrieve and extract raw data from the MIMIC-IV database using
Navicat Premium software (version 16.3.8). This data included
essential clinical information about patients, laboratory test results,
imaging examinations, clinical comorbidities, critical care records,
advanced life support therapy details, and clinical prognosis
information.

For this study, we included patients who met the following
criteria: 1. They were experiencing their first admission to the ICU;
2. Their ICU stay exceeded 24 h; 3. They were over 18 years old at the
time of admission; 4. They were diagnosed with sepsis within 24 h of
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admission, in accordance with the Sepsis-3.0 diagnostic criteria. To
identify sepsis patients in the MIMIC-IV database, we utilized ICD-
9 codes (78,552, 99,591, and 99,592), ICD-10 codes (R65.20 and
R65.21), and the SOFA score recorded within the first 24 h of ICU
admission; 5. Moreover, the patients were also diagnosed with Acute
Respiratory Distress Syndrome (ARDS) within 24 h of admission,
based on the Berlin definition or the new global definition. Detailed
diagnostic criteria can be referenced in the definitions and the data
extraction process illustrated in Figure 1. To ensure that the ARDS
cases included in our study were induced by sepsis, we required
that both the diagnosis of sepsis and ARDS occurred within the
first 24 h of ICU admission. Sepsis was identified using ICD-9/10
codes (e.g., 78,552, R65.20) and a SOFA score >2, indicating organ
dysfunction due to infection. Non-infectious causes of ARDS—such
as trauma, aspiration, or pancreatitis—were excluded by design
through this definition. ARDS was diagnosed using SpO,/FiO, or
Pa0,/FiO, indices and chest imaging findings recorded in the same
24-h window.

Regarding the extraction process of ARDS patients that meets
the Berlin definition and the new global definition, we referred to
the open-source code by Qian F et al., which includes extracting:
1. The initial ventilation treatment status of patients upon ICU
admission; 2. Results from pulmonary imaging (chest X-ray or chest
CT), specifically textual information indicating bilateral pulmonary
edema, such as “bilateral infiltration” and “edema”; 3. PaO2/FiO2
and SpO2/FiO2 (Qian et al., 2024). Reasonable modifications were
made to certain codes, for instance, we defined the PaO2/FiO2 and
SpO2/FiO2 as the worst values recorded within the first 24 h of
ICU admission for patients under initial ventilation treatment. If the
duration of initial ventilation treatment was less than 24 h, the worst
value during that treatment period was considered for the diagnostic
criteria. Additionally, we employed ICD codes “428” and “I50” along
with their lower-level codes to identify and exclude cases of acute
cardiogenic pulmonary edema.

The data we extracted encompasses the following key elements:1.
Basic Clinical Information: This includes age, gender, weight,
and height at the time of admission.2. Intensive Care Records:
This section details the duration of ICU hospitalization and
vital signs recorded within the first 24 h of admission. Key
measurements include blood pressure, heart rate, respiratory rate,
body temperature, blood oxygen saturation, urine output, and blood
glucose levels.3. Laboratory Test Results: Within the first 24 h of ICU
admission, we collected laboratory test results, including complete
blood counts, liver and kidney function tests, coagulation profiles,
and arterial blood gas analyses.4. Advanced Life Support Therapy:
This includes information on renal replacement therapy, mechanical
ventilation, and the administration of vasoactive drugs.5. Imaging
Examinations: we focused on the textual descriptions of pulmonary
imaging results, such as chest X-rays and chest CT scans.6. Patient
Death Records: The database contains records of patient mortality,
with a positive outcome defined as death occurring within 28 days
of ICU admission. In the study, vital signs and laboratory test
results from the intensive care records were analyzed as independent
features by utilizing their maximum, minimum, and/or mean values.

We included patients with sepsis complicated by ARDS who
met the criteria of the new global definition and were admitted
to Xuzhou Medical University Affiliated Hospital from March
2022 to October 2024. The exclusion criteria were consistent
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with those used in the training cohort. Clinical data for patients
in the external validation cohort were collected based on 15
features selected from the training cohort after model training.
These features included admission age, average SpO2, average body
temperature, average respiratory rate, average heart rate, red blood
cell distribution width (RDW), presence of metastatic solid tumors,
lactate levels, urine output, international normalized ratio (INR),
alkaline phosphatase levels, average red blood cell volume, logistic
organ dysfunction score (LODS score), presence of rheumatic
diseases, and platelet count. The inclusion and exclusion criteria
for the external validation cohort were identical to those applied
to the MIMIC-IV cohort. Therefore, a separate flowchart was not
presented to avoid redundancy.

2.3 Statistical analysis

In the baseline analysis section, we employed the Shapiro-Wilks
test to assess the normality of the data distribution. For continuous
variables that exhibited a normal distribution, we represented them
using the mean and standard deviation, and compared groups using
an independent sample t-test. Conversely, for continuous variables
that did not adhere to a normal distribution, we used the median
and interquartile range for representation and utilized the Wilcoxon
rank sum test for comparisons. Categorical data is presented as
counts and percentages, with comparisons made using the chi-
square test. A p-value of less than 0.05 is considered statistically
significant.

Based on the survival status of patients 28 days after their
admission to the ICU, we categorized them into a survival group and
a death group. Additionally, patients were classified into two groups:
the “Berlin definition group” and the “new global definition group,”
according to their alignment with the Berlin definition or the new
global definition of ARDS.

