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Lactate, traditionally seen as a byproduct of anaerobic metabolism, has gained
attention for its dual role in human health. While it is associated with muscle
fatigue, lactate also plays a crucial role in various physiological and pathological
processes. This review explores lactate’s dual nature as both beneficial and
detrimental. Under normal physiological conditions, lactate is an essential
energy substrate, involved in the Cori cycle, where it is converted back to
glucose in the liver. However, excessive lactate accumulation is linked to health
issues, including cancer, metabolic disorders, and neurological diseases. The
Warburg effect in cancer, characterized by increased lactate production even in
oxygen-rich environments, promotes tumor progression and therapy resistance.
In diseases like malaria and ischemic stroke, high lactate levels contribute to
tissue damage and metabolic disturbances. Recent research also highlights
lactate’s beneficial roles, including regulation of immune responses, enhanced
exercise performance, and neuronal signaling. Furthermore, gut microbiota
significantly impacts lactate metabolism, where beneficial bacteria use lactate
to maintain gut health, while some pathogenic bacteria exacerbate disease
through excess lactate production. Emerging therapeutic potential of lactate,
including lactate dehydrogenase inhibitors, offers promising treatment avenues.
This review provides a comprehensive overview of lactate’s complex role in
health and disease, emphasizing the need for targeted strategies to harness its
benefits while mitigating its harmful effects.
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1 Introduction

Lactate, first discovered in 1780, was long considered a metabolic waste product
generated under hypoxic conditions. However, the lactate shuttle hypothesis redefined
its role, highlighting its function in oxidative metabolism, gluconeogenesis, and cellular
signaling. Contrary to early misconceptions, lactate is actively produced and utilized under
aerobic conditions, serving as a key modulator of systemic metabolism. It is transported
via monocarboxylate transporters (MCTs) and signals through G protein-coupled receptor
81 (GPR81) (Lee, 2021).

In exercise physiology, lactate accumulation has traditionally been linked to muscle
fatigue, though it is now recognized as an important energy source and metabolic
regulator. In oncology, Otto Warburg’s 1920s discovery of aerobic glycolysis, where
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FIGURE 1
Pathophysiological impacts of lactate accumulation and acidosisElevated lactate levels leading to acidosis are implicated in various systemic
complications, including digestive complications, septic shock, sepsis, and thrombus formation. Neurological effects include neurotoxicity and
traumatic brain injury, while pulmonary consequences involve pulmonary fibrosis and respiratory failure. Lactate-driven acidosis also contributes to
tumor microenvironment remodeling, promoting carcinogenicity. Furthermore, it is associated with cardiovascular diseases (such as atherosclerosis,
heart failure, and myocardial infarction), liver damage leading to hepatic failure, and renal impairments, including polycystic kidney disease and
renal failure.

tumors ferment glucose into lactate even in oxygen-rich
conditions, revealed lactate’s role in tumor metabolism. This
Warburg effect is also observed in various non-cancerous
conditions, including inflammatory diseases and metabolic
disorders. Beyond cancer, lactate accumulation contributes
to pathophysiological processes in pulmonary hypertension,
pulmonary fibrosis, heart failure, atherosclerosis, and polycystic
kidney disease (Figure 1). It is involved in stress responses
during trauma, infection, and myocardial infarction. Moreover,
lactate plays a crucial role in epigenetic regulation through
lactylation, a posttranslational modification of histones that
influences gene expression, particularly in inflammation and tumor
progression (Mandadzhiev, 2025).

This review examines lactate’s diverse functions in health and
disease, emphasizing its roles inmetabolic reprogramming, immune
modulation, and disease progression, underscoring the need for
further research on its broader physiological and pathological
implications.

2 Lactate production and metabolism

Lactate synthesis occurs in the cytoplasm via lactate
dehydrogenase (LDH), which catalyzes the conversion of

pyruvate to lactate while regenerating NAD+ from NADH. This
reaction is crucial for sustaining glycolysis under anaerobic or
hypoxic conditions, ensuring ATP production when oxidative
phosphorylation is impaired. The direction of this reversible
reaction depends on oxygen availability, intracellular NADH/NAD+

ratios, and metabolic demands (Lee, 2021).
Under normoxic conditions, pyruvate enters the mitochondria

for oxidation via the tricarboxylic acid (TCA) cycle, producing
ATP efficiently. However, during hypoxia, intense exercise, or
pathological conditions like ischemia and cancer, oxidative
metabolism is restricted, leading to NADH accumulation. To
maintain glycolytic flux, LDH reduces pyruvate to lactate, restoring
NAD+ for continued glycolysis (Liu et al., 2025).

Lactate synthesis is regulated by enzyme isoforms, substrate
availability, and signaling pathways. LDH exists as isoenzymes
composed of LDHA and LDHB subunits, with tissue-specific
functions. LDHA, predominant in glycolytic tissues like skeletal
muscle, favors lactate production, while LDHB, abundant in
oxidative tissues like the heart, facilitates lactate oxidation.
The NADH/NAD+ ratio is a key determinant of LDH
activity, with high NADH levels promoting lactate formation
(Wang et al., 2018).

Cellular signaling also modulates lactate metabolism. Hypoxia-
inducible factor 1-alpha (HIF-1α) upregulates glycolytic enzymes
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and LDHA under low oxygen conditions, enhancing lactate
production. Adrenergic stimulation during exercise accelerates
glycolytic flux, increasing lactate accumulation, whereas insulin and
other metabolic regulators influence lactate utilization. Lactate is
not merely a result of metabolism but a key intermediary in energy
production. It is transported via MCTs and serves as a metabolic
substrate in various tissues, supporting gluconeogenesis in the liver
and oxidative metabolism in the heart, highlighting its role in
systemic metabolic flexibility (Zhang T. et al., 2024).

2.1 Physiological processes

Once regarded merely as a metabolic waste product generated
during anaerobic glycolysis, lactate has emerged as a pivotal
metabolic and signaling molecule integral to diverse physiological
and pathological processes. Traditionally associated with muscle
fatigue during intense exercise, lactate’s role extends far beyond
a simple byproduct; it serves as an essential energy substrate, a
regulator of cellular metabolism, and a mediator of intercellular
communication (Vavřička et al., 2024).

