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Tongue is directly or indirectly connected to many internal organs in
Traditional ChineseMedicine (TCM). In computer-aided diagnosis, tongue image
segmentation is the first step in tongue diagnosis, and the precision of this
segmentation is decisive in determining the accuracy of the tongue diagnosis
results. Due to challenges such as insufficient available sample size and complex
background, the generalization and robustness of current tongue segmentation
algorithms are usually poor, which seriously hinders the practicality of tongue
diagnosis. In this article, a GA-TongueNet, namely Tongue Segmentation
Network for Stable Generalization Ability, based on self-attention architecture
is proposed, which is a tongue segmentation network that can simultaneously
have strong generalization ability and accuracy under small samples and diverse
background conditions. Firstly, GA-TongueNet is built upon the transformer
architecture, embedding the dilated feature pyramid (DiFP) module and the
multi-dilated convolution (MDi) module proposed in this article. Secondly, the
DiFP module is integrated to comprehend both the overall tongue image
structure and intricate local details, while theMDimodule is specifically designed
to preserve a high feature resolution. Therefore, the network adeptly captures
long-range dependencies, extracts high-level semantic content, and retains
low-level detail information from tongue images. Moreover, it maintains decent
precision and stable generalization capabilities, even when dealing with limited
sample sizes. Experimental results show that the accuracy and generalization
ability of GA-TongueNet in complex environments are significantly better than
various existing semantic segmentation algorithms based on Convolutional
Neural Networks (CNN) and Transformer architectures.

KEYWORDS

tongue segmentation, self-attention, transformer, dilated convolution, feature pyramid
networks

1 Introduction

As a widely accepted complementary and alternative medical approach, TCM
has garnered increasing attention from the medical research community (Xu et al.,
2020). Within the four diagnostic methods of TCM, tongue diagnosis constitutes
a pivotal component of the observation procedure, serving as a cornerstone for
clinical evaluation. By observing various characteristics of the tongue, such as its
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shape, color, and coating, practitioners can assess health conditions,
the nature of diseases, and the functional state of internal
organs (Wang et al., 2020). Rooted in TCM theory, the tongue
serves as an external reflection of qi (vital energy) and blood
circulation within the visceral systems, often referred to as the
“visceral mirror”. This diagnostic approach provides an effective
and non-invasive method for health assessment (Zhang et al.,
2025). However, traditional tongue diagnosis relies heavily on
empirical knowledge and subjective judgment, which may limit its
reliability (Hu et al., 2019). With the rapid advancement of artificial
intelligence in the medical field (Le et al., 2019), computer-aided
tongue diagnosis has emerged as a promising avenue for addressing
these limitations (Gao et al., 2022).

Computer-aided tongue diagnosis models typically rely on
training and analysis of images captured by specialized tongue
image acquisition devices (Cai et al., 2024). However, these
images often include irrelevant facial or device-related information.
Additionally, the inherent limitations of the acquisition devices
lead to poor adaptability in diverse scenarios (Zhou et al., 2022).
These challenges result in deviations in feature extraction and
undermine the diagnostic reliability of such models (Qiu et al.,
2023). Therefore, the development of a robust tongue image
segmentation algorithm first enables precise extraction of critical
pathological parameters including tongue substance and tongue
coating by effectively separating the tongue body from extraneous
background noise (Cao et al., 2023), and further serves as a
crucial foundation for enhancing the accuracy and robustness of
diagnostic models (Zhang et al., 2019).

The recent advancements in deep learning-related technologies
have provided multiple research approaches for the tongue image
segmentation task (Tng et al., 2022). Current mainstream methods
are primarily based on CNN (Zhao et al., 2022), which leverage their
powerful feature extraction capabilities to achieve notable success in
semantic segmentation tasks and advance the field (Yu et al., 2021).
However, CNN encounter inherent limitations when applied to
complex natural environments (Monica et al., 2024). The restricted
receptive field of convolution operations hinders their capacity to
effectively capture contextual information (Liang et al., 2023). This
limitation complicates the understanding of overall semantics and
spatial relationships in tongue images, especially under diverse
and challenging conditions (Feng et al., 2021). These limitations
lead to poor generalization when dealing with tongue image data
captured in varying acquisition environments, lighting conditions,
and shooting angles. Additionally, CNN often struggle to accurately
delineate the subtle edges of the tongue, resulting in segmentation
precision that falls short of practical requirements (Li et al.,
2021). The transformer architectures can effectively establish
an integration mechanism for both local and global contextual
information through self-attention mechanisms (Zhang et al.,
2023), addressing the limitations of CNN and enhancing the
model’s feature representation capabilities. However, these models
impose substantial computational demands and require large-scale
labeled datasets to prevent overfitting, as insufficient data often
results in unstable convergence and compromised generalization
performance.

To address these challenges, this article proposes GA-
TongueNet, a novel model designed to enhance the generalization
ability and stability of tongue image segmentation. Even when

trained solely on datasets captured under standard acquisition
scenarios, GA-TongueNet demonstrates high-precision boundary
positioning capabilities and robust segmentation performance
across diverse lighting conditions in natural environments. The
key contributions of this article are summarized as follows:

• GA-TongueNet is proposed for tongue image semantic
segmentation, effectively capturing long-range dependencies,
high-level semantic information, and low-level detail
information. The network achieves high precision and robust
generalization even under complex backgrounds and small
sample sizes.

• A novel DiFP module is proposed to better capture the overall
structure and local details of tongue images, while the MDi
module is designed to handle tongue images of varying sizes
and maintain high feature resolution.

• Notably, GA-TongueNet achieves superior cross-domain
generalization compared to Masked Autoencoders (MAE)-
based methods without requiring pre-training, highlighting
its inherent ability to learn discriminative features from
limited data.

The remainder of this article is organized as follows:
Section 2 reviews related work on tongue image segmentation.
Section 3 details the proposed method, experimental materials
and experimental results. Section 5 discusses the experimental
results. Finally, Section 6 concludes the article.