In building our machine learning models, we utilize Python
version 3.11.7 along with Jupyter Notebook as our coding
environment. The key packages and versions included: scikit-
learn 1.4.0, miceforest 5.6.4, scikit-optimize 0.9.0, imbalanced-
learn 0.12.0, SHAP 0.44.1, numpy 1.26.3, matplotlib 3.8.3. During
the data preprocessing phase, illustrated in Figure 2, we employ
the missing no module to visualize missing data. Each column
in the visualization represents a clinical variable, with the white
spaces indicating the presence of missing values. The density of the
black lines in each column correlates with the number of available
data points for the respective clinical variable; thus, The denser
the black lines in each column, the fewer missing values for the
clinical variable.

To enhance the accuracy and performance of our model
predictions, we decided to exclude clinical variables with more
than 30% missing values, such as bicarbonate and albumin. For
the remaining missing values, we applied miceforest multiple
imputation, which effectively captures complex relationships among
variables by utilizing a random forest model. Through multiple
iterations, the missing values are predicted in a manner that
aligns with the distribution characteristics of the original dataset,
thereby minimizing bias as much as possible. For continuous
variables, we implement MinMaxScaler normalization to scale
them appropriately, which helps eliminate dimensional effects and

frontiersin.org


https://doi.org/10.3389/fphys.2025.1617196
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

Zhang et al. 10.3389/fphys.2025.1617196
74181 records of ICU stay in MIMIC-IV v2.2
database
23261 patients were excluded for repeat ICU
stays
50920 patinets with the first ICU admission
of the first hospitalization
ICU  stays ICU stays with || ICU  stays ICU stays with
with invasive noninvasive with  HFNC supplemental
ventilation ventilation (n=516) oxygen
(n=15555) (n=447) (n=21548)
PEEP =25, chest PEEP=5,chest radio- 0, flow =30L/min, Patients had evidence
radiographs ~ had graphs had evidence chest radiographs of bilateral infiltrates
evidence of bilateral of bilateral infiltrates had evidence of on chest radiographs
infiltrates and ICD and ICD code did not bilateral infiltrates and ICD code did not
code did not indi- indicate acute heart and ICD code did indicate acute heart
cate acute heart failure (n=18) not indicate acute failure (n=6288)
failure (n=2248) heart failure(n=6)
b \ 4 \ 4 \ 4
P202/Fi0223 || SpO2FiO P.02/Fi0><3 SpO2/Fi0 SpO2/FiO:; SpO2/Fi0
00mmHg 2<315 00mmHg 25315 <315 2<315
(n=1790) (n=1784) (n=8) (n=9) (n=5) (n=1791)
\ 4
VL v
Berlin definition:Patients New global definition:Patients
diagnosed with sepsis diagnosed with sepsis and
and icu stay time more icu stay time more than 24
than 24 hours(n=589) hours (n=905)
FIGURE 1

Flowchart of screening

improves model efficiency. Additionally, we use OneHotEncoder to
encode categorical variables effectively.

During the training and validation phases of our machine
learning models, we evaluated several widely recognized and highly
effective algorithms based on the results of feature selection using
Lasso CV. These algorithms included logistic regression (LR),
random forest (RF), decision tree (DT), support vector machine
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(SVM), lightweight gradient boosting machine (LightGBM),
extreme gradient boosting machine (XGBoost), adaptive boosting
machine (AdaBoost), and multilayer perceptron (MLP).

To improve the stability and generalizability of the models,
we employed a repeated nested cross-validation strategy. In this
approach, the outer loop involved a 5-fold cross-validation, where
the dataset was randomly split into five subsets. One fold was used
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Missing value visualization: Each column represents a clinical variable, and the white lines represent missing values.

as the outer test set, while the remaining four served as the outer
training set. Within the training set, a 10-fold inner cross-validation
was conducted to perform hyperparameter tuning. This entire
nested cross-validation process was repeated five times, with the
dataset reshuftled before each repetition, resulting in 25 independent
models per machine learning algorithm. The final performance for
each algorithm was calculated as the average performance across the
25 models, which helps reduce variance due to data partitioning and
ensures a more reliable model selection.

To mitigate the effects of imbalanced positive and negative
outcomes on the model, we implemented the Synthetic Minority
Over-sampling Technique (SMOTE) and the Tomek Link technique.
These methods effectively balance the data, reduce the risk of
overfitting, and enhance the model’s generalization capability. For
hyperparameter optimization, we employed Bayesian Optimization
to determine the optimal hyperparameter combinations. The tuned
hyperparameters and search paces were as follows:

o LR:c (107 to 1072)

o RF: max_depth (3-30), n_estimators (100-1,000), min_
samples_split (2-10)

o DT: max_depth (3-30), min_samples_split (1-10)

« SVM: gamma(lO_4 to 1)

o LightGBM: max_depth (3-30), num_leaves (20-200),

learning_rate (0.001-0.2), n_estimators (100-1,000)

« XGBoost: n_estimators (100-1,000), colsample_bytree (0.5-1),
max_depth (3-30), subsample (0.5-1)

» AdaBoost: n_estimators (50-500), learning_rate (0.01-1)

o MLP: hidden_layer_size (tuple: (50-300, 1-3 layers)).