In cancer biology, lactate’s significance is profound. Tumors
commonly exhibit a metabolic shift known as aerobic glycolysis
or the “Warburg effect,” where glucose is preferentially converted
to lactate despite sufficient oxygen availability (Zhong et al.,
2022). This metabolic reprogramming leads to lactate accumulation
within the tumor microenvironment, which promotes cancer cell
proliferation, angiogenesis, and metastasis (de la Cruz-López et al.,
2019). Elevated lactate also contributes to immune evasion by
creating an acidic microenvironment that suppresses cytotoxic T
cell and natural killer cell activity, facilitating tumor progression
(Gu et al., 2025). Research has demonstrated that lactate acts
through signaling pathways such as HIF-1α stabilization and
GPR81 activation, further reinforcing cancer cell survival and
immune modulation (Chen et al., 2025). Beyond oncology, lactate
is implicated in several chronic inflammatory and metabolic
diseases (Lee, 2021). For instance, in pulmonary hypertension
and pulmonary fibrosis, elevated lactate levels correlate with
vascular remodeling and fibrotic processes (Peng et al., 2025).
Studies indicate that lactate stimulates fibroblast activation and
extracellular matrix deposition, contributing to disease progression
(Caslin et al., 2021). In heart failure and atherosclerosis, abnormal
lactate metabolism is associated with impaired mitochondrial
function and chronic inflammation. Elevated circulating lactate in
these conditions reflects underlying tissue hypoxia and metabolic
stress, exacerbating cardiac dysfunction and vascular pathology
(Zymliński et al., 2018; Zhu et al., 2024). Polycystic kidney disease
(PKD) also features altered lactate metabolism. Experimental
models show that lactate accumulation in cystic epithelial cells
supports their proliferation and survival, contributing to cyst
growth (Ghazi et al., 2019; Pagliarini and Podrini, 2021). Similarly,
metabolic disorders such as type 2 diabetes exhibit dysregulated
lactate production, linking it to insulin resistance and chronic low-
grade inflammation (Nareika et al., 2005; Wu et al., 2016). Lactate
involvement extends to acute stress responses, including trauma,
infection, myocardial infarction, and ischemia-reperfusion injury
(Wang et al., 2025). Here, lactate serves as both a metabolic fuel
for damaged tissues and a signaling molecule triggering adaptive

responses. Elevated lactate levels in sepsis, for example, are a
prognostic marker reflecting tissue hypoperfusion and metabolic
derangement (Liu et al., 2024).

A groundbreaking discovery expanding lactate role in disease
is its function in epigenetic regulation through histone lactylation.
This recently identified posttranslational modification involves the
addition of lactate-derived groups to histone lysine residues, altering
chromatin structure and gene expression. Histone lactylation
has been shown to modulate inflammatory gene expression
in macrophages, promoting resolution of inflammation, while
also contributing to oncogenic gene programs in cancer cells.
This epigenetic mechanism underscores lactate’s capacity to link
metabolic states with long-term changes in cellular phenotype and
disease outcomes (Zhang et al., 2019).

Collectively, lactate acts as a critical mediator of metabolic
adaptation, immune regulation, and pathophysiological remodeling
across a spectrum of diseases. Its dual roles as an energy substrate
and signaling molecule highlight the intricate connections
between metabolism and cellular function. Ongoing research
aims to eKMCTlucidate therapeutic strategies targeting lactate
metabolism and signaling, offering promising avenues for treating
cancer, inflammatory disorders, cardiovascular diseases, and
metabolic syndromes. Understanding lactate’s diverse physiological
and pathological functions is essential for developing novel
interventions to modulate disease progression and improve
patient outcomes (Li et al., 2022).

2.2 Key sites of lactate production

During vigorous exercise, skeletal muscles rely on anaerobic
glycolysis, resulting in substantial lactate accumulation. Once
thought to be simply a product of glycolysis, lactate is now
recognized as a vital signaling molecule and energy source. It can
be shuttled to the liver for gluconeogenesis or oxidized in oxidative
muscle fibers and the heart. Lactate also modulates gene expression
related to mitochondrial biogenesis and angiogenesis, supporting
muscle adaptation during endurance training (Mandadzhiev, 2025).

Erythrocytes, which lack mitochondria, depend entirely on
anaerobic glycolysis for ATP production and continuously produce
lactate. Recent studies highlight the role of MCTs in lactate
transport, essential for maintaining acid-base balance. Erythrocyte-
derived lactate significantly influences systemic metabolism,
particularly in the heart and brain, and emerging evidence suggests
its levels may serve as biomarkers for metabolic disorders such as
diabetes and sepsis (Zhang T. et al., 2024).

In the brain, lactate plays a vital role through the astrocyte-
neuron lactate shuttle. Astrocytes convert glucose into lactate,
which neurons utilize during heightened activity. Lactate supports
synaptic plasticity, learning, and memory by enhancing brain-
derived neurotrophic factor (BDNF) signaling. Impaired lactate
metabolism is linked to neurodegenerative diseases like Alzheimer’s
and Parkinson’s, highlighting its therapeutic potential in cognitive
disorders (Beard et al., 2022).

Cancer cells exhibit the Warburg effect, favoring glycolysis even
in oxygen-rich environments, leading to lactate accumulation. This
promotes immune evasion, angiogenesis, metastasis, and epigenetic
changes that drive tumor aggressiveness. Lactate transporters such
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as MCT1 and MCT4 are emerging targets, with their inhibition
shown to reduce tumor progression in breast cancer models.
Modulating lactate metabolism offers a promising strategy for
cancer therapy (Zhong et al., 2022).

2.3 Lactate metabolism

Lactate is transported to the liver, heart, and oxidative muscle
fibers, where it converts to pyruvate and enters the TCA cycle for
ATP production (Wang et al., 2018). The lactate shuttle hypothesis,
first introduced by Brooks (1985), describes lactate’s movement
between glycolytic and oxidative tissues as a fuel source. The
heart preferentially utilizes lactate as an energy substrate, with
lactate oxidation playing a substantial role in myocardial energy
production during both resting and stressed states (Brooks, 2021;
Zhang H. et al., 2024) (Table 1). Through the Cori cycle, lactate
is transported to the liver for gluconeogenesis (Figure 2), forming
glucose that is released into the bloodstream (Melkonian et al.,
2023). Lactate homeostasis is maintained through MCTs 1–4,
enabling rapid cellular exchange (Figure 2). Elevated lactate levels
(lactic acidosis) signal metabolic dysregulation. Lactate’s clearance
mechanisms include oxidation via the TCA cycle, renal excretion
through sodium/lactate transporters (Slc5a12 and Slc5a8), and
microbiome incorporation (Lee, 2021). In a study, it has been
demonstrated that hepatic gluconeogenesis is essential for glucose
homeostasis during exercise and fasting (Meyer et al., 2002). The
kidneys also contribute significantly, accounting for approximately
40% of systemic glucose production during prolonged fasting.
Recent research challenges the traditional view of lactate as a
glycolytic byproduct, showing that it directly fuels mitochondrial
oxidative phosphorylation. Lactate enters mitochondria via
the mitochondrial lactate oxidation complex (mLOC) and
converts into pyruvate for ATP generation (Brooks et al., 2022).
Hashimoto et al. (2008) provided compelling evidence that
lactate oxidation occurs within mitochondria, highlighting its
role in both normal and pathological states such as cancer and
neurodegeneration (Hashimoto et al., 2008).

2.4 Physiological roles of lactate

Lactate serves as an efficient energy source, particularly in
oxidative tissues like the heart and brain. The heart preferentially
oxidizes lactate over glucose, emphasizing its role in cardiac
metabolism (Lee, 2021). Schurr et al. (1999) demonstrated that
lactate is a primary energy source for neurons, reinforcing its
significance beyond glycolysis (Schurr et al., 1999). Lactate
regulates gene expression, angiogenesis, and immune responses
(Figure 2). Lactate promotes the stabilization of HIF-1α by
inhibiting prolyl hydroxylase activity. This stabilization enhances
HIF-1-mediated transcription of glycolytic enzymes and VEGF,
supporting metabolic adaptation and angiogenesis under hypoxic
or pseudohypoxic conditions (Li et al., 2022). A study demonstrated
that lactate accumulation under hypoxic conditions enhances VEGF
expression, facilitating angiogenesis and tissue survival. Lactate
accumulation during high-intensity exercise leads to metabolic
acidosis but is rapidly cleared and utilized as an energy source.