2 Related work

2.1 Clustering-based methods

Clustering algorithms offer a promising approach for tongue
image segmentation due to their ability to operate without heavy
reliance on labeled data (Yuan et al., 2023). By automatically
extracting and summarizing image features, they provide a
flexible and versatile solution for segmenting biologically relevant
structures in tongue images. For instance, to facilitate the automatic
diagnosis of tongue images, Guo et al. (2016) proposed an
automatic region segmentation algorithm that combines K-Means
clustering with an adaptive activity contour network. Liu et al.
(2018) improved the SLIC gamut distance formula, making the
superpixels generated by SLIC more suitable for tongue image
segmentation and reducing the segmentation time of the Grab Cut
method. SGSCN (Ahn et al., 2021) iteratively learns the feature
representation and cluster assignment for each pixel within a single
image, while simultaneously ensuring that all pixels within a cluster
remain spatially close to its center.

Despite their computational efficiency, clustering algorithms
face inherent limitations in processing complex tongue images. The
high variability in biological characteristics, such as texture, color,
and morphology, can exceed the adaptability of these algorithms.
Moreover, they are particularly vulnerable to noise interference,
which may lead to substantial deviations in segmentation accuracy.
These constraints diminish the reliability and robustness of
clustering-based methods, making them less effective in addressing
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the nuanced demands of tongue image segmentation for biomedical
applications.

2.2 CNN-based methods

CNN demonstrate strong feature extraction capabilities in
processing tongue images, making them valuable for analyzing
biological characteristics such as texture and color while preserving
intricate details (Liu et al., 2022). For example, OET-NET
(Huang et al., 2022) incorporates a residual soft connection
module and a prominent image fusion module, coupled with
a Focal Loss-based optimization strategy, to achieve effective
tongue image segmentation in controlled environments. To
address challenges associated with small sample sizes, QA-
TSN (Jia et al., 2025) introduces a global rendering block to
enhance global feature representation and employs modified
partial convolution to accelerate real-time segmentation. Similarly,
LAIU-Net (Marhamati et al., 2023) applies an optimized data
augmentation strategy to segment biologically complex structures,
such as sunken human tongues in photographic images. HPA-
UNet (Yao et al., 2024) improves segmentation accuracy through
enhanced data augmentation techniques and an updated U-Net
architecture.

However, CNN-based methods encounter inherent limitations
in addressing the complexities of tongue image segmentation,
particularly when dealing with biological variability and challenging
environmental conditions. These challenges include difficulty in
segmenting small, biologically relevant structures, limited ability
to capture global contextual features, and reduced generalization
capabilities across diverse scenarios. Such limitations highlight the
need for more robust and adaptable approaches to advance the
segmentation of tongue images for biomedical applications.

2.3 Transformer-based methods

Transformers, with their self-attention mechanisms, offer a
powerful framework for modeling relationships among different
regions within an image. This characteristic is particularly
beneficial for tongue image segmentation, where the accurate
delineation of the tongue region is essential for analyzing biological
features. Additionally, Transformers’ capacity for feature fusion
enables the integration of multi-level information, enhancing
segmentation accuracy. For instance, PriTongueNet (Huang et al.,
2025) incorporates attention-guided skip connections and a
self-distillation mechanism to address over-segmentation by
supervising feature map differences during training. Similarly,
Tongue-LiteSAM (Tan et al., 2025), a zero-shot model, achieves
segmentation by integrating lightweight ViT-Tiny models based
on the Segment Anything Model, providing a flexible approach for
tongue image analysis. To minimize noise interference, Polyp-PVT
(Wan et al., 2024) leverages the Swin-Transformer’s advanced feature
extraction capabilities for analyzing sublingual veins, demonstrating
its potential in capturing subtle biological details. In broader
medical image segmentation, Slim UNETR (Pang et al., 2024)
employs a decomposed self-attention mechanism to efficiently

aggregate representations, achieving robust performance on
resource-constrained devices.

While having advantages in capturing global features,
transformers face limitations in modeling localized biological
details. Their integration with other networks often encounters
challenges in effectively balancing high-level semantic information
with low-level structural details. Furthermore, Transformer-based
architectures typically require large-scale training datasets to
prevent overfitting. When applied to small-sample datasets, such as
those often encountered in tongue image segmentation, the models
may suffer from reduced generalization capability. This limitation
is particularly pronounced in scenarios involving discontinuous
tongue edges or complex backgrounds, where achieving fine-
grained and biologically accurate segmentation remains a significant
challenge.

3 Materials and methods

3.1 Tongue segmentation datasets

Thedatasets utilized in this article consist of two subsets: Dataset
A and Dataset B. Dataset A is used for both training and testing
the model, while Dataset B is solely employed to evaluate the
model’s generalization capability. Sample images from both datasets
are shown in Figure 1.

3.1.1 Dataset A
Dataset A originates from the publicly available BioHit (BioHit,

2014) dataset, comprising 300 tongue images with a resolution of
768× 576 pixels. All images were collected using a standardized
tongue imaging device, ensuring consistency in the positioning of
the tongue across images. Corresponding ground truth annotations
were meticulously prepared by experienced professionals,
guaranteeing high-quality labeled data for model training.

3.1.2 Dataset B
To further evaluate the generalization performance of the

proposed model, we produced Dataset B by collecting 100 tongue
images from public service tongue diagnosis posts on different
online platforms. Tongue images were collected following stringent
criteria to ensure diversity and realism in Dataset B. The collection
guidelines excluded the use of filters, beauty enhancements, and
identifiable features such as full facial images. Additionally, the
dataset incorporates a variety of tongue-to-image size proportions,
diverse lighting conditions, and multiple acquisition environments.
These measures were designed to closely approximate real-world
scenarios and enhance the dataset’s representativeness.

The labeling process utilized Labelme 5.5.0 to perform detailed
segmentation annotations of the tongue body. According to TCM
theory, different regions of the tongue correspond to various
organs of the body. Therefore, the labeling approach adhered to a
comprehensive standard, aiming to annotate all discernible parts
of the tongue within the images. This included challenging areas
such as the tongue root, which is often under-illuminated within
the oral cavity. Efforts were made to ensure precise and thorough
annotations, even in less visible regions.
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FIGURE 1
Sample images from the datasets. (A–C) are from Dataset A, (D–F) are from Dataset B.

3.2 The proposed method

In this section, the GA-TongueNet will be elaborated
in detail. GA-TongueNet is inspired by the architecture of
SegFormer (Xie et al., 2021) and employs a transformer-based
encoder-decoder framework. Specifically, to ensure the trainability,
convergence, and generalization ability of the model under small-
sample conditions, we propose DiFP and MDi to enhance the
model’s capability in perceiving and representing local detail
features, global features, and contextual information.