The performance of the predictive models was assessed using

various metrics, including the ROC curve, area under the curve
(AUCQ), accuracy, sensitivity, specificity, recall, and F1 score.
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In the realm of predictive model interpretation, SHAP serves
as a robust tool for elucidating machine learning algorithms
(Lv et al, 2023; Zhuo et al, 2023). Grounded in the Shapley
value from game theory, SHAP seeks to clarify the contribution of
each feature to the prediction outcomes. This approach mitigates
the black box nature of machine learning models and improves
their interpretability. In our study, we calculated and visualized the
SHAP values for the SVC model, which demonstrated the highest
predictive capability, as indicated by its AUC score.

3 Results

This study comprised 905 sepsis patients with ARDS who met
the criteria of the new global definition (referred to as the new
global definition group) and 598 sepsis patients with ARDS who
met the Berlin definition (referred to as the Berlin definition group).
Based on their 28-day survival status after ICU admission, the
patients were categorized into two groups: a survival group and a
non-survival group.

3.1 Baseline characteristic

Table 1 presents the distribution of patients according to varying
degrees of disease severity in both the new global definition group
and the Berlin definition group. In the new global definition group,
there were 102 patients (11.27%) classified as mild, 278 patients
(30.72%) as moderate, and 525 patients (58.01%) as severe, with
a total of 336 ICU deaths (37.13%) occurring within 28 days.
In contrast, the Berlin definition group consisted of 58 patients
(9.85%) with mild symptoms, 208 patients (35.31%) with moderate
symptoms, and 323 patients (54.84%) with severe symptoms,
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TABLE 1 Classification of ARDS severity and 28-day ICU mortality.

10.3389/fphys.2025.1617196

Total ’ Mild Moderate Severe 28-day ICU mortality
New Global 905 102 (11.27%) 278 (30.72%) 525 (58.01%) 336 (37.13%)
Definition
Berlin Definition 589 58 (9.85%) 208 (35.31%) 323 (54.84%) 228 (38.71%)

TABLE 2 Comparison of mortality rates for ARDS with invasive ventilation.

‘ Moderate, n (%)

Invasive Vent Mild, n (%)

ARDS with PaO2/FiO2 ratio 16 (35.56%)

55 (28.95%)

Severe, n (%) p-value

140 (46.20%) ‘

ARDS with SpO2/FiO2 ratio 18 (30.58%)

63 (37.50%)

130 (41.80%)

0.597 ‘

TABLE 3 Comparison of mortality rates for New Global Definition Group.

Ventilation status Mild, n (%)

Moderate, n (%)

Severe, n (%)

p-value

ARDS with invasive ventilation 21 (31.82%)

68 (38.20%)

134 (41.36%) ‘

ARDS with oxygen 9 (25.71%)

27 (27.00%)

74 (37.56%)

0.439 ‘

resulting in 228 ICU deaths (38.71%) at 28 days. Compared with
the Berlin definition, the new global definition classified a slightly
higher proportion of patients as severe (58.01% vs. 54.84%) and
fewer as moderate (30.72% vs. 35.31%). This indicates a modest shift
in severity stratification under the new definition.

Additionally, we identified 538 patients who required invasive
mechanical ventilation and had both PaO2/FiO2 and SpO2/FiO2
indices by extracting cross subsets from two datasets. We then
compared the 28-day ICU mortality rates among patients with
varying severity levels as determined by these indices (see Table 2).
A chi-square test was conducted to compare the mortality rates of
the subsets, yielding a p-value of 0.597. This indicates that there was
no statistically significant difference in mortality rates between the
two diagnostic criteria for ARDS severity classification, which aligns
with the findings reported by Qian et al. (2024).

Finally, we compared the mortality rates between the invasive
mechanical ventilation subgroup and the oxygen-only subgroup
using the new global definition, as presented in Table 3. The chi-
square test yielded a p-value of 0.439. In contrast to the findings of
Qian F et al. (Qian et al., 2024), our analysis indicated that the global
new definition criteria neither underestimated nor overestimated
the mortality rate of sepsis patients with ARDS who received
supplemental oxygen therapy.

Table 4 presents the baseline characteristics of patients in the
global new definition group, encompassing essential clinical data,
vital signs, laboratory test results, clinical comorbidities, and records
of advanced life support therapy. The overall mortality rate for this
group is 37.12%. In the univariate analysis, significant differences
were observed between the two groups in various factors, including
age, weight, urine output, mean pulse oxygen saturation, mean
arterial pressure, body temperature, pH, arterial oxygen partial
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pressure, lactate levels, oxygenation index, and the SpO2/FiO2 ratio,
with a P-value of less than 0.001.

3.2 Feature selection

In the feature selection and screening section, we employed
Lasso regression with cross-validation (Lasso CV) to evaluate
various features. Lasso regression is a linear regression technique
utilized for both feature selection and regularization. Its effectiveness
in feature filtering primarily relies on examining the coefficients
assigned to each feature within the model. Features with coeflicients
of zero are deemed to make no contribution to the model’s predictive
power. Furthermore, Lasso regression addresses the issue of feature
collinearity to some extent, with the lambda value in the regression
equation governing the strength of regularization.

