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Hereditary transthyretin amyloidosis (ATTRv) results from genetic mutations
that destabilize transthyretin (TTR), leading to the formation of extracellular
aggregates and amyloid fibrils. A common pathological feature of ATTRv is
the capacity of TTR variants to evade endoplasmic reticulum quality control
(ERQC) and be secreted, underscoring the critical role of ER regulation in disease
pathogenesis. Notably, the TTR Gly83Arg mutation causes familial vitreous
amyloidosis, a subtype distinguished by abnormal TTR deposition in the ocular
vitreous cavity. Current therapies for ATTRv are ineffective in crossing the
blood-retinal barrier or in halting the progression of ocular amyloidosis. This
review summarizes the molecular mechanisms of ER-regulated TTR secretion
and explores potential causes of ocular amyloid deposition, aiming to provide
mechanistic insights into familial vitreous amyloidosis.
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1 Introduction

Approximately one-third of the human proteome is directed to the ER, where these
proteins must first be folded and assembled before being translocated to downstream
secretory pathways. ER proteostasis is primarily regulated by the ERQC pathway. This
mechanism maintains ER proteostasis by coordinating protein folding and degradation
pathways. As proteins enter the ER, folding pathways facilitate their proper folding and
assembly, packaging these mature proteins into vesicles for transport to downstream
secretory pathways, while misfolded or improperly assembled proteins are selectively
retained in the ER anddegraded by the ER-associated degradation (ERAD) pathway (Hwang
and Qi, 2018; Romine and Wiseman, 2020; Sun and Brodsky, 2019).

Although the ERQC pathway effectively monitors and removes misfolded proteins,
certain human diseases, such as hereditary amyloidosis, are caused by structurally
abnormal proteins that aggregate to form amyloid fibrils and deposit in tissues. In
hereditary amyloidosis, TTR is the most common cause, with over 140 different
mutations. TTR is a secretory protein; 90% of it is synthesized and secreted by the
liver, while 10% is synthesized by the choroid plexus and retinal pigment epithelium
(RPE) cells. It exists as a stable tetramer in circulation, transporting retinol (ROL)
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and thyroxine (T4) (Adams et al., 2023; Sanguinetti et al., 2022;
Si et al., 2021). A central pathological feature of ATTRv is that
the TTR variant can be secreted in a non-native tetrameric
conformation, which then dissociates into monomers and forms
amyloid fibrils. Furthermore, different variants display distinct
tissue-selective deposition patterns and associated pathologies
(Magalhães et al., 2021; Sanguinetti et al., 2022). Among these,
the TTR Gly83Arg mutation represents a unique TTR variant
recently identified in the Chinese population (including our team’s
preliminary work). All these patients exhibited ocular involvement,
primarily vitreous amyloidosis. Commonly referred to as familial
vitreous amyloidosis (He et al., 2022; Li et al., 2022; Liu et al., 2014;
Xie et al., 2017; Yin et al., 2014).

The release of amyloid proteins from tissues is a key driver in the
pathogenesis of ATTRv, and the endoplasmic reticulum (ER) plays a
crucial regulatory role in this process. In this review, we summarize
the mechanisms of ER-regulated TTR secretion and further explore
the pathological process of vitreous amyloid deposition.

2 TTR secretion is determined by the
activity of the endoplasmic reticulum
quality control pathway

ATTRv is caused by mutations in the TTR gene that disrupt
its native conformation, leading to the misfolding of the protein
and the eventual formation of amyloid fibrils. The ERQC regulates
TTR folding, trafficking, and degradation, and various TTR variants
may undergo differential regulation, resulting in tissue-specific
deposition patterns. Thus, the activity of ERQC pathways that
mediate TTR secretion determines its output. Within this control
framework, twomain factors influence the secretion of proteins into
the extracellular compartment (Chen et al., 2015).

One of the factors is the intrinsic energetic stability of protein
folding, which includes thermodynamic stability (the tendency to
acquire the folded conformation) and kinetic stability (the folding
rate). The energetic stability of a protein determines its ability to
adopt a folded conformation in ER homeostasis. This connection
between protein stability and protein secretion has been confirmed
in some TTR variants studies. Studies have found that patients with
the highly amyloidogenic and unstable TTR variant (TTR D18G)
do not show severe systemic pathological manifestations, presenting
only with late-onset central nervous system disorders. Further
cellular experiments revealed that in cells lacking endogenous TTR
expression, TTR D18G is recognized and degraded by ERQC,
reducing its secretion and extracellular aggregation. In contrast, the
highly amyloidogenic but moderately unstable TTR L55P variant
can escape ERQC as a tetramer, with secretion levels comparable
to those of the stable wild-type TTR. This characteristic results in
early-onset ATTRv, the most aggressive form in patients carrying
TTR L55P (Chen et al., 2015; Frangolho et al., 2020; Sekijima et al.,
2005; Sörgjerd et al., 2006). This implies that unstable TTR variants
can still fold in the ER to form stable conformations. Furthermore,
T4 and small molecules targeting the T4-binding pocket may also
enhance the stability of TTR variants. TTR, in its native tetramer
form, has two hydrophobic pockets bound to T4. However, only
one binding site can attach to T4 (Yin et al., 2014). The choroid