It aids recovery by replenishing glycogen stores and supporting
mitochondrial respiration (Mandadzhiev, 2025). Gladden and
Hogan (2006) showed that lactate metabolism during and after
exercise is crucial for sustaining muscle function and preventing
fatigue (Gladden and Hogan, 2006). Lactate is essential for
brain metabolism. The astrocyte-neuron lactate shuttle theory
suggests that astrocytes produce lactate, which neurons use as an
energy source. Lactate enhances synaptic plasticity and memory
formation (Hu et al., 2021). Pellerin et al. (1994) identified lactate
as a key neuronal energy substrate, while another study showed
that lactate enhances long-term memory formation in animal
models (Pellerin et al., 1994). Lactate influences immune cell
metabolism and function, regulating macrophage polarization. It
promotes anti-inflammatory M2 macrophages while inhibiting pro-
inflammatory M1 macrophages. This is particularly relevant in
cancer metabolism and immune evasion (Zhang T. et al., 2024).
In research study showed that lactate accumulation in tumors
promotes M2 macrophage polarization, contributing to immune
suppression and tumor progression (Zhong et al., 2022). Cancer
cells convert glucose to lactate even in oxygen-rich conditions, a
phenomenon known as the Warburg effect. Lactate accumulation
in the tumor microenvironment promotes angiogenesis, immune
evasion, and metastasis. Warburg first described this metabolic
shift, and more recent studies highlighted how lactate metabolism
supports tumor growth and resistance to therapy. Lactate is a vital
metabolic intermediate with diverse roles beyond glycolysis. Its
involvement in energy production, signaling, neuroprotection, and
immune modulation underscores its physiological significance. The
traditional perception of lactate as a waste product has evolved into
its recognition as a key player in metabolic homeostasis (Nath and
Balling, 2024).

In summary (Table 1), Lactate, an energy substrate, efficiently
fuels muscles, the heart, and the brain, especially under high-
demand conditions (Hashimoto et al., 2008). In skeletal muscle,
lactate promotes adaptation by enhancing mitochondrial biogenesis
and oxidative capacity, thereby improving endurance and
performance (Nalbandian et al., 2017). In the brain, it supports
neuronalmetabolism, prevents excitotoxicity, and enhances synaptic
plasticity, contributing to neuroprotection (Suzuki et al., 2011).
Lactate also plays a crucial role in immune modulation by
regulating macrophage polarization, suppressing inflammation,
and supporting regulatory T cell function (Zhang T. et al., 2024).
Furthermore, it stimulates angiogenesis and wound healing by
promoting vascular endothelial growth factor (VEGF) production
in endothelial cells and skin (Hunt et al., 2007). In the liver,
lactate serves as a precursor for gluconeogenesis via the Cori cycle,
helping to maintain blood glucose levels (Rogatzki et al., 2015).
Its influence extends to lipid metabolism, where it modulates free
fatty acid oxidation and storage in adipose tissue (Bergman et al.,
1999). During exercise recovery, lactate helps reduce muscle
fatigue, maintain pH balance, and facilitate lactate shuttling
between tissues (Gladden, 2004). Interestingly, in the tumor
microenvironment, lactate supports cancer cell survival and
immune evasion (Fischer et al., 2007). Lastly, in the heart, lactate
serves as a preferred substrate over glucose during ischemic
conditions, offering cardioprotection by reducing oxidative stress
(Chatham, 2002). Collectively, these findings highlight lactate’s
multifaceted and beneficial roles across various organs and systems,
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TABLE 1 Beneficial role of lactate in human health and underlying mechanisms.

Beneficial role Mechanism Relevant system/Organ References

Energy substrate Provides an efficient fuel source for
muscles, heart, and brain

Muscle, Heart, Brain Hashimoto et al. (2008)

Muscle adaptation Enhances mitochondrial biogenesis and
oxidative capacity

Skeletal muscle Nalbandian et al. (2017)

Neuroprotection Supports neuronal metabolism,
prevents excitotoxicity, and enhances
synaptic plasticity

Brain Suzuki et al. (2011)

Immune modulation Regulates macrophage polarization,
suppresses inflammation, and supports
Treg function

Immune system Zhang et al. (2024b)

Angiogenesis and wound healing Stimulates vascular endothelial growth
factor (VEGF) production

Endothelial cells, Skin Hunt et al. (2007)

Gluconeogenesis Serves as a precursor for glucose
production via the Cori cycle

Liver Rogatzki et al. (2015)

Lipid metabolism regulation Modulates free fatty acid (FFA)
oxidation and storage

Adipose tissue Bergman et al. (1999)

Exercise recovery Reduces muscle fatigue, maintains pH
balance, and promotes lactate shuttling

Muscle Gladden (2004)

Cancer metabolism Supports tumor cell survival and
immune evasion in the tumor
microenvironment

Tumor microenvironment Fischer et al. (2007)

Cardioprotection Preferred substrate over glucose in
ischemic conditions, reducing oxidative
stress

Heart Chatham (2002)

challenging its outdated reputation as merely a metabolic waste
product. In the following section, we provide a detailed explanation
of key aspects highlighted in (Table 1).

3 The boon: beneficial role of lactate

3.1 Lactate as an energy source

Glycolysis, a key metabolic pathway, processes glucose to
generate ATP and essential precursors for cellular functions. While
glycolysis contributes only ∼6% of cellular ATP via substrate-level
phosphorylation, its regulation by enzymes such as hexokinase
(HEX), phosphofructokinase (PFK), and pyruvate kinase (PK) is
crucial. Pyruvate dehydrogenase (PDH) and pyruvate carboxylase
(PC) further link glycolysis to mitochondrial metabolism.
Traditionally considered a waste product of anaerobic metabolism,
lactate is now recognized as a critical energy source. It is converted
to pyruvate by lactate dehydrogenase (LDH) and utilized bymuscles,
the heart, and the brain for oxidative phosphorylation, particularly
during exercise or metabolic stress (Chaudhry and Varacallo, 2023).

Lactate, first identified in sour milk through microbial
fermentation, becomes the predominant metabolite in mammals
when oxygen and ATP demands surpass supply. Contrary to

its reputation as a metabolic waste product, lactate is now
understood as a key circulating carbohydrate fuel. By balancing
the NADH/NAD+ ratio, lactate serves as both an energy
substrate and a redox buffer, facilitating metabolic flexibility.
This shift in perspective redefines lactate’s role in energy
metabolism (Li et al., 2022).

3.2 Lactate as a preferred fuel

During physical exertion, skeletal muscles and the heart
preferentially utilize lactate over glucose and fatty acids. In the brain,
the Astrocyte-Neuron Lactate Shuttle (ANLS) facilitates lactate
transfer from astrocytes to neurons, promoting energy metabolism
and neuroprotection (Cauli et al., 2023). Recent findings challenge
the notion that lactate is merely converted to pyruvate in the cytosol;
instead, it is processed in mitochondria via the Mitochondrial
Lactate Oxidation Complex (mLOC), particularly in high-energy-
demand tissues (Chen et al., 2016).