Lasso CV integrates Lasso regression with cross-validation,
automatically exploring different lambda values and utilizing
cross-validation to identify the optimal alpha value. This process
maximizes the balance between model complexity and fit, as
illustrated in Figure 3, while also ranking the features according
to their importance. We initially selected 64 candidate features
based on clinical relevance identified through literature review and
consultation with two intensivists, data availability in both internal
and external datasets, and their accessibility within the first 24 h of
ICU admission. These features covered demographics, vital signs,
laboratory indicators, ventilator parameters, severity scores (e.g.,
SAPS II, SOFA), and comorbidities. Subsequently, we identify 37
features with non-zero coefficients using Lasso CV algorithm.

To mitigate model complexity and reduce the risk of overfitting,
we selected the top 15 features based on the absolute values of
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TABLE 4 Baseline characteristics of patients in New Global Difinition Group.

10.3389/fphys.2025.1617196

Variable Survival (n = 569) Non-survival (n = 336)
Age (year) 62.57 (50.50-73.43) 67.15 (57.51-78.87) <0.001
Gender (%) 0.072

Male 343 (60) 182 (54)

Female 226 (40) 154 (46)
Height (cm) 170.00 (163.00-178.00) 168.00 (160.00-175.00) 0.003
Weight (kg) 84.00 (69.30-100.50) 78.45 (62.80-96.73) <0.001
Urineoutput (mL) 1,320.00 (790.00-2,213.00) 890.00 (362.75-1,416.50) <0.001
heart_rate_mean (min-1) 95.53 (83.30-106.80) 98.68 (87.85-107.58) 0.10
resp_rate_mean (min-1) 22.00 (19.15-25.15) 22.98 (19.44-26.44) 0.021
spo2_mean (%) 96.57 (95.12-97.83) 95.92 (94.26-97.84) <0.001
mbp_mean (mmHg) 73.88 (69.44-79.55) 71.59 (66.91-76.26) <0.001
Temperature (°C) 37.14 (36.76-37.56) 36.87 (36.50-37.34) <0.001
ph_min 7.26 (7.18-7.34) 7.22(7.13-7.33) <0.001
po2_min (mmHg) 57.00 (41.00-77.00) 47.50 (38.00-68.25) <0.001
pco2_max (mmHg) 48.00 (41.00-58.00) 48.00 (41.00-58.00) 0.87
lactate_max (mmol/L) 2.30 (1.50-3.90) 3.60 (2.00-6.50) <0.001
baseexcess_min (mmol/L) —6.00 (—10.00-1.00) —7.00 (-13.00-2.00) <0.001
aniongap_max (mmol/L) 17.00 (15.00-21.00) 20.00 (16.00-24.00) <0.001
pao2fio2ratio_min 109.00 (72.00-172.00) 88.66 (63.75-142.13) <0.001
spo2fio2ratio_min 131.43 (94.00-190.00) 97.00 (91.00-186.00) <0.001
hematocrit_min (%) 30.20 (25.80-34.70) 28.00 (23.48-34.20) <0.001
hemoglobin_min (g/dL) 9.90 (8.50-11.50) 9.20 (7.50-10.93) <0.001
wbc_max (10°/L) 16.90 (10.90-24.10) 16.10 (10.25-22.65) 0.19
platelets_min (10°/L) 162.00 (104.00-226.00) 128.00 (61.75-210.00) <0.001
rdw_max (%) 15.00 (14.00-16.50) 16.15 (14.70-18.43) <0.001
mch_min (pg) 29.80 (28.40-31.20) 30.20 (28.60-31.83) 0.011
mchc_min (pg/L) 32.20 (31.20-33.30) 31.80 (30.58-33.10) 0.001
mev_min (fl) 91.00 (86.00-95.00) 92.00 (87.00-98.00) <0.001
alt_max (mmol/L) 36.00 (19.00-88.00) 47.00 (23.00-182.25) <0.001
ast_max (mmol/L) 59.00 (31.00-139.00) 104.50 (40.00-382.25) <0.001
alp_max (mmol/L) 91.00 (66.00-145.00) 110.50 (77.00-180.00) <0.001
bilirubin_total_max (mmol/L) 1.00 (0.50-2.60) 1.20 (0.50-3.40) 0.040
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TABLE 4 (Continued) Baseline characteristics of patients in New Global Difinition Group.

10.3389/fphys.2025.1617196

Variable Survival (n = 569) Non-survival (n = 336)

