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Background:Quantifying exercise intensity through the lactate threshold (LT) is
crucial for optimizing athletic training regimes. Traditional methods like maximal
lactate steady state and graded exercise testing are valid but invasive and
costly. Advances in smartwatch technology offer a non-invasive alternative for
monitoring LT, though their measurement protocols and outcomes have been
less validated.

Methods: This study evaluates the validity of three mainstream smartwatches
(Huawei GT Runner®, Garmin Forerunner 265® or 265s®, and Coros Pace3®)
in estimating lactate threshold heart rate (LT HR) and pace (LT Pace), comparing
these to measurement protocols and results from the modified Dmax method
in laboratory standards. One hundred healthy recreational runners underwent
indoor graded exercise tests followed by outdoor tests using Huawei (n = 100),
Garmin (n = 23), and Coros (n = 17) smartwatches to compare differences in
testing protocols and LT HR and LT Pace.

Results: The success rates for a single test were 78% for Huawei®, 65.22%
for Garmin®, and 47.06% for Coros®. For LT HR, no significant differences
were observed between smartwatch and DmaxMod estimates across all devices
(p > 0.05). The Huawei® watch showed MAE = 10.66 bpm, MAPE = 6.32%;
Garmin®: MAE = 11.44 bpm, MAPE = 7.15%; Coros®: MAE = 8.93 bpm, MAPE
= 5.95%. Corresponding Pearson correlation coefficients ranged from r = 0.13
to 0.67, and R2 values ranged from 0.02 to 0.45. In contrast, LT Pace predictions
demonstrated significant overestimation for all devices. Huawei® reported the
smallest error (MAE = 1.22 km/h, MAPE = 12.70%, p = 0.01, r = 0.88, R2 =
0.78), followed by Garmin® (MAE = 2.17 km/h, MAPE = 25.78%, p < 0.01, r =
0.73, R2 = 0.53), and Coros® (MAE = 1.93 km/h, MAPE = 22.63%, p = 0.08, r =
0.79, R2 = 0.62). Bland–Altman plots confirmed systematic biases and variable
agreement patterns, particularly for LT Pace.
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Conclusion: Smartwatches are capable of providing estimates of LT HR and LT
Pace in recreational runners, although they tend to overestimate LT Pace and
overall accuracy remains to be improved.
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1 Introduction

Quantifying exercise intensity in endurance sports is essential
for enhancing athletic performance (Mujika, 2017). As health
awareness increases and activities like running gain popularity,more
athletes seek precisemethods tomonitor andmeasure their training.
Among various quantification techniques, the anaerobic lactate
threshold (LT) (Svedahl and MacIntosh, 2003; Faude et al., 2009)
is considered the key reference metric for assessing personalized
training intensities (Svedahl and MacIntosh, 2003; Heuberger et al.,
2018). The LT is characterized by a rapid and distinct change
in the slope of the blood lactate concentration curve, indicating
the transition from predominantly aerobic to anaerobic energy
metabolism (Faude et al., 2009).

In practical training scenarios, lactate threshold heart rate
(LT HR) and lactate threshold pace (LT Pace) are commonly
used to quantify training intensity. LT HR refers to the heart
rate (HR) at the LT (Pfitzinger and Freedson, 1998), while LT
Pace refers to the sustainable running speed at this threshold
(Yoshida et al., 1987). These indicators are crucial for developing
effective and safe training plans, enabling athletes to maintain
optimal performance over time, directly affecting their speed and
endurance in competitions (Ziogas et al., 2011).

The primary methods for testing LT include the maximal lactate
steady state (MLSS) and its more accessible variant, the graded
exercise testing (GXT) (Faude et al., 2009; Jones and Ehrsam, 1982;
Llodio et al., 2016; Jamnick et al., 2018; Cerezuela-Espejo et al.,
2018), which are widely used to determine personalized thresholds
for runners (Davis et al., 2007; Antonutto and Di Prampero, 1995;
Faude et al., 2009). While these traditional methods are valid
(Chalmersa et al., 2024), they are invasive, costly, and rely on
specialized equipment and trained personnel (Ramos-Campo et al.,
2017; Nascimento et al., 2017; Shiraishi et al., 2018; Di Michele et al.,
2012). With the advancement of wearable technology, smartwatches
have emerged as integrated solutions incorporating various
advanced wearable measurement technologies. These devices,
equipped with sensors like GPS, PPG, and IMU, gather kinematic
and physiological data, offering non-invasive means to predict a
runner’s LT. This technological progress significantly enhances
the implementation of training plans (Siepmann and Kowalczuk,
2021; Paul et al., 2024), the monitoring of training sessions (Jubair
and Mehenaz, 2024), and fatigue recovery (Jubair and Mehenaz,
2024). However, despite the convenience provided by smartwatches,
the validity of their measurements has not been widely validated
(Seshadri et al., 2019). Although numerous studies have explored
the validity of smartwatches in measuring steps (Gaz et al., 2018;
Sears et al., 2017; Veerabhadrappa et al., 2018), energy expenditure
(Le et al., 2022; Lee et al., 2018; Nuss et al., 2019), HR (Fuller et al.,