In resting humans, the lactate-to-pyruvate (L/P) ratio is ∼10,
increasing to ∼500 during moderate exercise, underscoring lactate’s
role in metabolic adaptation. Major lactate utilization pathways
include intramuscular oxidation, cardiac uptake, and hepatic
gluconeogenesis (Liu et al., 2025).
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FIGURE 2
Lactate metabolism, signaling pathways, and its systemic impact on homeostasis and immunity. Food intake and viral infections drive glycolysis,
leading to pyruvate and lactate production. Lactate is transported across membranes by MCT1& MCT4 and shuttled between tissues such as skeletal
muscle and liver via the Cori cycle. Intracellularly, lactate modulates signaling through ARRB2-Gi protein-coupled pathways, reducing cAMP/PKA
activity and influencing immunosuppression, inflammation, lipolysis, wound healing, angiogenesis, and neuroprotection. Lactate also serves as a
metabolic fuel, supporting redox balance, gluconeogenesis, and exercise performance. In the cytoplasm, lactate-derived short-chain fatty acids
(SCFAs) from gut microbiota contribute to systemic homeostasis. Lactate can inhibit mitochondrial antiviral signaling (MAVS) and RIG-I-mediated
antiviral responses, reducing IFN-α/β production. Additionally, lactate enters the nucleus and promotes histone lactylation, driving epigenetic
regulation of homeostatic gene expression.

3.3 Lactate and lipid metabolism

An inverse relationship exists between lactate and plasma
free fatty acids (FFAs) during exercise. Lactate inhibits lipolysis
in adipose tissue via Hydroxycarboxylic Acid Receptor 1
(HCAR1), modulating cAMP and CREB signaling pathways.
Additionally, lactate impacts mitochondrial fatty acid oxidation
by increasing acetyl-CoA and malonyl-CoA levels, inhibiting
β-oxidation (Liu et al., 2009).

Lactate-induced secretion of Transforming Growth Factor
Beta 2 (TGF-β2) from adipose tissue enhances glucose tolerance,
highlighting its role in interorgan metabolic communication. These
findings emphasize lactate’s dual role in acute metabolic regulation
and long-term adaptation (Liu et al., 2025).

3.4 Lactate in brain energy metabolism and
neuroprotection

Neurons rely on astrocytes for metabolic support.While glucose
remains the primary fuel, lactate serves as an essential alternative,
particularly during hypoglycemia or ischemic stress. Lactate
supplementation enhances recovery from traumatic brain injury
(TBI) and supports memory formation by modulating epigenetic
mechanisms and brain-derived neurotrophic factor (BDNF)
expression. Lactate metabolism is altered in neurodegenerative
diseases like Alzheimer’s and Parkinson’s, with reduced lactate
transport linked to cognitive decline. Enhancing lactate availability
may offer therapeutic benefits in restoring metabolic balance and
neuroprotection (Beard et al., 2022).
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3.5 Lactate as a cellular signal and
epigenetic modulator

Beyond metabolism, lactate functions as a signaling molecule
influencing angiogenesis, tissue repair, and gene expression.
It activates G-protein coupled receptors such as HCAR1,
regulating neuroprotection and lipid metabolism. A novel post-
translational modification, histone lactylation, links lactate to
gene regulation (Figure 2). Increased lactate production under
hypoxia or bacterial infections drives histone lactylation, influencing
macrophage polarization, tumor progression, and inflammation
resolution. These positions lactate as a crucial metabolic and
epigenetic regulator with broad physiological and pathological
implications (Zhang et al., 2019).

3.6 Lactate in hypoxia and cancer
metabolism

Lactate stabilizes HIF-1α, promoting angiogenesis and
metabolic adaptation under low-oxygen conditions. Lactate
signaling plays a central role in tumor metabolism and immune
evasion; thus, its targeting represents an emerging avenue for cancer
therapeutics (Gu et al., 2025).

3.7 Lactate in exercise adaptation and
immune modulation

Lactate modulates mitochondrial biogenesis and endurance
adaptations through AMP-activated protein kinase (AMPK)
and PGC-1α signaling. It also influences immune responses,
shaping macrophage polarization and cytokine production,
with implications for inflammation, metabolism, and disease
progression (Takeda et al., 2022).

4 Gut microbiota: fuel or metabolize
excess lactate

4.1 Lactate production by gut bacteria

Lactic Acid Bacteria (LAB) have adapted to survive in different
environments, including the human gut, by relying primarily on
fermentation for energy production. Unlike many other bacteria,
LAB cannot perform respiration because they lack functional
cytochromes, which are essential for oxidative metabolism. Instead,
they obtain energy by breaking down sugars into lactic acid,
which acidifies their surroundings and helps them outcompete
harmful bacteria (Wang et al., 2020).

LAB have evolved unique metabolic pathways that enable their
survival in diverse environments, particularly within the human
gut. Among these pathways, amino acid deamination serves as a
crucial mechanism for energy production, allowing LAB to thrive
in nutrient-poor conditions by converting amino acids into usable
energy. Additionally, acid decarboxylation plays a fundamental role
in maintaining pH balance, which is essential for LAB survival in

acidic environments such as the gastrointestinal tract (Feng and
Wang, 2020).

Beyond their metabolic adaptability, LAB engage in intricate
interactions with host cells, significantly influencing gut health
and immune function. Through cross-talk with the host, LAB can
modulate intestinal gene expression, thereby impacting digestive
processes and immune responses. Furthermore, LAB contributes
to gut homeostasis by producing bioactive compounds, such as
gamma-aminobutyric acid (GABA), which not only relaxes gut
smooth muscles but also has broader implications for mood
regulation. Another essential feature of LAB is their antimicrobial
effect, primarily mediated by lactic acid production. It acidifies the
gut environment and inhibits the growth of pathogenic bacteria,
thereby fostering a balanced microbiome (Yu et al., 2024).

Lactate plays a dual role in gut health. On the one hand,
it serves as an important metabolic intermediate, supporting
the growth of lactate-consuming bacteria, which convert it into
beneficial SCFAs (Table 4). On the other hand, excessive lactate
accumulation can lead to acidosis, which disruptsmicrobial stability.
This phenomenon is well-documented in ruminants, where diets
rich in fermentable carbohydrates can promote the overgrowth of
lactate-producing bacteria, causing a dangerous drop in pH and
leading to metabolic disorders such as lactic acidosis. In the human
gut, lactate metabolism is tightly regulated through cross-feeding
interactions between different bacterial species (Yu et al., 2024).

4.2 Lactate utilization by gut microbes

4.2.1 Butyrate production
Certain members of the phylum Firmicutes, particularly species

belonging to the genera Anaerobutyricum and Anaerostipes, are
capable of converting lactate into butyrate, a SCFA with well-
established health benefits. This conversion typically occurs via a
cross-feeding mechanism that requires acetate as a co-substrate.
Butyrate is a critical energy source for colonocytes, where
it enhances intestinal barrier function, regulates inflammatory
pathways, and modulates the gut immune response. Additionally,
butyrate has been associated with anti-inflammatory effects through
its role in the inhibition of histone deacetylases (HDACs),
contributing to immune homeostasis within the gut mucosa
(Figure 3) (Louis et al., 2022).

4.2.2 Propionate formation
Lactate can also be metabolized into propionate via multiple

biochemical pathways, with distinct microbial taxa utilizing
different metabolic route.