creatinine_max (mmol/L) 1.50 (0.90-2.70) 1.70 (1.10-3.00) 0.014
bun_max (mmol/L) 29.00 (19.00-48.00) 38.00 (26.00-56.25) <0.001
pt_max(s) 15.50 (13.70-19.30) 18.35 (14.50-26.93) <0.001
ptt_max(s) 34.90 (29.80-45.70) 41.50 (31.90-63.95) <0.001
inr_max 1.40 (1.20-1.80) 1.70 (1.30-2.50) <0.001
glucose_mean (mmol/L) 136.67 (112.25-170.50) 136.73 (110.58-181.68) 0.76
sodium_min (mmol/L) 137.00 (133.00-140.00) 136.00 (132.00-140.00) 0.17
sodium_max (mmol/L) 140.00 (137.00-143.00) 139.00 (136.00-144.00) 0.55
calcium_min (mmol/L) 7.40 (6.90-8.00) 7.40 (6.90-8.00) 0.88
calcium_max (mmol/L) 8.20 (7.70-8.70) 8.30 (7.70-8.80) 0.13
potassium_min (mmol/L) 3.80 (3.40-4.20) 3.90 (3.40-4.40) 0.16
potassium_max (mmol/L) 4.50 (4.10-5.10) 4.80 (4.20-5.40) <0.001
chloride_max (mmol/L) 108.00 (103.00-112.00) 106.00 (101.00-112.00) 0.24
chloride_min (mmol/L) 103.00 (98.00-107.00) 101.00 (96.00-106.00) 0.016
Sapsii 45.00 (36.00-56.00) 55.00 (46.00-66.00) <0.001
Sofa 10.00 (7.00-13.00) 12.00 (9.00-15.00) <0.001
Lods 8.00 (6.00-11.00) 10.00 (8.00-13.00) <0.001
myocardial_infarct,n (%) 49 (8.6) 48 (14) 0.008
peripheral_vascular_disease, n (%) 30 (5.3) 32 (9.5) 0.014
cerebrovascular_disease, n (%) 48 (8.4) 37 (11) 0.20
chronic_pulmonTary_disease, n (%) 155 (27) 94 (28) 0.81
rheumatic_disease, n (%) 26 (4.6) 7(2.1) 0.054
diabetes_with_cc, n (%) 35(6.2) 17 (5.1) 0.50
diabetes_without_cc, n (%) 123 (22) 73 (22) 0.97
renTal_disease, n (%) 102 (18) 55(16) 0.55
malignTant_cancer, n (%) 87 (15) 91 (27) <0.001
metastatic_solid_tumor, n (%) 30 (5.3) 62 (18) <0.001
mild_liver_disease, n (%) 123 (22) 116 (35) <0.001
severe_liver_disease, n (%) 52(9.1) 65 (19) <0.001
aki_2 day, n (%) 436 (77) 298 (89) <0.001
vasoactive_drugs_use, n (%) 389 (68) 268 (80) <0.001
rrt_use, n (%) 35(6.2) 34 (10) 0.030
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TABLE 4 (Continued) Baseline characteristics of patients in New Global Difinition Group.

Variable Survival (n = 569) Non-survival (n = 336)
vent_status, n (%) 0.042
Oxygen 222 (39) 110 (33)
Highflow 1(02) 1(0.3)
Noninvasive 0(0) 2(0.6)
Invasive 346 (61) 223 (66)

their coeflicients for inclusion in the machine learning model.
These features comprised admission age, average SpO2, average
body temperature, red blood cell distribution width (RDW),
merged metastatic solid tumors, lactate levels, urine output, average
respiratory rate, international normalized ratio (INR), alkaline
phosphatase, average heart rate, average red blood cell volume,
the Logistic Organ Dysfunction Score (LODS score), combined
rheumatic system diseases, and platelet count.

3.3 Model performance comparison

We utilized the 15 selected features to construct machine
learning models, resulting in 25 independent models corresponding
to 8 different machine learning algorithms. This process included
hyperparameter tuning through five iterations of 5-fold nested
cross-validation, aimed at maximizing the models’ generalization
ability. To comprehensively evaluate model performance, we
calculated the average values and 95% confidence intervals for the
area under the curve (AUC), F1 score, recall, precision, accuracy,
sensitivity, and specificity of the 8 machine learning models, as
detailed in Table 5.

As illustrated in the table above, the SVC model demonstrates
the highest AUC (95% CI) of 0.792 (95% CI: 0.76-0.84) among
the eight machine learning models assessed, with the MLP model
following closely behind. Additionally, other evaluation metrics,
including the F1 score, recall rate, accuracy, precision, sensitivity,
and specificity, indicate that the SVC model generally outperforms
the other models.

To further compare and visualize the performance and
clinical applicability of each model, we plotted receiver operating
characteristic (ROC) curves, clinical decision curves (DCA),
and calibration curves (as shown in Figure 4). The ROC curve
primarily assesses the classification capability of the model,
illustrating its performance across various thresholds. Meanwhile,
the calibration curve evaluates the accuracy of model predictions,
ensuring that the outputs can be reliably interpreted as actual
probabilities.

Among the eight machine learning models evaluated, SVM
model exhibited relatively strong and stable performance. One
possible explanation lies in the characteristics of SVM: it relies
on margin maximization and distance-based computation, which
makes it particularly effective when data are well-normalized
and high-dimensional. Given that all features in this study were
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standardized prior to modeling, this may have favored SVM’s
ability to find optimal separating hyperplanes. Furthermore, SVM’s
capacity to handle non-linear boundaries via kernel tricks may have
also contributed to its competitiveness in mortality prediction.

3.4 External validation

We conducted an external validation of the SVC model on 100
sepsis patients with ARDS who met the criteria outlined in the new
global definition and were admitted to Xuzhou Medical University
Affiliated Hospital between March 2022 and October 2024 (please
refer to the Supplementary Materials for a baseline comparison
of the external validation cohort). Importantly, the data from the
external validation cohort and the training cohort do not overlap,
which enhances the assessment of the model’s generalization and
predictive capabilities in real-world scenarios. The performance of
the SVC model in the external validation cohort is presented in
Table 6, where we observed that the model continues to demonstrate
strong overall performance (Figure 5). This indicates that the
predictive model developed using machine learning methods has a
robust ability to forecast 28-day ICU mortality outcomes for patients
with sepsis complicated by ARDS under the context of the new
global definition in clinical practice.