3.2.1 The architecture of GA-TongueNet
Themodel proposed in this article comprises three keymodules,

as illustrated in Figure 2: the backbone for feature extraction, the
neck for feature fusion, and the head for prediction. The backbone
is based on the architecture of SegFormer and fully leverages the
MixVision Transformer (MIT) module’s capability to extract multi-
scale features.

For the neck module, we introduce targeted structural
enhancements, resulting in the development of the DiFP module.
This module efficiently fuses multi-scale feature information and,
more importantly, deeply captures contextual information without
compromising resolution. Such capabilities significantly contribute
to precise segmentation of tongue details, thereby improving both
the granularity and generalization ability of the segmentation results.

In the head module, we innovatively propose the MDi
and incorporate it into the MLP layer. This design allows the
model to develop a deeper understanding of the global structure
within images, enabling it to effectively handle tongue images of
varying sizes. Consequently, this enhances the model’s adaptability
and generalization performance, ensuring accurate and robust
segmentation across diverse scenarios.

3.2.2 The construction of the DiFP module
The Feature Pyramid Networks (FPN) (Lin et al., 2017) have

demonstrated outstanding capabilities in processing multi-scale
features. However, its performance encounters certain limitations
when applied to precise pixel-level prediction tasks. To construct
a high-performance multi-level feature map structure capable of
efficiently handling multi-scale objects while maintaining high
feature map resolution, we meticulously improved the original FPN
module to develop the DiFP, which serves as the neck component
of our model.

Building upon the original FPN, the DiFP integrates the
key technology of dilated convolution. Specifically, 3× 3 dilated
convolutions with varying dilation rates d replace the original
standard 3× 3 convolution operations, thereby enhancing the
smoothness of the feature maps. Figure 3 illustrates the input and
output feature maps of the module. The core innovation of dilated
convolution lies in its ability to expand the receptive field effectively
without significantly increasing the number of parameters, achieved
by strategically inserting gaps between the convolution kernel
elements. This is further explained in Formula 1 for the receptive
field.

Receptive Field = (k− 1) × d+ 1 (1)

where k is the size of the convolution kernel, and d is the different
dilation rates.

Formula 2 ensures that the spatial resolution of the output
feature map remains consistent with the input after the application
of dilated convolution, which is critical for preserving resolution
in pixel-level prediction tasks. In the proposed DiFP, the dilation
rates d are set to 1, 2, 4, and 6 to effectively capture features at
varying receptive fields. To counterbalance the increased spatial
requirements introduced by dilated convolutions, the padding p
is configured to match the dilation rate d. Furthermore, with the
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FIGURE 2
GA-TongueNet architecture.

FIGURE 3
The input and output feature maps of DiFP.

kernel size k fixed at 3 and stride s set to 1, the structural integrity
and resolution consistency of the feature maps are maintained
throughout the process.

{{{
{{{
{

Ho = ⌊
Hi + 2p− (k− 1) ⋅ d− 1

s
⌋ =Hi

Wo = ⌊
Wi + 2p− (k− 1) ⋅ d− 1

s
⌋ =Wi

(2)

where, Ho and Wo denote the height and width of the output
feature map, respectively, while Hi andWi represent the height and
width of the input feature map. The parameter p corresponds to the

padding applied, s refers to the stride, and ⌊⌋ indicates the downward
rounding operation.

The DiFP method effectively captures the target’s multi-scale
features, enabling the processing of objects at varying scales.
Additionally, it preserves the resolution of the feature map, thereby
enhancing prediction accuracy in fine-grained tasks while ensuring
robust generalization performance across diverse data distributions.

3.2.3 The construction of the MDi module
To enable the model to accurately capture contextual

information atmultiple scales and extract finer details, we developed
the MDi module and integrated it into the Di MLP layer. By
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FIGURE 4
Multi-scale dilated convolution in MDi module. RF represents receptive fields.

combining dilated convolutions with both large and small dilation
rates while retaining the original feature map, this design effectively
enhances the model’s ability to capture both local and global
features. With a simple structure that relies on basic connections
and 1× 1 convolutions for feature fusion, theMDi module improves
computational efficiency, enhances sensitivity to complex scenes,
and boosts performance in boundary detection tasks.

As illustrated in Figure 2, the MDi module employs a multi-
scale dilated convolution mechanism to generate multi-scale feature
maps. Specifically, each input feature map is processed through m
dilated convolution layers, resulting in m+ 1 feature maps, where
the additional map corresponds to the original input feature. The
colored grid in Figure 4 represents the multi-scale receptive field,
demonstrating the module’s ability to balance local and global
feature extraction effectively. Dilated convolutions with smaller
dilation rates excel at capturing fine-grained boundary details,
ensuring that subtle features are preserved. In contrast, larger
dilation rates allow the module to extract broader contextual
information, contributing to a more comprehensive understanding
of the overall scene.

After multi-scale feature fusion, the MDi module produces a
combined feature map, mathematically expressed in Equation 3.
This fused feature map integrates local details with global structural
features of the tongue image.The fusion process, visually represented
as a colored grid overlay, highlights how the expanded receptive field
enables accurate and comprehensive segmentation. By achieving a
balanced representation of fine and coarse features, theMDimodule
significantly improves the model’s segmentation performance.

Z = σ(W f ∗ concat(Zi,Zi,1,Zi,2,…,Zi,m) + b f) (3)

where Zi is the result of the ith input feature map after passing
through a 1× 1 convolution and upsampling. Zi,j is the result of
the ith input feature map after passing through the jth dilated
convolution.W f is the weight matrix for the 1× 1 convolution used
for feature fusion, b f is the bias term for the 1× 1 convolution, and σ
is the activation function.