plexus may contain large amounts of T4 and lack competitive T4-
binding proteins (Dickson et al., 1987). In the rat choroid plexus
cells, TTR A25T is secreted into the cerebrospinal fluid (CSF) as
efficiently as wild-type TTR, and the addition of T4 enhances this
secretion. This indicates that T4 stabilizes the TTR variant, allowing
it to escape ERQC and be secreted into the CSF. However, the
relatively low levels of T4 in the CSF are insufficient to maintain
the stability of the TTR variant, ultimately leading to its dissociation
(Hammarström et al., 2003; Sekijima et al., 2003). Although T4 is
also found in the liver, high-affinity T4-binding proteins in the liver
competitively bind T4, thus reducing the amount of T4 available to
stabilize TTR variants (Hamilton and Benson, 2001; Sekijima et al.,
2005; Yin et al., 2014) (Figure 1).

Another factor is the activity of the protein folding and
degradation pathways in the ER, both of which influence the
non-native conformation of proteins. The balance between ER-
assisted folding (ERAF) and ERAD pathways significantly affects
the efficiency of TTR secretion (Sekijima et al., 2005;Wiseman et al.,
2007). Thus, while the ERQC system can recognize unstable TTR
variants and degrade them via the ERAD pathway, ERAD cannot
prevent the secretion of TTR variants capable of forming tetramers;
these tetramers can be secreted through the ERAF pathway.
For example, in transiently transfected cells that do not express
endogenous TTR, ERQC captures and prevents the secretion of
monomeric forms of stable, early-onset TTR variants (such as TTR
V30M) but allows the secretion of their tetrameric forms (Sato et al.,
2007). Different tissues collectively influence protein secretion by
regulating their ER protein folding, translocation, and degradation
pathways.This regulation adapts to tissue properties, environmental
conditions, or metabolic demands. The effect is mediated by the
unfolded protein response (UPR) (Figure 1).

3 Regulation of TTR by the unfolded
protein response

The UPR comprises three key endoplasmic reticulum
transmembrane proteins: protein kinase R-like ER kinase (PERK),
inositol-requiring enzyme 1 (IRE1), and activating transcription
factor 6 (ATF6) (Karagöz et al., 2019). When misfolded proteins
accumulate and induce endoplasmic reticulum stress (ERS), BiP
preferentially binds to these proteins, thus promoting the IRE1,
PERK, and ATF6 signaling pathways (Figure 2). In the early stages
of the UPR, adaptive reorganization of endoplasmic reticulum
homeostasis occurs, enhancing cellular physiological functions.
This remodeling can ease ERS and restore the homeostasis of the ER
protein folds. However, when chronic or severe ER damage takes
place, the PERK and IRE1 signaling pathways suppress adaptive
responses and initiate apoptosis (Iurlaro and Muñoz-Pinedo, 2016;
Hetz et al., 2020; Preissler and Ron, 2019). Here, we focus solely on
the role of the UPR in regulating TTR secretion and extracellular
aggregation.

Ensuring the activity of ERQC pathways is essential for
maintaining ER proteostasis. Consequently, dysregulation of ERQC
pathways in target tissues (e.g., ERS) may disrupt ER proteostasis
and contribute to the development of amyloidosis (Romine and
Wiseman, 2020). The conventional view holds that the primary
function of ER proteostasis is to prevent the secretion of misfolded
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FIGURE 1
Schematic of TTR secretion and extracellular aggregation.