4.2.3 Acrylate pathway
This pathway involves the direct conversion of lactate into

propionate and is employed by bacterial species such as Coprococcus
catus (Reichardt et al., 2014) and Megasphaera elsdenii (Hino and
Kuroda, 1993).

4.2.4 Succinate pathway
In this pathway, lactate is first converted to succinate, which is

subsequently metabolized into propionate. This process is utilized
by species within the genus Veillonella (Reichardt et al., 2014).
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FIGURE 3
Impact of lactate on gut microbiota: balancing beneficial and harmful effects. Lactate influences gut microbiota composition, supporting beneficial
bacteria such as Faecalibacterium prausnitzii, Roseburia spp., Bifidobacterium, Lactobacillus, Eubacterium hallii, and Anaerostipes, which enhance gut
barrier integrity, improve immune function, and produce SCFAs like butyrate, propionate, and acetate. In contrast, elevated lactate levels can promote
the growth of harmful bacteria, including Veillonella, Propionibacterium, E. coli, Salmonella, Enterococcus faecalis, and Clostridium spp., leading to
reduced gut pH, increased inflammation via pro-inflammatory cytokines (TNF-α, ILs, IFN-γ), impaired gut barrier function, and a higher risk of
gastrointestinal infections.

4.2.5 1,2-Propanediol pathway
An alternative route involves the conversion of lactate into

1,2-propanediol, which can then be further metabolized into
propionate by species such as Limosilactobacillus reuteri and
Anaerobutyricum hallii (Niu et al., 2019).

Propionate serves multiple physiological functions in
the host, including modulating gluconeogenesis in the liver,
influencing appetite regulation, and exerting anti-inflammatory
properties through interactions with gut epithelial and
immune cells (Louis et al., 2022).

4.2.6 Acetate production and sulfate reduction
Certain Proteobacteria, including species within the genus

Desulfovibrio, are capable of metabolizing lactate into acetate

through dissimilatory sulfate reduction. This process is coupled
with the production of hydrogen sulfide (H2S), a metabolite
that, at excessive levels, has been implicated in gut epithelial
damage and inflammatory conditions such as inflammatory bowel
disease (IBD). While low concentrations of H2S may have
physiological roles in cell signaling, its accumulation can lead to
mucosal toxicity and alterations in gut microbiota composition
(Rey et al., 2013).

The microbial conversion of lactate into butyrate, propionate,
and acetate plays a pivotal role in gut ecosystem stability and
host physiology. Cross-feeding interactions between lactate-
producing and lactate-utilizing bacteria regulate metabolite flux,
influencing gut barrier integrity, immune function, and metabolic
homeostasis (Dordević et al., 2020).
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4.2.7 Cross-feeding among microbes
Bacterial cross-feeding plays a crucial role in shaping SCFA

production and optimizing substrate utilization in the gut.
These interactions enhance microbial diversity, prevent metabolic
imbalances, and contribute to gut health by maintaining a stable
environment. Bifidobacterium produces acetate when fermenting
dietary fibers such as oligofructose, which is then utilized by
butyrate-producing bacteria like Faecalibacterium prausnitzii and
Roseburia sp. to produce butyrate. Lactate-producing bacteria
like Bifidobacterium and Lactobacillus produce lactate during
carbohydrate fermentation, which can be converted into butyrate
by Eubacterium hallii and Anaerostipes to prevent acid build-
up and contribute to gut health. Propionate-producing bacteria
(Veillonella, Propionibacterium) convert lactate into propionate,
playing a role in glucose metabolism and satiety (Figure 3) (Culp
and Goodman, 2023).

4.3 Implications for intestinal homeostasis

Lactate plays a significant role in gut health, immunity, and
disease prevention. If lactate-consuming bacteria are insufficient,
lactate can accumulate, leading to a drop in pH and potential gut
dysbiosis. Excess lactate has been linked to inflammatory bowel
diseases (IBD), irritable bowel syndrome (IBS), and metabolic
disorders (Wang et al., 2020). Colonocytes (intestinal cells)
utilize lactate to produce butyrate through cross-feeding by
bacteria such as Eubacterium and Anaerostipes, which strengthen
the gut lining and support overall intestinal health. Lactate
lowers the pH, inhibiting harmful bacteria (Escherichia coli,
Salmonella) while promoting beneficial microbes (Bifidobacteria,
Akkermansia) (Zhao et al., 2024). Additionally, lactate helps regulate
immune responses by modulating immune cells and reducing
inflammatory cytokines (TNF-α, IL-6), preventing excessive
inflammation (Llibre et al., 2025).

Recent studies highlight the pivotal role of lactate and its
receptor, GPR81, in regulating intestinal homeostasis and immune
responses, particularly in inflammatory bowel diseases (IBD)
(Ranganathan et al., 2018). Understanding thesemetabolic pathways
and their microbial contributors provides valuable insight into
potential probiotic interventions aimed at promoting gut health and
preventing dysbiosis-associated diseases (Li et al., 2022).

5 Lactate dehydrogenase (LDH)
inhibitors: plant-based and synthetic

Lactate dehydrogenase (LDH) plays a crucial role in anaerobic
glycolysis by catalyzing the reversible conversion of pyruvate to
lactate, coupled with the regeneration of NAD+. In cancer, this
pathway is hijacked even under aerobic conditions, a phenomenon
known as the Warburg effect, whereby cancer cells preferentially
convert glucose to lactate despite sufficient oxygen. This metabolic
reprogramming supports rapid cell proliferation by sustaining
glycolytic flux, maintaining redox balance, and promoting survival
in the tumor microenvironment. LDH, particularly the LDH-A
isoform, is thus considered a keymetabolic enzyme and a promising
therapeutic target in cancers (Valvona et al., 2016; Kim et al.,

2019) and infectious diseases like malaria (Possemiers et al., 2021).
LDH belongs to the 2-hydroxyacid oxidoreductase family and
is widely found in animals, microorganisms, yeasts, and plants.
The Table 2 summarizes various plant-based LDH inhibitors,
highlighting theirmechanisms of action and implications for human
health (Table 2). Natural compounds such as pentagalloyl glucose
from Rhus chinensis, polyphenols (including quercetin, EGCG,
curcumin, and resveratrol), and berberine target LDH through
different mechanisms, such as non-competitive inhibition, binding
to the enzyme’s active or coenzyme sites, and suppression of LDH
expression. These inhibitors show potential in cancer therapy by
disrupting tumor metabolism, overcoming drug resistance, and
modulating lactate production. Additionally, some compounds like
those from Polygala tenuifolia demonstrate neuroprotective effects
in ischemic stroke, while others, such as rutin and amentoflavone
from Selaginella doederleinii, offer potential treatments for
metabolic disorders. Overall, plant-based LDH inhibitors present
promising therapeutic avenues for cancer, metabolic diseases, and
neuroprotection (Table 2).

Beyond its metabolic role, LDH is an important diagnostic
marker, as its sudden increase in serum levels often indicates acute
disease conditions. High LDH levels are commonly observed in
malignancies, megaloblastic anemia, myocardial infarction, liver
disorders, hematological diseases, and skeletal muscle conditions.
Due to its strong clinical significance, LDH measurement is widely
used for disease diagnosis and monitoring (Gupta, 2022).