2020; Gillinov et al., 2017; Støve et al., 2019; Boolani et al., 2019)
and maximum oxygen uptake (VO2max) (Carrier et al., 2023;
Carrier et al., 2025; Caserman et al., 2024; Jamieson et al., 2024;
Muthusamy et al., 2021; Cooper and Shafer, 2019; Kraft and
Roberts, 2017), but research on their accuracy in estimating LTs is
comparatively limited. Among the limited studies, Schlie observed
that the Garmin Fenix 7® tends to underestimate LT HR and LT
Pace (Schlie et al., 2024), a finding echoed by Carrier’s research,
which also reported an underestimation of LT performance by the
Garmin Fenix 6® (Carrier et al., 2021). Additionally, few studies
have investigated how the testing protocols of these watches might
influence the results. Therefore, this study aims to compare the LT
measurement protocols and their results from three mainstream
smartwatches against LTs determined using the modified Dmax
method (DmaxMod) in the laboratory setting (Siahkouhian et al.,
2012), assessing the validity of these wearable devices in terms of
their measurement protocols and outcomes for LTs.

2 Materials and methods

2.1 Participants

This study recruited 100 healthy recreational runners aged
18–65 years as participants. All participants had no history of acute
or chronic heart disease, hypertension, joint or musculoskeletal
disorders, acute illnesses, pregnancy, or suspected pregnancy. They
also had no lower limb injuries or surgeries in the past year. The
research protocol adhered to the ethical principles of theDeclaration
of Helsinki and was approved by the Sports Science Experimental
Ethics Committee of Beijing Sport University (2024136H). Before
the experiment, all participants were fully informed about the
procedures and provided their written informed consent. The
consent form confirmed the participants’ voluntary participation,
understanding of the study protocol, and right to withdraw from the
experiment at any time.

2.2 Experimental equipment

• Treadmill: Technogym Excite Run 700®, Technogym.
• Blood Lactate Analyzer: Biosen C-line®, EKF®.
• Heart Rate Monitor Strap: POLAR H10®, POLAR Electro Oy.
• Huawei Watch: HUAWEI GT Runner®, version HarmonyOS

4.0, Huawei Terminal Co., Ltd.
• Garmin Watches: Garmin Forerunner 265® (used for male

participants) and Garmin Forerunner 265s® (used for female
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FIGURE 1
Experimental procedures for lactate threshold heart rate (LT HR) and lactate threshold pace (LT Pace) measurement protocols.

participants), version 19.18 Garmin International Inc. These
two models are functionally identical, differing only in case size
and strap length.

• Coros Watch: COROS Pace 3®, version v3.0309, Coros Sports
Technology Co., Ltd.

2.3 Study design

The study was conducted in two phases: an indoor GXT and
an outdoor test using smartwatches to assess LT levels. The testing
process is depicted in Figure 1. Participants could engage in the
outdoor test with one to three smartwatches. A minimum interval
of 48 h was maintained between the indoor and outdoor tests and
the various outdoor tests to ensure sufficient recovery and accuracy.

2.4 Indoor graded exercise test

Researchers collected baseline demographic data, including
the participants’ age, height, and weight. Before the exercise test
commenced, participants completed a sit-to-stand test, which
involved sitting quietly for 5 minutes and standing for 3 minutes;
HR measured during this period was recorded as resting HR.
Immediately after the sit-to-stand test, fingertip blood samples
were taken to assess resting blood lactate levels. Participants
then performed a 10-min dynamic warm-up routine by following
a standardized instructional video provided by the researcher.
Following thewarm-up, the treadmill test began at an initial speed of

5 km/h for males and 4 km/h for females, with a 1% incline to offset
the external wind resistance encountered outdoors (Davies, 1980).
Each stage of the test lasted 5 minutes, followed by a 30-s pause for
collecting fingertip blood samples and assessing fatigue using Borg’s
Rating of Perceived Exertion (RPE), which ranges from zero (no
exhaustion) to ten (maximum exhaustion). The treadmill speed was
then increased by 1.2 km/h for the next stage, continuing until the
participant reached exhaustion or could not proceed further. Upon
completion of the test, participants strolled for 3 minutes, followed
by 5 minutes of seated rest, duringwhich recoveryHRwasmeasured
and RPE scores were reassessed.