3.3 Implementation details

The models utilized in this study were developed and
implemented within the framework of mmsegmentation 1.2.2,
with the exception of RTC_TongueNet (Tang et al., 2024) and
TongueSAM (Cao et al., 2023), which were evaluated using their
officially recommended configuration environments to ensure
optimal performance. All other models were implemented using
Python 3.8.2 and PyTorch 2.1.0, with computations powered by
CUDA 11.8 on an ASUS TUF Gaming FX507VV platform (CPU:
Intel Core i7-13700H; GPU: NVIDIA GeForce RTX 4060, 8 GB).
The Dataset A, comprising 300 tongue images, was randomly
divided into a training set (270 images) and a test set (30 images).
During training, a variety of data augmentation techniques were
applied to enhance the model’s robustness and adaptability to
different input conditions. These techniques included scaling
(resizing with a factor range of 0.5–2.0), cropping (retaining a
random75%area of the image), flippingwith a probability of 0.5, and
adjusting brightness (ranging from −32 to +32), contrast (ranging
from 0.5 to 1.5), and saturation (ranging from 0.5 to 1.5). These
augmentation strategies ensured that the model was exposed to a
wide range of variations during training, enhancing its robustness
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and generalization performance across diverse datasets and input
scenarios.

4 Results

4.1 Evaluation metrics

To assess the performance of the proposed model, four
commonly used tongue segmentation evaluation metrics are
employed: Dice, IoU, Precision, and Recall. Dice, as shown in
Equation 4, denotes the metric of overlap between two sets,
reflecting the accuracy of tongue target extraction. IoU, as shown
in Equation 5, defined as the ratio of intersection to concatenation,
intuitively reflects the accuracy of the segmentation results.
Precision, as shown in Equation 6, refers to the ratio of the number
of correctly predicted positive samples among all the predicted
positive samples, which reflects the reliability of the prediction
results. Recall, as shown in Equation 7, refers to the ratio of the
number of correctly predicted positive samples to the total number
of true positive samples, which evaluates the completeness of tongue
segmentation. Higher values of the above four indicators mean
better segmentation performance of the model. The formulas are as
follows:

Dice =
2× |X∩Y|
|X| + |Y|

(4)

IoU =
|X∩Y|
|X∪Y|

(5)

where X and Y denote the sets of predicted and ground truth pixels,
respectively.

Precision = TP
TP+ FP

(6)

Recall = TP
TP+ FN

(7)

where TP, FP and FN denote true positives, false positives and false
negatives, respectively.

4.2 Methods comparison

In this study, the performance of the proposed GA-TongueNet
was comprehensively compared with eight other models. These
include six well-established semantic segmentation models:
DeepLabV3plus (Chen et al., 2018), U-Net (Ronneberger et al.,
2015), Swin Transformer (Liu et al., 2021), SegFormer (Xie et al.,
2021), SegNeXt (Guo et al., 2022), and PoolFormer (Yu et al., 2022),
as well as two recently developed models specifically designed for
tongue image segmentation: RTC_TongueNet (Tang et al., 2024)
and TongueSAM (Cao et al., 2023). The sizes and inference speeds
of these models are summarized in Table 1. To evaluate their
performance in a standard acquisition environment, all models
were trained and tested on Dataset A. Additionally, to assess
their generalization capability, further tests were conducted on
Dataset B, which comprises more challenging and diverse scenarios.
The evaluation metrics include Dice, IoU, Precision, and Recall.
Quantitative results for both Dataset A and Dataset B are presented

TABLE 1 Model size and inference speed of different networks.

Network Parameters (M) FPS

DeepLabV3plus (Chen et al., 2018) 41.22 13.35

U-Net (Ronneberger et al., 2015) 28.99 3.84

Swin Transformer (Liu et al., 2021) 41.64 11.50

SegFormer (Xie et al., 2021) 0.89 60.33

SegNeXt (Guo et al., 2022) 4.26 43.42

PoolFormer (Yu et al., 2022) 15.634 58.79

RTC_TongueNet (Tang et al., 2024) 55.42 5.99

TongueSAM (Cao et al., 2023) 102.67 3.36

Ours 14.01 11.77

in Table 2 and are visually summarized in the radar chart shown in
Figure 5. Furthermore, representative segmentation outcomes from
the two datasets are illustrated in Figures 6, 7, providing qualitative
comparisons that highlight the strengths and weaknesses of the
various models.

4.2.1 Performance analysis
The model size and inference speed of GA-TongueNet are

moderate, as detailed in Table 1. Its design strikes a balance,
positioning it as neither particularly lightweight nor excessively
resource-intensive. Among the nine evaluated models, GA-
TongueNet demonstrated competitive performance, surpassing the
two models specifically designed for tongue image segmentation.
Notably, it achieved the optimal performance in tongue
segmentation, underscoring its superior effectiveness in this
specialized task.

On Dataset A, GA-TongueNet achieved a Dice of 0.9906
and an IoU of 0.9814, outperforming widely used CNN-based
models such as DeepLabV3plus (Dice: 0.9851, IoU: 0.9706), U-
Net (Dice: 0.9765, IoU: 0.9541), and SegNeXt (Dice: 0.9890, IoU:
0.9781). It also demonstrated advantages over Transformer-based
models, including Swin Transformer (Dice: 0.9863, IoU: 0.9729),
SegFormer (Dice: 0.9734, IoU: 0.9481), and PoolFormer (Dice:
0.9845, IoU: 0.9694). While GA-TongueNet’s Precision (0.9894)
was slightly lower than SegFormer’s (0.9909), its Dice (0.9906),
and IoU (0.9814) Recall (0.9918) were the highest among all
evaluated models. Furthermore, compared to RTC_TongueNet
(Dice: 0.9640, IoU: 0.9310) and TongueSAM (Dice: 0.9476, IoU:
0.9005), both of which are specifically designed for tongue image
segmentation, GA-TongueNet demonstrated superior performance
across all evaluation metrics. As illustrated in Figure 5A, while the
performances of the compared models are generally comparable,
GA-TongueNet exhibits a more outward trajectory on the
radar chart, reflecting its relatively superior overall performance
in this task.

On the more challenging and diverse Dataset B, GA-TongueNet
demonstrates clear advantages. As shown in Figure 5B, the overall
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TABLE 2 Evaluation metrics data for different networks.