5.1 LDH in malaria and cancer

In Plasmodium falciparum (the parasite responsible formalaria),
the enzyme pfLDH is essential for energy production, as the
parasite relies on anaerobic glycolysis due to the absence of a
citric acid cycle. Inhibitors of pfLDH could potentially lead to
the death of the malaria parasite (Penna-Coutinho et al., 2011).
Similarly, in cancer, human LDH isoform-5 (hLDH-5 or LDH-
A) is upregulated in tumor cells, supporting the Warburg effect,
where tumors rely more on anaerobic glycolysis than oxidative
phosphorylation for energy. Targeting hLDH-5 could disrupt tumor
growth and invasiveness (Alam et al., 2014).

6 The curse: potential detrimental
effects of lactate

6.1 Lactic acidosis and metabolic
dysregulation

While lactate serves as a critical metabolic intermediate,
excessive accumulation can lead to lactic acidosis, a pathological
condition characterized by a decrease in blood pH. This occurs
in cases of severe hypoxia, sepsis, or mitochondrial dysfunction,
where lactate clearance is impaired. Studies have shown that elevated
lactate levels in critically ill patients are associated with poor
outcomes due to systemic metabolic disturbances (Table 3) (Li et al.,
2022). Recently, research highlighted the role of excessive lactate
in disrupting cellular homeostasis, leading to impaired enzyme
function and metabolic stress (Cai et al., 2024).
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TABLE 2 Summarizes the plant-based and synthetic LDH inhibitors.

Category LDH inhibitor Role/Mechanism Implications for
human health

References

Plant-Based Inhibitors Rhus chinensis Pentagalloyl glucose (PGG)
inhibits LDH
non-competitively, reducing
lactate in cancer cells

Potential cancer therapy by
disrupting metabolic processes
in tumors

Mendonca et al. (2021)

Polygala tenuifolia Identified five LDH inhibitors,
a potential treatment for
ischemic stroke

Neuroprotective effects in
ischemic stroke

Shen et al. (2025)

Rutin Binds to the coenzyme site of
LDH, inhibiting its activity in a
dose-dependent manner

Modulates lactate production,
useful in various metabolic
disorders

Ding et al. (2024)

Selaginella doederleinii Amentoflavone and
robustaflavone inhibit LDH

Potential treatment for
metabolic disorders and cancer

Zhang et al. (2022)

Polyphenols (Quercetin,
EGCG, Curcumin,
Resveratrol)

Binds to the LDH active site,
reduces its activity, and
suppresses LDH expression

Anti-cancer and
anti-inflammatory effects,
metabolic modulation

Han et al. (2023)

Catechin Inhibits lactate production and
LDHA activity, overcomes
5FU resistance in cancer

Potential adjuvant therapy for
drug resistance in cancer

Han et al. (2023)

Berberine Targets LDH-A, suppressing
pancreatic cancer progression
via AMPK/mTOR pathway

Potential cancer therapy,
metabolic disorder treatment

Davoodvandi et al. (2024)

Betulinic Acid Binds strongly to LDH,
reducing its activity, and
exerting antitumor effects

Anti-cancer properties,
modulates lactate production
in tumors

Davoodvandi et al. (2024)

Synthetic Inhibitors Pyrazole-based inhibitors Block LDH enzymatic activity,
developed through
high-throughput screening

Potential cancer and metabolic
disorder therapy

Rai et al. (2020)

Galloflavin Inhibits LDH-A and LDH-B,
induces apoptosis in tumor
cells

Selective anticancer agent,
blocks aerobic glycolysis in
tumors

Yao et al. (2022)

Oxamate Inhibits LDH-A in NSCLC
cells, reduces ATP levels and
induces apoptosis

Targeting LDH-A for cancer
therapy, particularly in lung
cancer

Li et al. (2020)

GSK2837808A Specific LDH-A inhibitor,
reduces lactate secretion in
TMJOA synovial fibroblasts

Potential treatment for joint
disorders and metabolic
dysfunctions

Alobaidi et al. (2023)

FX-11 and AR-C155858 Combination therapy targeting
LDHA and MCT1, reducing
tumor cell proliferation

Effective in breast and
colorectal cancer treatment

Alobaidi et al. (2023)

N-hydroxyindole-based
inhibitor (NHI-Glc-2)

Inhibits glycolysis and cell
proliferation in cancer

Potential anticancer agent with
antiglycolytic effects

Hassouni et al. (2020)

Itraconazole, Atorvastatin,
Posaconazole

Potential inhibitors of
Plasmodium LDH, with
posaconazole most effective

Treatment for malaria,
particularly against
Plasmodium LDH

Comandatore et al. (2022)

Stiripentol Antiepileptic drug, inhibits
LDH, reducing seizures and
epileptiform activity

Potential treatment for
epilepsy, reducing
lactate-related neuronal
activity

Wheless and Weatherspoon
(2025)
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TABLE 3 Summary of the impact of excess lactate on human health and the mechanisms involved in disease progression.

Effect Mechanism Relevant organs References

Cancer progression Lactate supports tumor growth by
driving enhanced glycolysis and
suppressing immune responses

Tumors (Various organs) de la Cruz-López et al. (2019)

Increased inflammation Lactate accumulation can activate
inflammatory pathways and cytokine
release

Immune system, tissues Llibre et al. (2025)

Metabolic disorders High lactate levels contribute to
metabolic dysfunction, affecting
glucose and lipid metabolism

Liver, muscles, adipose tissue Ishitobi et al. (2019)

Muscle fatigue Accumulation of lactate in muscles
leads to acidosis and impairs muscle
contraction

Skeletal muscles Chen et al. (2025)

Brain dysfunction Lactate buildup in the brain may
contribute to neurological diseases like
epilepsy and Alzheimer’s

Brain (CNS) Cai et al. (2022)

Cardiac stress Elevated lactate in the heart can cause
reduced oxygen availability, increasing
the risk of ischemia

Heart Fang et al. (2024)

Excessive lactate accumulation, as detailed in Table 3, has
significant implications for human health by contributing to
the progression of various diseases. In cancer, elevated lactate
levels promote tumor growth through enhanced glycolysis and
suppression of immune responses, affecting multiple organs
(de la Cruz-López et al., 2019) (Table 3). Lactate buildup can also
activate inflammatory pathways and cytokine release, leading to
increased inflammation in the immune system and other tissues
(Llibre et al., 2025) (Table 3). Metabolic disorders arise when
high lactate concentrations disrupt glucose and lipid metabolism,
particularly impacting the liver, muscles, and adipose tissue
(Ishitobi et al., 2019). In skeletal muscles, lactate accumulation
results in acidosis and impairs muscle contraction, contributing
to muscle fatigue (Chen et al., 2025) (Table 3). The brain is also
vulnerable, as lactate buildupmay play a role in neurological diseases
such as epilepsy and Alzheimer’s (Cai et al., 2022) (Table 3). Lastly,
in the heart, elevated lactate can reduce oxygen availability and
increase the risk of ischemia (Fang et al., 2024) (Table 3). This
summary underscores the multifaceted and detrimental effects of
excess lactate on various organ systems.