2.5 Outdoor lactate threshold test with
smartwatches

After completing the indoor graded exercise test, participants
were informed of the outdoor testing procedures and duration
for each smartwatch model. The selection of which smartwatch to
test was made voluntarily by each participant based on personal
preference and time availability. Participants were allowed to take
part in tests for multiple smartwatch models, but a minimum
interval of 48 h was required between each test. All outdoor tests
were conducted on a standardized 400-m track under non-extreme
weather conditions. Testing sessions were scheduled according
to participant availability and were typically aligned with their
usual training days. All indoor and outdoor tests were scheduled
during morning or early afternoon hours to minimize potential
circadian effects.
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Researchers reset the data on each smartwatch and entered basic
participant information such as gender, age, height, and weight into
the respective software of each device. Participants were then fitted
with the HR strap and the appropriate smartwatch. The smartwatch
was placed on the dorsal side of the non-dominant wrist by trained
researchers. To ensure consistent data collection conditions, all
participants wore a Polar H10 chest strap during testing. For the
Garmin® watch, the chest strap was a mandatory requirement to
initiate its LT test. For the Huawei® and Coros® watches, the strap
was not required for testing. It was connected via Bluetooth to a
smartphone with GPS manually disabled, which was used solely
forHR logging. The actual HR data for analysis was collected from
the watches’ built-in optical PPG sensors. Following this setup,
they sat quietly for 5 min to measure their resting HR and assess
their initial level of physical and psychological fatigue using Borg’s
RPE scale. Subsequently, participants completed a standardized 10-
min dynamic warm-up routine via a pre-recorded instructional
video. After the warm-up, they ran for 20–60 min, following the
HR and pace instructions for each smartwatch’s testing protocol.
Throughout the run, all watches guided voice prompts and screen
displays to maintain the stability of the HR and pace as much
as possible. Upon completion of the run, researchers immediately
recorded the participants’ RPE scores.

2.5.1 Huawei® watch testing protocol
The Huawei watch testing required setting the participant’s

age and maximum heart rate (HRmax was determined using the
peak HR obtained during the indoor test) before the test. The test
included an 8-min warm-up phase, followed by gradual increases
in HR every 3–5 min. The test was divided into six stages, lasting
approximately 20–30 min. Participants were required to complete at
least four stages.

2.5.2 Garmin® watch testing protocol
The Garmin® watch test required participants to perform an

outdoor run to determine their VO2max before initiating the LT
test. Employing the Firstbeat® technology, the watch estimated the
LT HR and LT Pace by analyzing changes in HR and respiratory
rate (which affect heart rate variability). The test included a 10-
min warm-up, then progressively increased the HR zones over six
stages, each 3–4 min long, totaling approximately 25–30 min.

2.5.3 Coros® watch testing protocol
The Coros watch test required participants to input their 10-km

run time. The test commenced with a 5-min warm-up, followed by
25 min of running at a marathon pace, then 3 min at a 10 km pace,
and 3 min at a 5 km pace. If this point successfully captured the LT
data, the test transitioned to a cool-down phase; if not, one to two
additional sets at increased speeds were required. The test included
up to 7 phases and lasted approximately 30–60 min. Participants
were required to complete at least three running stages.

2.6 Determination of the lactate threshold

The LT of the indoor GXT was calculated using the DmaxMod
method (Fabre et al., 2010). Blood lactate concentrations at each
stage were interpolated using cubic spline interpolation to generate

a smooth and standardized curve for subsequent analysis. A third-
order polynomial was then applied to fit the curve of blood lactate
concentration as a function of running speed (Zwingmann et al.,
2019). The LT was determined as the point on the blood lactate
curve that maximizes the distance to the line connecting the first
data point where the lactate concentration increases by more than
0.4 mmol/L to the last sample point. The heart rate and running
speed at the LT are determined as the values corresponding to
the point, as shown in Figure 2. The LT HR and LT Pace for each
smartwatch were obtained from data downloaded from the cloud
following the successful completion of the outdoor test.