3.5 Interpretability analysis

Given the outstanding performance of the SVC model, we
computed and visualized the SHAP values to elucidate the influence
of each variable on the outcomes predicted by this model
First, we examined the overall interpretability of the model by
calculating the average SHAP value for each feature and ranking
their importance (see Figure 6A). This analysis illustrates the
overall distribution of the impact that each feature has on the
model’s output.

The bee swarm plot (see Figure 6B) further displays the
characteristics of data distribution by arranging numerous data
points at the same horizontal position. In this plot, the X-axis
represents the SHAP values of the features, while the colors indicate
the magnitude of the feature values—red signifies larger feature
values, and blue indicates smaller ones. Each point corresponds to
a specific sample’s feature value and SHAP value; thus, the farther
a point is from the X-axis, the greater its impact on the output
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FIGURE 3

Feature selection using Lasso regression with cross-validation. (A) Determination of the optimal lambda value; (B) The variation of variable coefficients
with the lambda value, the black dashed line indicates the coefficients of each variable at the optimal lambda value; (C) The ranking of variable
coefficients.

result. Additionally, the density of points reveals the distribution  values indicates the direction of the feature’s effect. For instance,
of the data. with respect to age, larger feature values correlate with a more

Moreover, the relationship between the color of the points  significant positive impact on predicting favorable outcomes, while
(which represents the size of the feature values) and the SHAP  urine output exhibits the opposite effect.
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TABLE 5 Prediction Performance of the 8 kinds of machine leaning algorithms.

10.3389/fphys.2025.1617196

(0.664-0.768)

(0.521-0.648)

(0.504-0.808)

(0.488-0.621)

(0.615-0.717)

(0.504-0.808)

F1-score Recall Precision Accuracy Sensitivity Specificity
Logistic 0.787 0.644 (0.587-0.7) | 0.71 0.592 0.709 0.71 0.708
Regression (0.74-0.833) (0.643-0.788) (0.516-0.672) (0.645-0.764) (0.643-0.788) (0.635-0.795)
Decision Tree 0.705 0.586 0.643 0.549 0.666 0.643 0.679

(0.519-0.807)

(0.588-0.711)

(0.613-0.818)

(0.554-0.658)

(0.675-0.767)

Random Forest | 0.786 0.645 0.681 0.615 0.723 0.681 0.748
(0.742-0.842) (0.586-0.71) (0.57-0.776) (0.563-0.684) (0.682-0.772) (0.57-0.776) (0.696-0.796)

LightGBoost 0.755 0.603 0.616 0.594 0.7 (0.656-0.735) | 0.616 0.749
(0.719-0.79) (0.558-0.655) (0.537-0.699) (0.533-0.649) (0.537-0.699) (0.684-0.814)

AdaBoost 0.765 0.63 0.677 0.592 0.705 0.677 0.722
(0.726-0.826) (0.583-0.696) (0.612-0.744) (0.527-0.677) (0.655-0.762) (0.612-0.744) (0.649-0.805)

XGBoost 0.771 0.628 0.628 0.589 0.704 0.676 0.735

(0.722-0.83) (0.559-0.676) (0.559-0.676) (0.529-0.647) (0.655-0.746) (0.573-0.773) (0.642-0.77)

MLP 0.791 0.644 0.71 0.591 0.709 0.71 0.708
(0.741-0.841) (0.577-0.698) (0.634-0.776) (0.521-0.648) (0.65-0.756) (0.634-0.776) (0.633-0.779)

SVM 0.792 (0.76-0.84) | 0.654 0.717 0.606 0.72 0.717 0.722

(0.613-0.818)

(0.661-0.786)

From this analysis, we can conclude that factors such as age,
red blood cell distribution volume, presence of metastatic tumors,
logistic organ function score, blood lactate level, international
normalized ratio (INR), average red blood cell volume, average heart
rate, alkaline phosphatase, and average respiratory rate are positively
correlated with 28-day mortality in patients. Conversely, other
indicators, including urine output and average body temperature,
show a negative correlation with 28-day mortality. From a
clinical perspective, adequate urine output suggests preserved renal
perfusion and responsiveness to fluid resuscitation, both of which
are favorable prognostic indicators in critically ill septic patients.
Similarly, fever is typically a manifestation of an active inflammatory
response. Previous studies have shown that moderate hyperthermia
may be protective in sepsis (Beverly et al, 2016), whereas
hypothermia is often linked to immune suppression and increased
mortality. Therefore, these findings are biologically plausible and
consistent with current understanding of sepsis pathophysiology.

Secondly, we investigated the complex linear and nonlinear
relationships between the various features and prognostic outcomes.
To achieve this, we created scatter plots of SHAP values against
feature quantities for 13 quantitative data types, excluding rheumatic
diseases and metastatic solid tumors among the 15 features.
Additionally, we employed LOWESS fitting curves and local
weighted regression to generate fitting curves, which visually
represent the trend of data distribution. As depicted in Figure 7,
the yellow curve indicates the fitting curve, and we highlighted the
intersection point, where the SHAP value equals zero, with a blue
dashed line alongside the corresponding feature value.