6.2 Tumor microenvironment and cancer
progression

The Warburg effect, a hallmark of cancer metabolism, leads
to high lactate production, which significantly alters the tumor
microenvironment. Accumulated lactate promotes immune
evasion, angiogenesis, and metastasis by modulating tumor-
associated macrophages and regulatory T cells. Studies have shown
that lactate enhances HIF-1α stabilization, upregulating VEGF
expression and supporting tumor growth. In study showed that
targeting lactate transporters, such as MCT1 and MCT4, can

disrupt tumor metabolism and enhance the efficacy of cancer
therapies (Zhong et al., 2022).

6.3 Cardiovascular disease and impaired
cardiac function

Elevated lactate levels are frequently observed in cardiovascular
diseases, especially in conditions like heart failure and ischemic
injury, where tissue hypoxia impairs oxidative metabolism. The
heart preferentially oxidizes lactate as an energy source under
normal conditions; however, in pathological states, excessive
lactate accumulation can contribute to acidosis and impaired
myocardial function (Ouyang et al., 2023). A study illustrated
that heart failure patients exhibit altered lactate metabolism,
leading to reduced cardiac efficiency (Revelly et al., 2005).
Moreover, lactate-driven inflammation in vascular endothelial cells
has been implicated in atherosclerosis progression, highlighting
the need for therapeutic strategies targeting lactate balance in
cardiovascular health (Dong et al., 2021).

6.4 Neurological disorders and cognitive
dysfunction

Dysregulated lactate metabolism has been implicated in
neurodegenerative diseases, including Alzheimer’s, Parkinson’s, and
multiple sclerosis. While lactate plays a neuroprotective role under
physiological conditions, impaired lactate transport and utilization
can contribute to neuronal energy deficits and oxidative stress
(Yang et al., 2024). A research study demonstrated that disruptions
in the astrocyte-neuron lactate shuttle lead to cognitive impairment
(Suzuki et al., 2011). Furthermore, excessive lactate accumulation
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TABLE 4 Summarized table of microbiota showing their beneficial and harmful impacts on human health in the presence of lactate.

Bacteria Category Mechanism of
lactate
production

Impact on
human health

Potential health
effects

References

Lactobacillus spp.
(Lactobacillus
acidophilus; Lactobacillus
casei)

Beneficial Ferments carbohydrates
to produce lactate

Helps maintain gut
acidity, beneficial for
digestion, and supports
gut health by preventing
pathogenic overgrowth

Prevents pathogen
colonization, supports
immune function, and
promotes gut barrier
integrity

Dempsey and Corr
(2022)

Bifidobacterium spp. Beneficial Produces lactate from
dietary fibers and
oligosaccharides

Modulates gut
microbiota, improves gut
health, and has
anti-inflammatory
effects

Supports healthy
digestion, reduces
inflammation, and
promotes the production
of beneficial short-chain
fatty acids

Victoria Obayomi et al.
(2024)

Faecalibacterium
prausnitzii

Beneficial Converts carbohydrates
into lactate and butyrate

Supports gut health and
maintains a balanced
microbiome

Enhances
anti-inflammatory
responses and
strengthens gut barrier
function

Martín et al. (2023)

Lactobacillus plantarum Beneficial Produces lactic acid by
fermenting sugars in
anaerobic conditions

Promotes gut barrier
integrity and reduces
inflammation

May help in managing
irritable bowel syndrome
(IBS) and other
inflammatory conditions

Liu et al. (2021)

Lactobacillus rhamnosus Beneficial Ferments glucose to
lactic acid, regenerating
NAD+ for glycolysis

Strengthens gut
microbiota and supports
immune function

Reduces risk of
respiratory infections
and improves skin health

Rastogi and Singh (2022)

Lactobacillus reuteri Beneficial Convert sugars to lactic
acid via the lactate
dehydrogenase enzyme

Produces antimicrobial
substances that inhibit
pathogens

May reduce colic in
infants and improve oral
health

Singh et al. (2022)

Streptococcus
thermophilus

Beneficial Converts lactose to lactic
acid during fermentation

Aids in lactose digestion
and supports gut health

Reduces symptoms of
lactose intolerance and
improves gut microbiota

Saleem et al. (2024)

Enterococcus faecium Beneficial Produces lactic acid as a
byproduct of
carbohydrate
metabolism

Competes with harmful
bacteria in the gut

May reduce the risk of
gastrointestinal
infections

Vieco-Saiz et al. (2019)

Pediococcus acidilactici Beneficial Ferments sugars to lactic
acid, lowering pH and
inhibiting spoilage
organisms

Used in food
preservation and
supports gut health

Enhances food safety
and promotes gut
microbiota balance

Todorov et al. (2022)

Leuconostoc
mesenteroides

Beneficial Produces lactic acid and
other metabolites during
carbohydrate
fermentation

Contributes to food
fermentation and
supports gut health

Improves digestion and
enhances the flavor of
fermented foods

Kim et al. (2025)

Weissella confusa Beneficial Ferments sugars to lactic
acid, producing
antimicrobial
compounds

Inhibits harmful bacteria
and supports gut health

May reduce the risk of
infections and improve
gut microbiota

Petrariu et al. (2023)

Oenococcus oeni Beneficial Converts malic acid to
lactic acid during
malolactic fermentation

Used in winemaking and
supports gut health

Enhances the flavor of
wine and promotes gut
microbiota balance

James et al. (2023)

Carnobacterium
maltaromaticum

Beneficial Produces lactic acid and
bacteriocins during
fermentation

Inhibits spoilage
organisms in food and
supports gut health

Enhances food safety
and promotes gut
microbiota balance

Bisht et al. (2024)

(Continued on the following page)
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TABLE 4 (Continued) Summarized table of microbiota showing their beneficial and harmful impacts on human health in the presence of lactate.

Bacteria Category Mechanism of
lactate
production

Impact on
human health

Potential health
effects

References

Propionibacterium
freudenreichii

Beneficial Produces lactic acid and
propionic acid during
carbohydrate
fermentation

Supports gut health and
produces vitamin B12

Enhances nutrient
absorption and reduces
gut inflammation

Tripathi et al. (2024)

Streptococcus mutans Harmful Produces lactate from
sugars, especially sucrose

Key contributor to
dental cavities and oral
infections

Causes tooth decay and
promotes plaque
formation

Luo et al. (2024)

Clostridium spp. Harmful Ferments carbohydrates
to produce lactate, often
in excess

Overproduction of
lactate in gut can lower
pH, cause metabolic
disturbances, and
exacerbate gut
inflammation

Contributes to
conditions like colorectal
cancer, IBS, and IBD.

Hou et al. (2022)

Enterococcus faecalis Harmful Produces lactate from
sugars under anaerobic
conditions

Associated with gut
dysbiosis, promotes
inflammation and
infection, and is
pathogenic in
immunocompromised
individuals.

Can lead to sepsis,
urinary tract infections,
and gut-related issues
like IBS and IBD.