2.7 Statistical analysis

Statistical analyses were conducted using Excel (Microsoft,
2021), SPSS version 22 (IBMStatistics, 2021), OriginPro (OriginLab,
2021), and Python version 3.11 to evaluate the predictive accuracy
and measurement success rates of three smartwatches in estimating
LT HR and LT Pace. Success rates were calculated for each device,
andhistogramswere used to analyze the distribution of results across
different age groups and LTs. Data normality was assessed by the
Shapiro–Wilk test. For normally distributed variables, independent-
samples t-tests were used to compare values between participants
with successful and failed tests. The mean absolute error (MAE)
and mean absolute percentage error (MAPE) between smartwatch
estimates and DmaxMod results were calculated for each device,
andWelch’s t-tests were used to determine whether these differences
were statistically significant. For variables that did not meet
normality assumptions, the Mann-Whitney U test was applied as
a nonparametric alternative. Line plots were employed to depict
deviations and trends between the estimates provided by the devices
and the measurements obtained using the DmaxMod method.
Linear regression analyses were executed to plot estimates from the
devices against measurements using the DmaxMod method. The
coefficient of determination (R2) was used to evaluate the model fit,
and the Pearson correlation coefficient assessed the strength of the
correlation. Bland-Altman plots were used to analyze the agreement
and consistency between the estimates from the smartwatches and
those obtained using the DmaxMod method, emphasizing the error
range and the reliability of the estimation methods employed by
the smartwatches. In addition, the two one-sided tests (TOST)
procedure was employed to assess the statistical equivalence of
LT HR and LT Pace values between smartwatch estimates and
DmaxMod measurements. Equivalence bounds were defined using
Cohen’s d = ±0.5, with pooled standard deviations used to derive
absolute margins.

3 Results

3.1 Descriptive statistics

This study measured the LTs of 100 participants through an
indoor GXT. All participants took part in the outdoor running
test using the Huawei® smartwatch. 23 participants engaged in
the Garmin® smartwatch test, and 17 tested with the Coros
smartwatch. Among all participants, 71 completed outdoor testing
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FIGURE 2
Determination of the lactate threshold using the modified Dmax (DmaxMod) method. Blue dots represent blood lactate concentration (BLC) sampling
points, and red dots represent HR sampling points. The blue and red solid lines show the fitted curves for BLC and HR, respectively. The green dot
indicates the identified lactate threshold point. The green dashed line connects the first and last BLC data points used to determine the threshold.

TABLE 1 Basic information of participants.

Watch Gender ratio (male: Female) Age (years) Height (cm) Weight (kg)

Huawei 61:39 28.0 ± 9.6 170.79 ± 8.34 64.30 ± 11.29

Garmin 13:10 29.13 ± 9.93 170.78 ± 9.58 64.96 ± 11.45

Coros 12:5 25.88 ± 7.11 173.35 ± 6.70 63.26 ± 10.46

with one smartwatch, 17 with two smartwatches, and 11 with
all three smartwatches. The basic information of the participants
is shown in Table 1.

3.2 Measurement success rates

Since the LT in indoor testswas determined using theDmaxMod
method, successful threshold identification was guaranteed as long
as data acquisition was completed. In contrast, during the outdoor
LT testing using smartwatches, there were instances in which
participants completed all testing procedures, but the devices failed
to generate LT HR or LT Pace values due to algorithmic limitations.
Therefore, we analyzed the success rates of each smartwatch,
as well as the distribution of successful and failed tests across
different age groups, LT HR, and LT Pace. According to Table 2,
Huawei® watches exhibited a higher success rate of 78%, while
Garmin® watches showed a moderate success rate of 65.22%.
The Coros® watch recorded a lower success rate at only 47.06%.
These varied outcomes are likely influenced by the different testing
protocols and the complexities associated with each device.

Table 3 shows the distribution of participants with successful
and failed tests. Based on the results ofWelch’s t-test, we observed no
significant differences between the successful and failed test groups

TABLE 2 Measurement success rate by smartwatches.

Indicator Huawei Garmin Coros

Total 100 23 17

Successful 78 15 8

Failed 22 8 9

Success rate 78% 65.22% 47.06%

However, for the Coros® watch, statistically significant differences
were found in both LT HR and LT Pace (p < 0.01), indicating that
participants who failed the test tended to have lower LT HR and
slower LT Pace compared to those with successful results.