Dataset Network Dice IoU Precision Recall

Dataset A

DeepLabV3plus (Chen et al., 2018) 0.9851 0.9706 0.9879 0.9823

U-Net (Ronneberger et al., 2015) 0.9765 0.9541 0.9827 0.9704

Swin Transformer (Liu et al., 2021) 0.9863 0.9729 0.9885 0.9841

SegFormer (Xie et al., 2021) 0.9734 0.9481 0.9909 0.9565

SegNeXt (Guo et al., 2022) 0.9890 0.9781 0.9873 0.9906

PoolFormer (Yu et al., 2022) 0.9845 0.9694 0.9865 0.9824

RTC_TongueNet (Tang et al., 2024) 0.9640 0.9310 0.9691 0.9850

TongueSAM (Cao et al., 2023) 0.9476 0.9005 0.9141 0.9883

Ours 0.9906 0.9814 0.9894 0.9918

Dataset B

DeepLabV3plus (Chen et al., 2018) 0.8953 0.8334 0.8585 0.9681

U-Net (Ronneberger et al., 2015) 0.8171 0.7092 0.8560 0.8219

Swin Transformer (Liu et al., 2021) 0.8587 0.7874 0.8190 0.9567

SegFormer (Xie et al., 2021) 0.9339 0.8784 0.9289 0.9423

SegNeXt (Guo et al., 2022) 0.8757 0.7895 0.8103 0.9697

PoolFormer (Yu et al., 2022) 0.9358 0.8848 0.9349 0.9440

RTC_TongueNet (Tang et al., 2024) 0.4975 0.6463 0.5759 0.8184

TongueSAM (Cao et al., 2023) 0.9356 0.8790 0.8893 0.9870

Ours 0.9553 0.9163 0.9501 0.9632

The bold values represent the optimal values.

performance of GA-TongueNet is notably superior among the
nine evaluated models. Particularly for metrics such as Dice
and IoU, GA-TongueNet exhibits a more pronounced outward
trajectory, reflecting its relatively superior performance. The
model achieved a Dice of 0.9553, IoU of 0.9163, Precision of
0.9501, and Recall of 0.9632, outperforming all competing models.
For instance, compared to DeepLabV3plus (Dice: 0.8953, IoU:
0.8334), GA-TongueNet shows improvements of 6.70% in Dice
and 9.88% in IoU. Similarly, its IoU exceeds that of U-Net
(IoU: 0.7092) and Swin Transformer (IoU: 0.7874) by 20.71%
and 12.89%, respectively, highlighting its capability to generalize
effectively to complex real-world data. Even when compared
to the strong Transformer-based competitor SegFormer, GA-
TongueNet achieves better results, with Dice, IoU, Precision, and
Recall being 0.0214, 0.0379, 0.0212, and 0.0209 higher, respectively.
These results underscore the robustness and adaptability of GA-
TongueNet across varying data distributions. Although SegNeXt
performed commendably on Dataset A, it encountered significant
challenges in generalizing to the complex conditions of Dataset
B, achieving an IoU of only 0.7895, substantially lower than GA-
TongueNet. Similarly, while PoolFormer achieved a relatively

high IoU of 0.8848, it remained 3.16% lower than that of GA-
TongueNet. The two models specifically designed for tongue
image segmentation, RTC_TongueNet and TongueSAM, also
lagged behind GA-TongueNet in comprehensive performance.
Notably, RTC_TongueNet exhibited relatively poor generalization
ability. These findings highlight the limitations of traditional
CNN-based architectures and some Transformer-based designs in
addressing the complexities of diverse and challenging scenarios,
while reinforcing the stable generalization and adaptability of
GA-TongueNet.

Qualitatively, as illustrated in Figure 6, GA-TongueNet
demonstrates high-precision boundary delineation on Dataset
A. The detailed segmentation performance of each model is
further highlighted in Figures 6L–U, where local details are
examined. While most models exhibit segmentation results that
align well with the ground truth, the performance of RTC_
TongueNet and TongueSAM shows room for improvement,
particularly given the constraints of the current small-scale
dataset. In contrast, Figure 7 reveals GA-TongueNet’s robustness
in handling challenging conditions such as varying lighting and
complex backgrounds, scenarios that prove difficult for other
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FIGURE 5
Radar chart of evaluation metrics for different networks on datasets. (A) represents Dataset A and (B) represents Dataset B.

FIGURE 6
The tongue segmentation results of different networks on Dataset A. (A) represents the original image, (B) represents the ground truth, and (C–K)
represent U-Net, DeepLabV3plus, Swin Transformer, SegFormer, SegNeXt, PoolFormer, RTC_TongueNet, TongueSAM, and Ours, respectively. (L–U) are
the local magnification images, using (1) as an example from Dataset A, and show the ground truth, U-Net, DeepLabV3plus, Swin Transformer,
SegFormer, SegNeXt, PoolFormer, RTC_TongueNet, TongueSAM, and Ours, respectively.

models. From Figures 7L–U, it becomes evident that under
uneven illumination, U-Net and DeepLabV3plus struggle with
issues of false detection and incomplete region segmentation.
Swin Transformer performs admirably in standard acquisition

environments but fails to generalize effectively to Dataset B.
SegFormer, despite being competitive, encounters challenges such
as boundary recognition errors. Similarly, while SegNeXt and
PoolFormer exhibit strong performance, they remain slightly
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FIGURE 7
The tongue segmentation results of different networks on Dataset B. (A) represents the original image, (B) represents the ground truth, and (C–K)
represent U-Net, DeepLabV3plus, Swin Transformer, SegFormer, SegNeXt, PoolFormer, RTC_TongueNet, TongueSAM, and Ours, respectively. (L–U) are
the local magnification images, using (2) as an example from Dataset B, and show the ground truth, U-Net, DeepLabV3plus, Swin Transformer,
SegFormer, SegNeXt, PoolFormer, RTC_TongueNet, TongueSAM, and Ours, respectively.

inferior to GA-TongueNet in terms of accuracy and consistency.
For the tongue-specific models, RTC_TongueNet displays limited
generalization ability, making precise segmentation in complex
environments challenging. TongueSAM performs relatively better,
achieving successful segmentation for most tongue bodies; however,
it also exhibits a higher rate of false positives. These comprehensive
results underscore GA-TongueNet’s ability to achieve accurate
and reliable tongue segmentation while maintaining adaptability
across diverse and complex data environments. Its superior
generalization and robustness further highlight its potential as
a dependable tool for tongue image segmentation in real-world
applications.

4.2.2 Comprehensive analysis for methods
comparison

Under the constraints of small-sample datasets, the
experimental results demonstrate that GA-TongueNet achieves
remarkable segmentation performance, across both standard
and challenging scenarios. Its comprehensive performance
surpasses that of current comparison models, highlighting
its strong generalization capability and robustness. GA-
TongueNet’s ability to handle complex backgrounds and diverse
conditions effectively makes it particularly well-suited for
applications involving limited training data. This adaptability
underscores its potential for reliable deployment in both
standard acquisition environments and more complex, real-world
scenarios.