Using age as an example, we observed a nonlinear relationship
between age and 28-day ICU mortality in patients. As age increases,
its contribution to the model transitions from negative to positive,
with the intersection point occurring at 65.71 years. This implies that
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patients older than 65.71 years are considered a risk factor for 28-day
mortality.

4 Discussion

In this study, we employed machine learning techniques to
develop and validate a predictive model for the prognosis of
sepsis patients with ARDS who met the new global definition.
Our model is built upon a comprehensive analysis of 64
patient features, which include basic clinical data, vital signs,
laboratory test results collected within the first 24h of ICU
admission, records of advanced life support treatments, and clinical
comorbidities.

To address missing data, we utilized the Miceforrest multiple
imputation method. By integrating the Lasso cross-validation
method with feature importance ranking, we ultimately selected 15
key features for constructing the machine learning model. During
the model development phase, we employed the SMOTETomek
resampling technique to balance the dataset and utilized
Bayesian optimization to fine-tune the model’s hyperparameters.
Additionally, nested cross-validation techniques were applied to
enhance the generalization ability of various models.

Among the eight machine learning models assessed, the Support
Vector Classifier (SVC) exhibited the best performance. We further
elucidated the key features influencing the prognosis of sepsis
patients with ARDS using SHAP values and visualization graphs.
The final ROC curve and calibration curve indicate that the SVC
model outperforms other models in terms of prediction accuracy.
However, it is important to note that a high-performing machine
learning model does not always translate to effective clinical
recognition.
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FIGURE 4
ROC (A), DCA (B) and Calibration curves (C) comparison of eight models.
To evaluate and compare the clinical utility of the  demonstrates robust performance and significant clinical
predictive models, we also generated DCA curves. We tested  applicability.

the predictive performance of the SVC model in an external
validation cohort and confirmed its strong performance in
real-world settings. Overall, our prognosis prediction model
for sepsis complicated by ARDS, based on the SVC model,

Frontiers in Physiology 13

Secondly, we utilized SHAP values to elucidate the final machine
learning prediction model. The feature importance map illustrates
the overall influence of each feature on the predicted outcome.
Meanwhile, the bee colony plot depicts the distribution of features
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TABLE 6 Prediction performance of SVC model in External validation cohort.

10.3389/fphys.2025.1617196

Precision

Accuracy

Sensitivity Specificity

F1-score Recall
Logistic 0.785 0.640 0.701
Regression (0.742-0.828) (0.595-0.688) (0.631-0.785)

0.591
(0.526-0.652)

0.707
(0.655-0.746)

0.701
(0.631-0.785)

0.712
(0.642-0.786)

0.682
(0.606-0.759)

0.565
(0.512-0.653)

0.624
(0.516-0.788)

Decision Tree

0.521
(0.453-0.603)

0.646
(0.586-0.716)

0.624
(0.516-0.788)

0.659
(0.551-0.774)

Random Forest | 0.772 0.624 0.655 0.598 0.706 0.655 0.736
(0.724-0.824) (0.552-0.683) (0.582-0.749) (0.520-0.671) (0.648-0.76) (0.582-0.749) (0.649-0.812)

LightGBoost 0.750 0.597 0.605 0.592 0.698 0.605 0.736
(0.706-0.812) (0.538-0.675 (0.515-0.717) (0.530-0.648) (0.652-0.746) (0.515-0.717) (0.649-0.812)

AdaBoost 0.758 0.627 0.680 0.585 0.700 0.680 0.712
(0.698-0.819) (0.571-0.691 (0.569-0.749 (0.519-0.652) (0.648-0.754) (0.569-0.749) (0.623-0.772)

XGBoost 0.763 0.617 0.670 0.575 0.691 0.670 0.821
(0.721-0.818) (0.561-0.664) (0.605-0.728) (0.508-0.642) (0.636-0.738) (0.605-0.728) (0.611-0.786)

MLP 0.790 0.644 0.706 0.594 0.710 0.706 0.713
(0.739-0.829 (0.581-0.689) (0.615-0.788) (0.539-0.661) (0.663-0.756) (0.615-0.788) (0.642-0.780)

SVM 0.816 0.726 0.702 0.758 0.771 0.702 0.825
(0.796-0.829) (0.699-0.766) (0.659-0.750) (0.738-0.776) (0.75-0.798) (0.659-0.750) (0.804-0.839)

along with the direction of their impact on the predicted results.
Additionally, the combination of fitting curves and SHAP values
effectively highlights the intricate relationships between individual
features and outcomes, thereby facilitating more informed clinical
decision-making.

In this study, we investigated the factors influencing the 28-
day mortality rate of sepsis patients with ARDS who meet the new
global criteria for ICU admission. From the feature importance
map, we identified the five most significant factors affecting patient
prognosis: red blood cell distribution width (RDW), presence of
metastatic solid tumours, age, Logistic Organ Dysfunction Score
(LODS), and urine output. Our results demonstrate a positive
correlation between elevated RDW levels and increased 28-day
mortality. RDW serves as an indicator of the variation in red blood
cell volume, and numerous studies have established that a high RDW
is linked to adverse outcomes in various diseases, including ARDS,
cardiovascular diseases, autoimmune disorders, and malignancies
(Xanthopoulos et al., 2022; Wang et al., 2019; Arkew et al., 2022;
Deng et al., 2021). A recent study also highlighted the strong
association between high RDW and negative outcomes in sepsis,
which aligns with our findings. This correlation may stem from
the inflammatory response associated with sepsis, microcirculatory
dysfunction leading to shortened red blood cell lifespan, and
disruptions in iron metabolism (Lorente et al., 2021).