Figures 3A1–A3 show that the successful tests of the
Huawei® watch primarily occurred in participants below 30 years
of age, with an LT HR of approximately 170 bpm and an LT Pace
of around 10–11 km/h. Failed tests were predominantly observed
in participants with lower LT HR and LT Pace. Figures 3B1–B3
displayed a moderate success rate across a wide range of ages
and HR, particularly achieving higher success rates in participants
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TABLE 3 Test outcomes by smartwatches.

Indicator Group Huawei P Garmin p Coros p

Age (years)
Successful tests 28.47 ± 9.53

0.22
30.93 ± 10.38

0.12
23.88 ± 3.56

0.47
Failed tests 27.05 ± 10.08 25.75 ± 8.61 27.67 ± 9.07

LT HR (bpm)
Successful tests 165.12 ± 15.11

0.46
162.14 ± 14.80

0.67
167.45 ± 12.50

0.74
Failed tests 163.33 ± 16.95 155.66 ± 23.78 159.10 ± 24.38

LT Pace (km/h)
Successful tests 9.75 ± 2.28

0.31
8.93 ± 1.63

0.46
9.75 ± 2.12

0.36
Failed tests 9.29 ± 2.86 9.53 ± 2.00 8.94 ± 1.81

aged 20 to 35, with LT HR between 160–180 bpm and LT Pace of
9–11 km/h. However, there was a higher rate of test failures among
the age groups under 20 and those with lower LT HR and LT Pace.
As depicted in Figures 3C1–C3, the Coros® watch’s successful tests
weremainly concentrated among participants aged 18 to 30, with LT
HR around 160–170 bpm and LT Pace primarily around 9–11 km/h.
Despite these successes, the overall success rate was relatively low,
mainly due to a higher failure rate at atypical LT HR and LT Pace,
similar to the other smartwatches.

3.3 Predictive accuracy

In this study, we evaluated the prediction accuracy of the
Huawei®, Garmin®, and Coros® smartwatches in terms of LT HR
and LT Pace by comparing the results of these devices in an
outdoor test with the results of an indoor GXT. Regarding LT HR
prediction, as shown in Table 4, despite variations in the sample sizes
tested by each watch, estimations from all three devices showed no
significant differences (p > 0.05) with the results from theDmaxMod
method and maintained MAE ranged from 8.93 to 11.44 bpm,
and the MAPE ranged from 5.95% to 7.15%. Regarding LT Pace
prediction, all devices tended to overestimate LT Pace compared to
the DmaxMod method. The Huawei® watch showed the smallest
error (MAE= 1.22 km/h,MAPE= 12.70%, p = 0.01), followed by the
Garmin® watch (MAE= 2.17 km/h,MAPE= 25.78%, p < 0.01), and
the Coros® watch (MAE = 1.93 km/h, MAPE = 22.63%, p = 0.08).

Figure 4 shows that most data points for both LT HR and LT
Pacemeasured by theHuawei® Watch fall within the ±1.96 standard
deviation range from the DmaxMod method reference. The mean
deviation is 2.86 bpm for LT HR and 0.98 km/h for LT Pace.

Figure 5 illustrates that, compared to the results of the
DmaxMod method, the LT HR measurements from the
Huawei® Watch are generally more concentrated. There is
an underestimation at higher LT HR values and occasional
overestimation in some subjects at lower LT HR levels. The
distribution of LT Pace measurements is uniform, though it
generally trends slightly above the DmaxMod method results,
indicating a minor overestimation in Huawei® watch’s LT Pace
estimations.

Figure 6 shows that the prediction of LT HR showed an
overestimation, with a mean deviation of 6.28 bpm and a

distribution of data points within ±1.96SD, but with a significant
degree of dispersion, especially in the low HR interval, showing
a considerable deviation. Regarding LT Pace, the mean deviation
was 2.06 km/h, with a relatively dispersed distribution of
data points, and most of them were located in the positive
deviation range.

Figure 7 shows that theGaminWatch exhibited underestimation
in LT HR prediction, particularly in subjects with lower
LT HR. Regarding LT Pace, the prediction results of the
Gamin Watch were higher than the results of the DmaxMod
method overall.

As shown in Figure 8, the mean deviation of LT HR was
5.44 bpm. In contrast, themean deviation of LT Pace was 1.77 km/h,
with the data points in the positive deviation range showing a
tendency of overestimation.