4.3 Ablation study

To thoroughly investigate the contributions of the proposed
components to the overall performance of the model, we conducted
an ablation study. Specifically, we compared the SegFormer baseline
model (Baseline), the model enhanced with the MDi module
(+MDi), the model integrated with the DiFP module (+DiFP), and
themodel incorporating bothMDi andDiFPmodules (Full Model).
The experiments were conducted on both Dataset A and Dataset
B, using Dice, IoU, Precision, and Recall as evaluation metrics to
rigorously assess the effectiveness of the improvement strategies.The
results are detailed in Table 3, and visually represented in Figure 8.

4.3.1 Performance analysis
The introduction of theMDi andDiFPmodules has significantly

influenced model performance on both Dataset A and Dataset B,
demonstrating complementary effects, as shown inTable 3; Figure 9.
On Dataset A, the addition of the MDi module improves the
Dice and IoU to 0.9863 and 0.9730, respectively, compared to
the Baseline model (Dice: 0.9734, IoU: 0.9481). The DiFP module
further enhances the performance, achieving aDice of 0.9872 and an
IoU of 0.9748.When both modules are integrated in the Full Model,
the performance reaches its peak, with a Dice of 0.9906 and an IoU
of 0.9814. These results highlight the ability of the DiFP module
to capture detailed structural features and the role of the MDi
module in maintaining feature resolution across varying tongue
sizes. Notably, as illustrated in Figures 9M–Q, the segmentation
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TABLE 3 Evaluation metrics data for ablation study.

Dataset Network Dice IoU Precision Recall

Dataset A

Baseline 0.9734 0.9481 0.9909 0.9565

+MDi 0.9863 0.9730 0.9878 0.9848

+DiFP 0.9872 0.9748 0.9916 0.9829

Full Model 0.9906 0.9814 0.9894 0.9918

Dataset B

Baseline 0.9339 0.8784 0.9289 0.9423

+MDi 0.8213 0.7318 0.7832 0.9135

+DiFP 0.9423 0.8930 0.9453 0.9425

Full Model 0.9553 0.9163 0.9501 0.9632

The bold values represent the optimal values.

results of the Full Model align more closely with the ground
truth, reducing errors observed in the Baseline and single-module
configurations. In particular, Figures 9N–P show false positives.

OnDataset B, the performance trend reflects different behaviors
under more complex conditions. The Baseline model achieves
satisfactory results, with a Dice of 0.9339 and an IoU of 0.8784.
However, the inclusion of the MDi module unexpectedly leads
to a decrease in performance, with Dice and IoU dropping to
0.8213 and 0.7318, respectively. This decline suggests that the MDi
module introduces instability in handling diverse and challenging
scenarios. In contrast, the +DiFP model performs better, achieving
a Dice of 0.9423 and an IoU of 0.8930, which surpasses the
Baseline performance. WhenMDi and DiFP are integrated, the Full
Model demonstrates the best generalization capability, achieving
a Dice of 0.9553, an IoU of 0.9163, a Precision of 0.9501, and
a Recall of 0.9632. These results underscore the complementary
effects of the two modules in improving segmentation performance
under challenging conditions. Figures 9R–V further corroborates
these findings. In Dataset B’s challenging scenarios, Figures 9S, T
show false positives. The Full Model achieves more accurate
segmentation of the tongue region, minimizing both false positives
and missed areas.

4.3.2 Comprehensive analysis for ablation study
The ablation study reveals the complementary contributions of

the MDi and DiFP modules to the overall model performance.
Dataset A, serving as the training set and characterized by relatively
standardized data, shows consistent improvements when either
module is added individually.The Full Model, which integrates both
MDi and DiFP, achieves the highest scores across all evaluation
metrics, indicating effective synergy between these components.

In contrast, Dataset B, used exclusively as a testing set and
representing more complex and diverse scenarios, exhibits different
behavior. The MDi module alone results in a drop in performance
compared to the Baseline, with the IoU decreasing from 0.8784
to 0.7318. This suggests that MDi, when applied independently,
may introduce instability or reduced robustness in challenging
environments.The DiFP module performs more reliably on Dataset

B and improves several metrics over the Baseline, though it does
not fully surpass it on all measures. Importantly, the combined Full
Model leverages the complementary strengths of MDi and DiFP to
achieve superior performance, demonstrating better generalization
and robustness on Dataset B despite its complexity.

These results indicate that while the MDi module may have
limitations when deployed independently on unseen complex data,
its integration with the DiFP module provides a more balanced and
stable architecture. The synergy between these modules enhances
the model’s ability to generalize from training on Dataset A
to challenging test scenarios in Dataset B, thereby improving
segmentation accuracy and robustness in practical applications.

4.4 Generalization verification

To verify the generalization ability of GA-TongueNet, we
first used the 95% confidence interval (CI) and 5-fold cross-
validation. Secondly, we took theMAEwith excellent generalization
ability as the backbone of our model to further verify the
generalization ability.

4.4.1 Preliminary verification
Comparison experiments and ablation studies indicate that GA-

TongueNet, when trained on the standard environment of Dataset
A, achieves superior performance in tongue segmentation when
applied to the more complex and natural scenarios of Dataset B.
Preliminary validation of the generalization ability by up to 5-
fold cross-validation trained yielded stable and good metrics: Dice
(98.95 ± 0.06%), IoU (97.92 ± 0.12%), Precision (98.88 ± 0.19%),
and Recall (99.08 ± 0.15%). These results reflect the robustness
and consistency of the model, and to a certain extent, rule out
the possibility of overfitting. In addition, in terms of CI, we first
calculated the individual metrics (e.g., IoU, Dice, Precision, Recall)
for each of the 30 images in Dataset A and 100 images in Dataset
B. The mean and variance of these metrics were then determined,
providing the basis for deriving the final CI. From the experimental
results, Dataset A performs well as Dice 98.68% (95% CI [97.18%,
97.62%]), IoU 97.40% (95% CI [98.57%, 98.79%]), Precision 99.35%
(95% CI [99.11%, 99.58%]) and Recall 98.04% (95% CI [97.78%,
98.29%]). In comparison, while the performance onDataset B shows
slight degradation, the metrics remain robust: Dice 95.53% (95%
CI [94.85%, 96.21%]), IoU 91.63% (95% CI [90.46%, 92.81%]),
Precision 95.01% (95% CI [94.03%, 95.99%]) and Recall 96.32%
(95% CI [95.48%, 97.16%]). As shown in Figure 1, Dataset B is
extremely different fromDataset A in terms of lighting, background,
and shooting angle, which somewhat validates the model’s potential
for real-world application in unseen environments.