Chancharoenthana et al.
(2023)

Staphylococcus aureus Harmful Anaerobic fermentation
of glucose

Produces lactate, which
can contribute to tissue
damage and
inflammation

Causes skin infections,
pneumonia, and toxic
shock syndrome

Taylor and Unakal
(2023)

Escherichia coli (E. coli) Harmful Glycolysis followed by
fermentation under
oxygen-limited
conditions

Lactate production can
exacerbate inflammation
in the gut

Causes food poisoning,
urinary tract infections,
and septicemia

Milani et al. (2017)

Streptococcus pyogenes Harmful Lactic acid fermentation
via the
Embden-Meyerhof
pathway

Lactate can fuel bacterial
growth and worsen
tissue damage

Causes strep throat,
scarlet fever, and
necrotizing fasciitis

Stevens and Bryant
(2022)

Clostridium perfringens Harmful Fermentation of
pyruvate in anaerobic
conditions

Lactate production
contributes to the acidic
environment, aiding
bacterial survival

Causes gas gangrene and
food poisoning

Juneja et al. (2023)

Lactobacillus acidophilus Harmful Homolactic
fermentation, where
glucose is converted
entirely into lactate

Overproduction of
lactate can lead to
acidosis in certain
conditions

Normally beneficial but
can cause infections in
immunocompromised
individuals

Gao et al. (2022)

Propionibacterium acnes Harmful Fermentation of
carbohydrates under
anaerobic or
oxygen-restricted
conditions

Lactate production can
contribute to
inflammation in
sebaceous glands

Associated with acne and
other skin conditions

Gannesen et al. (2019)

Helicobacter pylori Harmful Adaptive metabolic
pathways for survival in
acidic stomach
conditions

Lactate production can
alter the stomach’s
microenvironment,
aiding bacterial
colonization

Causes stomach ulcers
and is linked to gastric
cancer

Somiah et al. (2022)

(Continued on the following page)
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TABLE 4 (Continued) Summarized table of microbiota showing their beneficial and harmful impacts on human health in the presence of lactate.

Bacteria Category Mechanism of
lactate
production

Impact on
human health

Potential health
effects

References

Klebsiella pneumoniae Harmful Facultative anaerobic
fermentation of sugars

Lactate production can
worsen lung
inflammation and tissue
damage

Causes pneumonia,
urinary tract infections,
and septicemia

Liang et al. (2022)

Pseudomonas aeruginosa Harmful Lactate synthesis during
anaerobic respiration

Lactate production
supports biofilm
formation, making
infections harder to treat

Causes infections in
wounds, lungs, and
urinary tract

Moser et al. (2021)

Enterococcus faecalis Harmful Fermentation via the
glycolytic pathway

Lactate production can
contribute to biofilm
formation and antibiotic
resistance

Causes urinary tract
infections, endocarditis,
and bacteremia

Said et al. (2024)

Bacteroides fragilis Harmful Anaerobic glycolysis Lactate production can
promote bacterial
survival in anaerobic
environments

Causes abdominal
infections and abscesses

Tufail and Schmitz
(2024)

Clostridium difficile Harmful Lactic acid fermentation
in low-oxygen
environments

Lactate production can
disrupt gut microbiota
balance

Causes severe diarrhea
and colitis

Sehgal and Khanna
(2021)

Mycobacterium
tuberculosis

Harmful Modulation of metabolic
pathways under hypoxic
conditions

Lactate production can
contribute to the acidic
environment in infected
tissues

Causes tuberculosis Kiran and Basaraba
(2021)

Neisseria gonorrhoeae Harmful Oxygen-limited
glycolysis followed by
fermentation

Lactate production can
enhance bacterial
survival in mucosal
tissues

Causes gonorrhea Llibre et al. (2021)

Salmonella enterica Harmful Facultative fermentation
of carbohydrates

Lactate production can
exacerbate gut
inflammation and
bacterial invasion

Causes foodborne
illnesses and typhoid
fever

Llibre et al. (2021)

in the brain has been associated with neuroinflammation and
excitotoxicity, exacerbating disease progression in conditions such
as epilepsy and traumatic brain injury (Roh et al., 2023).

6.5 Muscular dystrophy and exercise
intolerance

In individuals with muscular dystrophy and metabolic
myopathies, lactate metabolism is often impaired, leading to
exercise intolerance and muscle fatigue. Mutations affecting
glycolytic enzymes or lactate transporters result in an inability to
efficiently clear lactate, leading to muscle damage and weakness
(Jeppesen et al., 2013). A study highlighted the role of lactate
accumulation in muscle dysfunction, emphasizing its contribution
to oxidative stress and mitochondrial impairment. Therapeutic
approaches aimed at optimizing lactate metabolism are being
explored to improve muscle function in dystrophic conditions
(Tarnopolsky, 2018; Wen et al., 2025).

6.6 Lactate-producing bacteria harmful to
human health

While many lactate-producing bacteria play beneficial roles
in maintaining gut homeostasis, certain species can contribute
to dysbiosis and inflammation when their growth is dysregulated
(Louis et al., 2022). For instance, an overgrowth of Lactobacillus
or Enterococcus species can lead to excessive lactate accumulation,
which may exacerbate gastrointestinal conditions such as IBS,
IBD, and even metabolic diseases like obesity. In these cases,
the excess lactate can lower gut pH, leading to an imbalance in
the microbiota and promoting the growth of pathogenic bacteria
(Figure 3; Table 4) (Portincasa et al., 2024).

The Table 4 highlights the beneficial roles of various gut
bacteria in human health through their mechanisms of lactate
production. Lactobacillus spp. (including L. acidophilus and L. casei)
ferment carbohydrates to produce lactate, which helps maintain gut
acidity, supports digestion, and prevents pathogenic overgrowth by
enhancing immune function and barrier integrity. Bifidobacterium
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spp. generate lactate from dietary fibers and oligosaccharides,
modulating the gut microbiota, improving gut health, and
exerting anti-inflammatory effects by promoting the production
of beneficial short-chain fatty acids. Faecalibacterium prausnitzii
converts carbohydrates into lactate and butyrate, supporting a
balanced microbiome and enhancing anti-inflammatory responses,
thereby strengthening gut barrier function. Lactobacillus plantarum
produces lactic acid under anaerobic conditions, promoting gut
barrier integrity and potentially aiding in the management of
irritable bowel syndrome (IBS) and other inflammatory conditions.
Together, these bacteria contribute significantly to gut health by
modulating inflammation, supporting digestion, and maintaining a
balanced microbiome (Table 4).

7 Conclusion and future directions

Lactate, once primarily associated with muscle fatigue and
anaerobic metabolism, is increasingly recognized for its complex
and dual role in human health. Under normal physiological
conditions, lactate serves as a critical energy substrate and plays a
pivotal role in metabolic processes like the Cori cycle. However, its
excessive accumulation, particularly in diseases like cancer, ischemic
stroke, and metabolic disorders, can be detrimental, contributing to
disease progression and poor prognosis.

Recent studies have highlighted lactate’s potential as both a
boon and a curse. While its role in tumor metabolism, immune
regulation, and neuronal signaling shows promise, the harmful
effects of chronic lactate accumulation cannot be overlooked. The
emerging therapeutic strategies targeting lactate, such as lactate
dehydrogenase inhibitors, offer new avenues for disease treatment.

Future research should focus on developing precise methods to
regulate lactate metabolism, exploring the role of gut microbiota
in lactate production, and understanding the complex interactions
between lactate and immune responses. Additionally, investigating
the potential of lactate in enhancing exercise performance and
as a therapeutic agent in neurological and metabolic diseases
warrants attention. Ultimately, advancing our understanding
of lactate’s multifaceted role will enable the development of
targeted interventions to harness its benefits while mitigating its
harmful effects.
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