As shown in Figure 9, the distribution of data points
of LT HR of the Coros® watch is concentrated, showing a
tendency of overestimation in individuals with lower LT HR and
underestimation in those with higher LT HR. As for LT Pace, the
prediction results of the Coros® watch are significantly higher than
the results of the DmaxModmethod, and the deviation of some data
points is more significant, reflecting the systematic overestimation
of pace prediction by the Coros® watch.

As shown in Figure 10 A1 and A1, the Huawei® Watch model
for predicting LT HR has a coefficient of determination (R2 = 0.13)
and a Pearson correlation coefficient (r = 0.36). For LT pace, the
coefficients are R2 = 0.78 and r = 0.88. As shown in Figure 10B1,B2,
the Garmin® Watchmodel shows a coefficient of determination (R2

= 0.45) and a Pearson correlation coefficient (r = 0.67) for LT HR
estimations. For LT Pace estimations, the coefficients are R2 = 0.53
and r = 0.73. As shown in Figure 12C1,C2, the Coros® Watchmodel
for predicting LT HR has R2 = 0.02 and r = 0.13 coefficients. For LT
Pace, the coefficients are R2 = 0.62 and r = 0.79.

The TOST results indicated that none of the three devices met
the equivalence criteria for LT HR. The mean differences were
−2.44 bpm for Huawei®, −2.65 bpm for Coros®, and −6.52 bpm
for Garmin®. Similarly, for LT Pace, the mean differences were
−0.95 km/h for Huawei®, −1.53 km/h for Coros®, and −2.06 km/h
for Garmin®. These results suggest that although average deviations
were modest in some cases, none of the smartwatch-based estimates
could be statistically considered equivalent to laboratory-derived
reference values under the predefined thresholds.
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FIGURE 3
Distribution analysis of participant age (A1–C1), LT HR (A2–C2), and LT Pace (A3–C3) in the tests of different smartwatches. (A1–A3) represent data
from Huawei watches, (B1–B3) from Garmin watches, and (C1–C3) from COROS watches. Each plot displays histogram distributions for test success
(blue) and test failure (red), with overlaid density curves and count annotations for each bin.

TABLE 4 Predictive accuracy of lactate threshold heart rate and lactate threshold pace.

Watch Type LT HR (bpm) MAE (bpm) MAPE (%) p LT pace (km/h) MAE (km/h) MAPE (%) p

Huawei
DmaxMod 169.20 ± 15.12

10.13 6.63% 0.24
9.76 ± 2.28

1.22 12.70% 0.01
Watch test 167.60 ± 9.93 10.71 ± 2.19

Garmin
DmaxMod 162.14 ± 14.81

8.93 5.95% 0.15
8.93 ± 1.63

2.17 25.78% 0.00
Watch test 168.67 ± 8.25 10.99 ± 1.60

Coros
DmaxMod 167.46 ± 12.50

11.44 7.15% 0.13
9.75 ± 2.12

1.93 22.63% 0.08
Watch test 175.38 ± 5.18 11.69 ± 2.01

4 Discussion

4.1 Test protocols of each smartwatch

The basic principle of threshold tests is to gradually increase the
external load on the runner, which causes a corresponding change

in the internal load, and then to monitor the threshold at which
significant changes in the runner’s physiological and biochemical
parameters occur (Mader and Heck, 1986; Poole et al., 2021).
Depending on the indicators used, these tests can be categorized
into ventilatory threshold (Hollmann, 2001), LT (Poole et al.,
2021; Faude et al., 2009), and heart rate variability threshold
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FIGURE 4
Bland-Altman plot for differences in (A) LT HR and (B) LT pace between Huawei watch and DmaxMod method.

FIGURE 5
Comparison of (A) LT HR and (B) LT pace between Huawei watch and DmaxMod method.

FIGURE 6
Bland-Altman plot for differences in (A) LT HR and LT (B) pace between Garmin watch and DmaxMod method.
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FIGURE 7
Comparison of (A) LT HR and (B) LT pace between Garmin watch and DmaxMod method.

FIGURE 8
Bland-Altman plot for differences in (A) LT HR and (B) LT pace between Coros watch and DmaxMod method.