4.4.2 Further verification
The MAE framework has been shown to enhance model

generalization through mechanisms such as unsupervised learning,
high-ratio masking, and latent representation learning (He et al.,
2022). While the comparative and ablation experiments presented
earlier effectively demonstrate the generalization ability of the
original GA-TongueNet structure (the proposed model in this
study), we conducted further verification by integrating MAE as
the backbone. Specifically, MAE was pre-trained on a dataset of
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FIGURE 8
Bar chart of evaluation metrics for ablation study on datasets. (A) represents Dataset A and (B) represents Dataset B.

FIGURE 9
The tongue segmentation results of the ablation study on datasets. (A–F) are from Dataset A. (A) represents the original image, (B) represents the
ground truth, and (C–F) represent Baseline, +MDi, +DiFP, and Full Model, respectively. (G–L) are from Dataset B. (G) represents the original image, (H)
represents the ground truth, and (I–L) represent Baseline, +MDi, +DiFP, and Full Model, respectively. (M–Q) are the local magnification images from
Dataset A, using (4) as an example, and show the ground truth, Baseline, +MDi, +DiFP, and Full Model, respectively. (R–V) are the local magnification
images from Dataset B, using (8) as an example, and show the ground truth, Baseline, +MDi, +DiFP, and Full Model, respectively.

4,213 tongue images, 70% of which were augmented versions
of Dataset A (using techniques such as rotation and color
transformation), while the remaining images resembled those in
Dataset B.

Following this pre-training, we applied two strategies—Freezing
and Non-Freezing—for training GA-TongueNet with MAE as the

backbone. These experiments were designed to strengthen the
evidence supporting the generalization capability of the originalGA-
TongueNet structure. The experimental results for these models,
including the original GA-TongueNet, and the MAE-based variants
trained using Freezing andNon-Freezing strategies, are presented in
Table 4; Figures 10, 11.
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TABLE 4 Evaluation metrics data for generalization verification.

Dataset Network Dice IoU Precision Recall

Dataset A

Freezing 0.9843 0.9690 0.9866 0.9820

Non-
Freezing

0.9857 0.9718 0.9874 0.9840

Ours 0.9906 0.9814 0.9894 0.9918

Dataset B

Freezing 0.7488 0.6207 0.6867 0.8818

Non-
Freezing

0.8715 0.7955 0.8179 0.9704

Ours 0.9553 0.9163 0.9501 0.9632

The bold values represent the optimal values.

The evaluation metrics for Dataset A and Dataset B are
summarized in Table 4. For Dataset A, the proposed original GA-
TongueNet shows consistent improvements over the MAE-based
GA-TongueNet under both Freezing and Non-Freezing strategies.
Across all metrics, including Dice, IoU, Precision, and Recall, the
original GA-TongueNet achieves the highest scores, with Dice of
0.9906, IoU of 0.9814, Precision of 0.9894, and Recall of 0.9918.
These results suggest that the architecture is well-suited for handling
the relatively controlled conditions in Dataset A.

For Dataset B, the Non-Freezing strategy outperforms the
Freezing strategy, achieving a Dice score of 0.8715, IoU of 0.7955,
Precision of 0.8179, and Recall of 0.9704. This indicates that
allowing parameter adjustments during training can help the model
adapt better to the diverse and complex scenarios in Dataset B.
Nonetheless, the performance of the Non-Freezing strategy remains
below that of the original GA-TongueNet. The proposed original
GA-TongueNet achieves Dice, IoU, Precision, and Recall scores
of 0.9553, 0.9163, 0.9501, and 0.9632, respectively, on Dataset B.
Compared to the Non-Freezing strategy, these values represent
noticeable improvements inDice (9.6%), IoU (15.1%), and Precision
(13.2%), while Recall is marginally lower by 0.7%. These findings
suggest that the original GA-TongueNet is capable of addressing
complex scenarios in Dataset B effectively, while the slight trade-
off in Recall indicates potential areas for further refinement.
Overall, the results indicate that the proposed model achieves
balanced performance across datasets with varying complexity,
demonstrating a degree of robustness and adaptability.

Figure 11 provides a visual comparison of the segmentation
results across the two datasets. In Dataset A, while both the
Freezing and Non-Freezing strategies demonstrate reasonable
performance, as shown in Figures 11L,M, challenges remain in
handling edge details, with occasional false positives observed.
For Dataset B, the performance of both strategies diminishes in
the presence of complex scenarios, such as foreign objects like
tongue studs. As illustrated in Figures 11P,Q, these approaches face
difficulties in effectively addressing edge detail segmentation under
such conditions. In contrast, original GA-TongueNet demonstrates
improved robustness, providing more accurate segmentation of
the tongue body while minimizing significant false positives or
omissions. These observations highlight GA-TongueNet’s potential

for enhanced performance in varied and challenging environments,
though opportunities for further improvement remain.

4.4.3 Comprehensive analysis for generalization
verification

The experimental results indicate that in preliminary
evaluations, the proposed GA-TongueNet demonstrated favorable
performance, providing an initial validation of its generalization
ability. Further testing revealed that, compared to its MAE-
backbone variant, the original GA-TongueNet exhibited superior
generalization and robustness. On Dataset A, characterized by
relatively standard conditions, the originalGA-TongueNet leveraged
its architectural design to achieve high segmentation performance.
On Dataset B, which features more complex backgrounds and
diverse variations, the model demonstrated stronger adaptability
by effectively mitigating interference and maintaining consistent
segmentation quality. The performance gap between the original
GA-TongueNet and the MAE-backbone variant was particularly
pronounced in challenging scenarios, underscoring the potential
advantages of the proposed architecture. These findings support the
conclusion that the original GA-TongueNet possesses commendable
generalization capabilities. By effectively addressing diverse and
complex conditions, including unseen environments, the original
GA-TongueNet demonstrates promise as a reliable tongue image
segmentation model for practical applications.