Moreover, age plays a critical role in patient prognosis,
which is easily understandable. Factors such as diminished
immune function, malnutrition, and organ dysfunction can
contribute to the elevated mortality risk observed in older patients
suffering from sepsis combined with ARDS. The hypoxia and
microcirculatory dysfunction induced by sepsis in conjunction with
ARDS can result in inadequate oxygen supply to organs, leading
to necrosis of renal tubular epithelial cells and subsequent renal
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dysfunction (Lankadeva et al., 2019). Additionally, urine output
is a key indicator of microcirculatory function; thus, oliguria
is a significant risk factor for mortality in patients with sepsis
and ARDS.

Blood which
dysfunction and tissue hypoxia, are also positively correlated with

lactate levels, indicate microcirculatory
adverse outcomes. The LODS score is utilized to evaluate the severity
of organ dysfunction in ICU patients. While we included the SAPSII
score and SOFA score in our analysis, LODS appears to have a more
substantial impact on outcome prediction compared to the other two
measures. Furthermore, high Mean Corpuscular Volume (MCV) is
positively associated with adverse outcomes in our model. Although
there is currently no literature directly linking MCV to sepsis, studies
indicate that the combination of MCV and RDW can enhance the
predictive accuracy for sepsis prognosis (Zhang et al., 2023).

The International Normalized Ratio (INR), which reflects
coagulation function, is also closely related to poor prognoses.
Similar to the findings of Schupp etal, our results indicate a
positive correlation between high INR and mortality outcomes in
sepsis patients (Schupp et al., 2022). The INR holds significant
value in the early screening, diagnosis, and prognosis of sepsis-
related coagulation disorders (Lyons et al., 2018; Zhang et al.,
2021). Additionally, basic vital sign indicators—such as body
temperature, blood oxygen saturation, average heart rate, and
respiratory rate—are closely associated with the prognosis of sepsis
patients with ARDS. Higher blood oxygen saturation indicates
better preservation of lung oxygenation function. In our model,
blood oxygen saturation appears to be a more effective predictor
of outcomes in sepsis and ARDS patients than the oxygenation
index. Although ARDS diagnosis and severity primarily depend
on the oxygenation index, the continuous, cost-effective, and non-
invasive nature of blood oxygen saturation measurement, along
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FIGURE 5
ROC (A), DCA (B)and Calibration curves (C)of the SVM model in the external validation set.

with its derived SpO2/FiO2 index, plays a crucial role in assessing
ARDS severity (Wick et al., 2022).

Additionally, hypothermia was identified as a risk factor for
patient mortality in this study, with the onset of hypothermia
within 24 h of ICU admission potentially linked to 28-day mortality,
mirroring the findings of Han et al. (2024) and Beverly et al.
(2016). Lastly, we observed that the development of metastatic
tumours may pose a significant risk for 28-day mortality outcomes.
Research indicates that cancer patients are at a higher risk of
developing sepsis, with increased mortality rates following sepsis
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onset (Liu M. A. et al,, 2021). This heightened risk is believed to
result from immune dysfunction due to the tumour itself and
or cancer treatments (Williams et al., 2023). Further research is
necessary to ascertain whether the notable impact of metastatic
tumours in our model correlates with more severe immune
dysfunction, aggressive anti-tumour therapies, or poorer nutritional
status in these patients.

Conversely, our findings suggest that rheumatic diseases may
act as protective factors in sepsis combined with ARDS. However,
the relationship between rheumatic diseases and sepsis remains
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unclear. For instance, Li H etal. found in observational studies
that rheumatic diseases did not correlate with an increased 28-day
mortality rate in sepsis patients, except for rheumatoid arthritis,
which showed a strong association with sepsis onset (Li et al., 2023).
It is possible that our findings are influenced by biases related to the
small sample size included in our study.

However, our research does have certain limitations. Firstly, the
patient data in the database we utilized for model training primarily
originated from Western countries, which differs significantly from
our external validation cohort. Secondly, we focused solely on
commonly used clinical data for model construction and did not
perform a more comprehensive analysis of the database, potentially
leading to the omission of some critical details. Finally, our study
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Linear or nonlinear effects of quantitative type data on
prognostic outcomes.

is observational and retrospective, which may introduce potential
errors or biases. Nevertheless, our model demonstrated strong
predictive performance in the external validation cohort.

5 Conclusion

In summary, machine learning methods serve as reliable
tools for predicting the prognosis of sepsis patients with ARDS.
Considering the current global definition of ARDS, we have
refined our machine learning clinical prediction model specifically
for this patient group. Additionally, we will employ model
explanatory techniques to interpret the underlying information of
the SVC model. This approach has the potential to significantly
enhance clinical practice, assisting clinicians in developing precise,
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personalized treatments aimed at maximizing the survival rates of
sepsis patients with ARDS.
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