FIGURE 9
Comparison of LT (A) HR and (B) LT pace between Coros watch and DmaxMod method.
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FIGURE 10
Regression analysis comparing LT HR (A1–C1) and LT Pace (A2–C2) measured by smartwatches with those calculated using the DmaxMod method.
(A1,A2) represent data from Huawei watches, (B1,B2) from Garmin watches, and (C1,C2) from COROS watches. Each plot includes the fitted regression
line, 95% confidence interval (dark red band), and 95% prediction band (light red band), with green dots representing individual data points.
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(Cottin et al., 2006; Karapetian et al., 2012; Queiroz et al., 2018).
The differences in testing methods primarily lie in three areas:
1) the manner in which external load is imposed, 2) the amount
and granularity of these loads, and 3) the algorithm used to
detect changes in internal load indicators. The LT measurement
technologies used in smartwatches varies, but the main differences
also fall within the abovementioned aspects. Because manufacturers
have not disclosed detailed information about their detection
algorithms, this discussion will instead concentrate on the
methods of imposing external loads and the amount and
granularity of these loads.

4.2 Methods of imposing external load

When using smartwatches for LT measurement, hardware
capabilities and software interactions limit the methods of imposing
external load (Seshadri et al., 2019). Although external load in
running tests typically appears as changes in speed, smartwatches
cannot directly control a runner’s speed but guide adjustments
through prompts. Different prompt methods can directly affect the
validity of the test. For instance, the Coros® watch test instructs
participants to increase their pace. This approach is straightforward
and similar to an indoor GXT (Faude et al., 2009; Jones and
Ehrsam, 1982; Llodio et al., 2016; Jamnick et al., 2018; Cerezuela-
Espejo et al., 2018). However, the issue with this method is that,
although the pace is stable during a test stage, achieving a steady state
in HR within about 3 min is challenging (Bailey and Ratcliffe, 1995;
Zakynthinaki, 2015; Marini et al., 2022). This increases the difficulty
of subsequent detection algorithms. Indeed, due to these reasons, the
Coros® watch’s test failure rate is comparatively higher.On the other
hand, Huawei® and Garmin® watches employ a different strategy
by asking runners to maintain a specific HR range. This subtler
method does not require runners to keep a certain pace but enables
them to manage their HR by adjusting their running pose. Since
the heart muscle is involuntary, runners cannot control their HR
directly. It allows runners tomaintain it by focusing on their running
posture and adjusting their breathing and other physiological
processes (Meir et al., 2014; Gu et al., 2017). Therefore, using HR
as the control variable may be a more optimal choice, as it can
better maintain physiological stability throughout each phase and
reduce the complexity of the detection algorithm (Hoppe et al., 2018;
Wallace et al., 2014).

4.3 Amount and granularity of external
load

The amount and granularity of the external load applied in LT
tests are influenced by the input indicators provided before the test.
For Huawei® watches, the input data can be either the runner’s
HRmax or their age. If age is input, the HRmax is calculated using
the “220-age.” Garmin® watches use the VO2max predicted during
outdoor running tests to set parameters. For Coros® watches, the
input is based on the runner’s 10-km running performance. Each
of these inputs has its limitations. For inputting HRmax, without
laboratory measurements, it is difficult for runners to determine

their actual HRmax accurately (Abt et al., 2018), and reliance on
age for estimation is inaccurate (Shookster et al., 2020; Robergs and
Landwehr, 2002). The problem with inputting VO2max is similar to
that ofHRmax.TheGarmin® watches do not supportmanual input,
but are measured only through outdoor running tests. Research
has shown a discrepancy between the maximum oxygen uptake
measured by watches and that measured in laboratories (Molina-
Garcia et al., 2022; Kraft and Roberts, 2017; Snyder et al., 2021).
This discrepancy can significantly impact the accuracy of the test.
When the input indicator is a 10-km performance, runners often
enter their best past 10-km time, which could lead to higher pacing
in various test phases, potentially increasing the difficulty of the test.
Additionally, when considering the input indicators themselves, the
stability of a 10-km performance is significantly lower than that of
physiological indicators such as HRmax (Düking et al., 2022) and
VO2max (Molina-Garcia et al., 2022). This can affect the reliability
and accuracy of the tests.

4.4 Validity of the measurements

In this study, the three smartwatches demonstrated high validity
in estimating LT HR, with no significant differences from the
results obtained using the DmaxMod method and MAPE ranging
between 5.95% and 7.15%. These findings are consistent with those
of Carrier et al., who reported a 6.20% error in HR measurements
for the Garmin Fenix 6® (Carrier et al., 2021). However, they
are slightly higher than the 1.71% error reported by Schlie’s study
using the Garmin Fenix 7® during outdoor tests (Schlie et al.,
2024). Although the MAPE was low, the MAE of 8.93–11.44 bpm
may still affect the precision of training zone determination.
Therefore, runners are advised to interpret smartwatch-estimated
LT HR in conjunction with perceived exertion to better guide
endurance training.