5 Discussion

In TCM, tongue features are considered key indicators of
an individual’s physiological functions and pathological changes.
However, in computer-aided diagnosis, the accuracy of tongue
diagnosis can be significantly affected by confounding factors such
as teeth, facial regions, and other background elements. Precise
tongue image segmentation is therefore critical for enhancing
diagnostic accuracy.

Froma clinical perspective, accurate tongue image segmentation
is fundamental to improving the performance of computer-assisted
tongue diagnosis systems, particularly in mobile applications. As
illustrated in Dataset B of Figure 1, most tongue images captured in
real-world scenarios often include complex backgrounds. Without
proper segmentation, the surrounding environment of the tongue
body introduces substantial noise, which can compromise the
accuracy of the analysis. Segmentation isolates the tongue body,
allowing diagnostic models to focus exclusively on relevant features
without being influenced by extraneous factors. This targeted
approach significantly enhances the precision and reliability of
tongue diagnosis.

Tongue segmentation is crucial for extracting disease-related
features, such as the color of the tongue body and the distribution
and thickness of the tongue coating. According to TCM theory,
these features are strongly correlated with the functional states of
internal organs. For instance, variations in the thickness and color
of the tongue coating may reflect digestive system abnormalities
or indicate internal dampness or heat, providing valuable insights
for syndrome differentiation and treatment planning. Additionally,
region-specific analysis of the tongue—such as the tip, center, and
base—enables a nuanced understanding of organ-specific functions.
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FIGURE 10
Bar chart of evaluation metrics for generalization verification on datasets. (A) represents Dataset A and (B) represents Dataset B.

FIGURE 11
The tongue segmentation results of generalization verification on datasets. (A–E) are from Dataset A. (A) represents the original image, (B) represents
the ground truth, and (C–E) represent Freezing, Non-freezing, and Ours, respectively. (F–J) are from Dataset B. (F) represents the original image, (G)
represents the ground truth, and (H–J) represent Freezing, Non-freezing, and Ours, respectively. (K–N) are the local magnification images from
Dataset A, using (1) as an example, and show the ground truth, Freezing, Non-freezing, and Ours, respectively. (O–R) are the local magnification
images from Dataset B, using (6) as an example, and show the ground truth, Freezing, Non-freezing, and Ours, respectively.

For example, a red or yellow coating on the tongue tip may suggest
hyperactivity of heart fire, while a greasy coating on the tongue base
could indicate renal insufficiency.These correlations underscore the
diagnostic value of precise tongue segmentation. The robustness
of segmentation algorithms is equally critical for their application
in diverse clinical environments. Variations in lighting conditions,
background interference, and differences in tongue posture can

introduce significant variability in tongue images. A well-designed
segmentation model capable of addressing these challenges ensures
consistent and accurate image analysis, irrespective of the imaging
environment. This consistency is vital for generating reliable
diagnostic data across populations and regions. By overcoming
these challenges, tongue segmentation significantly enhances the
clinical utility of computer-assisted tongue diagnosis, enabling
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applications such as early disease detection, comprehensive health
status evaluation, and effective monitoring of treatment outcomes.

With the rapid advancement of deep learning techniques, CNN,
renowned for their robust feature extraction capabilities, have been
widely applied in tongue segmentation. Notable models include
OET-NET (Huang et al., 2022), QA-TSN (Jia et al., 2025), LAIU-
Net (Marhamati et al., 2023), and HPA-UNet (Yao et al., 2024).
In addition, models leveraging the self-attention mechanism of
Transformers, such as PriTongueNet (Huang et al., 2025) and
Tongue-LiteSAM (Tan et al., 2025), have demonstrated promising
segmentation performance. However, these models often require
extensive training datasets and exhibit limited generalization ability.

In comparison, our proposed GA-TongueNet demonstrates
high segmentation accuracy despite relying on a relatively modest
training dataset. It utilizes the publicly available Dataset A (BioHit,
2014), consisting of 300 tongue images, and an additional
100 images collected from diverse and complex contexts for
generalization testing. Comparative experiments against four
representative models—spanning both CNN and Transformer
architectures—demonstrate that GA-TongueNet consistently
outperforms these models. It effectively addresses the challenges
associated with limited and heterogeneous datasets, showcasing
its potential to alleviate existing limitations in tongue image
segmentation tasks.

To further explore the generalization potential of GA-
TongueNet, we integrated a pre-trained MAE (He et al., 2022) as its
backbone.MAE, known for its proficiency in unsupervised learning,
high-rate masking, and latent representation learning, was trained
on a large-scale tongue image dataset. However, experimental results
reveal that this modified architecture underperforms relative to the
original GA-TongueNet. This unexpected outcome underscores the
inherent adaptability and robustness of the original GA-TongueNet
design, which maintains high segmentation accuracy even for
tongue images outside the training set.

Although the results are encouraging, there are still some
deficiencies in this study. Judging from the experimental results,
GA-TongueNet may make false positives when facing unfamiliar
situations, such as foreign objects on the tongue (such as punctured
tongue nails, tongue perforations), and mistakenly think it is the
tongue body. For areas with poor lighting, such as the back of
the tongue, false positives may occur. Furthermore, in the fine
segmentation of the tongue edge, the result is not always optimal.
This is more obvious at the boundary between the tongue and
adjacent structures such as teeth or lips, where the division may
appear blurred and less precise. As for the model itself, although
the current model has achieved the best segmentation effect in
experiments, the computational cost is not the lowest. It requires
higher computing resources and a longer time. How to reduce
computing costs and computing resources has become one of the
directions we are actively improving, hoping to be deployed onmore
devices. Furthermore, the MDi module and the DiFP module need
to work in synergy to achieve the optimal performance.

6 Conclusion

In this article, we have presented GA-TongueNet, a model
designed for tongue image segmentation, addressing the

challenges of semantic segmentation in complex environments. By
incorporating the DiFP and MDi modules, the model demonstrates
the ability to achieve multi-scale feature fusion and effectively
capture contextual information. Despite being trained only on
tongue images obtained in standard acquisition environments,
GA-TongueNet shows promising performance in segmenting
images captured under challenging lighting conditions.The
experimental results suggest that GA-TongueNet performs well
in terms of segmentation accuracy and generalization across
diverse and complex environments. While there is still potential
for improvement, these findings indicate that GA-TongueNet could
serve as a useful approach for tongue image segmentation in
real-world applications.
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