Moreover, the data points from the three watches were quite
concentrated, tending to overestimate the values for individuals
with lower LT HR and underestimate those with higher LT
HR, unlike the DmaxMod method, which can more accurately
differentiate HR in marginal zones. This tendency toward that
smartwatch algorithms tend to perform best when predicting
values near the population average, but may produce less accurate
estimations for individuals at the lower or upper extremes of
fitness. Such a limitation could reduce the utility of these devices
for high-level athletes or individuals with unusually low or
high thresholds.

In estimating LTPace, all threewatches demonstrated significant
deviations from the DmaxMod results, with MAPE ranging from
12.70% to 25.63%. This finding contrasts with Schlie’s results using
the Garmin Fenix 7 in outdoor tests, where the watch slightly
underestimated LT Pace (Schlie et al., 2024). This discrepancy
may stem from the differences in testing environments. Schlie’s
measurements were taken on an outdoor track, while this study
was conducted on a treadmill within a laboratory setting. Previous
evidence suggests that treadmill running tends to elicit lower
blood lactate concentrations at submaximal speeds. And a subtle
mismatch between actual pacing and perceived exertion has
been reported, indicating that treadmill-based pacing may feel
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different to participants despite similar physiological responses
(Miller et al., 2019).

Additionally, the study found that although the three
smartwatches had a high accuracy in predicting LT HR, their
regression analysis performance was poor (R2 = 0.02–0.45, r =
0.13–0.67) and notably wide limits of agreement. This phenomenon
suggests that the high accuracy might not all stem from the
validity of the predictive algorithms in the watches but rather
from the concentration of different LT HR data distributions,
potentially overlooking individual differences among runners.
Moreover, this could be influenced by smartwatch manufacturers’
strategies, as showing higher LT HR may push training intensities
beyond what runners can comfortably sustain. The conservative
approach likely aims to ensure safety. For LT Pace, the watches
showed a moderate correlation in regression analysis (r =
0.73–0.88), but the actual prediction accuracy was not high.
Therefore, although the smartwatches demonstrated acceptable
average accuracy in estimating LT HR, the wide individual
variability and limits of agreement suggest that their outputs
may still lead to misclassification of physiological training zones,
particularly near threshold boundaries (Iannetta et al., 2018).
For LT Pace, a systematic overestimation was observed, which
further contributes to the risk of distorted intensity guidance. For
runners who require precise intensity control, such inaccuracies
could result in excessive training loads or insufficient recovery,
potentially impairing long-term performance and increasing
the risk of injury or overtraining. While smartwatches offer
convenience and the ability to monitor general training trends,
their outputs should be interpreted with caution when applied
to individualized training programs. Given the potential for zone
boundary distortion and physiological variability (Iannetta et al.,
2023), relying solely on device-generated thresholds may
result in inappropriate intensity prescription. Athletes and
recreational runners alike are advised to complement wearable
data with subjective indicators, ensuring a more holistic and
adaptive approach to training regulation.

4.5 Limitation

The present study encounters some challenges with variability
in data samples among different watches. First, the data for the
Coros® watch, although providing valuable insights, is relatively
minor compared to those for other watches, which might influence
the extrapolation of the findings. Second, a portion of participants
experienced smartwatch test failures, in which the device failed
to generate LT HR or LT Pace values despite completing the
test. This may have influenced the accuracy and completeness
of the results. Third, the study measures runners’ LTs using
an indoor incremental load test, whereas the watch tests were
conducted outdoors. Environmental variables could have impacted
the results. Additionally, short-term physiological fluctuations in
participants may have contributed to day-to-day variability in LT.
Fourth, the devices differed in the methods of HR acquisition
during LT testing. Huawei® and Coros® relied on optical
PPG sensors, while Garmin® used an ECG-based chest strap.
LT estimation depends on accurate HR and speed dynamics.
PPG sensors are more susceptible to motion artifacts, which

may have affected detection performance during running. This
methodological variation could contribute to differences in device
accuracy. Future studies should standardize testing protocols,
harmonize heart rate monitoring methods, control for internal
and external sources of variability, and ensure balanced sample
sizes for each device.
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