FIGURE 2
Effect of UPR on TTR secretion.
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or non-native conformational proteins. However, the secretion
of such aberrant proteins may serve as a protective mechanism
to lessen the burden of ERS. Specifically, the secretion of non-
native conformation TTR variants may represent a compensatory
mechanism initiated by cells to restore ER proteostasis during
ERS. For example, small-molecule fluorogenic TTR ligands emit
fluorescence upon binding to and forming covalent linkages with
TTR tetramers. Using these molecules, researchers discovered that
unstable TTR variants (such as TTR A25T) can be secreted both
in their native tetramers and in non-native conformations. In a
mammalian cell culture model, although thapsigargin (Tg) induced
ERS, the total TTR A25T decreased while TTR aggregates in the cell
culture medium increased (Chen et al., 2016). Notably, Tg-induced
ERS promoted the secretion of TTR in non-native tetrameric
conformations, and these aggregates are typically closely associated
with distal toxicity in the pathogenesis of TTR amyloidosis.
This ERS-dependent increase in the secretion of non-native TTR
explains why the dysregulation of ERS markers in the liver
promotes TTR aggregate deposition. This mechanism is further
supported by observations in domino liver transplants from
ATTRv donors, where recipients show accelerated TTR amyloid
deposition (Lladó et al., 2010). ERS can disrupt ER proteostasis. The
imbalance in ER proteostasis alters the conformational integrity of
TTR and promotes its secretion, ultimately leading to the formation
of extracellular amyloid fibrils.

To counteract ERS, cells primarily activate the UPR to remodel
ERQC, therebymaintaining ERproteostasis and ensuring the proper
folding of TTR while effectively preventing the abnormal secretion
and extracellular aggregation of misfolded TTR. (Wiseman et al.,
2022) (Figure 2). Research shows that the ATF6 signaling pathway
can preferentially reduce the secretion of unstable and aggregation-
prone TTR variants. In cell culture models, activation of ATF6
significantly decreased the secretion of TTR aggregates and their
subsequent accumulation, even independently of ERS (Chen et al.,
2014). Further studies monitoring tetramers, aggregates, and total
TTR in the conditioned medium of cells revealed that ATF6
activation did not alter the conformation of TTR secreted by
mammalian cells. Instead, it enhanced the interaction of unstable
TTR with ER chaperones such as BiP and PDIA4, promoting the
retention of unstable TTR in the ER and thereby reducing the
total amount of secreted protein, ultimately lowering the levels
of TTR aggregates in the conditioned medium. In contrast, Tg-
induced ERS reduced TTR tetramers in the conditioned medium
but increased the secretion of TTR aggregates. Additionally, the
study uncovered the synergistic role of ATF6-regulated BiP and
PDIA4 in modulating TTR secretion; however, the regulatory
effects varied across cell types. For example, PDIA4 reduced the
secretion of unstable TTR variants in human embryonic kidney
293T cells (HEK293T) and human hepatocellular carcinoma cells
(HepG2), whereas BiP overexpression exhibited a similar effect
only in HEK293T cells (Mesgarzadeh et al., 2022). Similarly, the
XBP1 signaling pathway is also involved in regulating the folding,
transport, and degradation of unstable, aggregation-prone proteins
through a mechanism similar to that of the ATF6 signaling pathway
(Romine and Wiseman, 2020; Shoulders et al., 2013).

In contrast to the ATF6 and IRE1/XBP1 pathways, the PERK
signaling pathway is regulated through both transcriptional and
translational mechanisms during ERS. PERK activation induces

translational attenuation, which reduces the co-translational influx
of newly synthesized proteins into the endoplasmic reticulum. The
study found that in mammalian cells, compared to treatment with
Tg alone, the combined treatment with a PERK inhibitor and Tg not
only increased the secretion of total TTR A25T but also altered its
conformational distribution: the secretion of the native tetrameric
form decreased, while the non-native conformations (mainly
existing as soluble oligomers) increased. Similarly, the conformation
of the stable wild-type TTRwas also affected by PERK.This suggests
that the PERK signaling pathway plays a crucial role in determining
extracellular proteostasis by regulating the conformational integrity
of TTR (Romine and Wiseman, 2019). Since secretory proteostasis
depends on the UPR, dysregulation of the UPR in cells that produce
pathological amyloidogenic proteins may inadvertently make the
extracellular environment more vulnerable to ER stress-mediated
toxic protein aggregation. Therefore, remodeling ER proteostasis
can effectively decrease the secretion and extracellular aggregation
of TTR variants without impacting wild-type TTR secretion (Plate
and Wiseman, 2017). Targeting UPR-dependent ER regulation,
especially the ATF6 signaling pathway, offers a novel strategy to
reduce the secretion and toxic aggregation of proteins linked to
ATTRv pathology.

4 TTR secretion mechanism in
vitreous amyloidosis and research
prospects

In patients with ATTRv, ocular involvement typically occurs
in the later stages of the disease, with clinical manifestations
including vitreous opacities, chronic open-angle glaucoma,
abnormal conjunctival vessels, and keratoconjunctivitis sicca,
among others (Minnella et al., 2021). Notably, ocularmanifestations
vary significantly depending on the specific TTR mutation, and
even the same mutation site may exhibit inconsistent phenotypic
characteristics across different regional studies (Reynolds et al.,
2017). We have listed the TTR mutations associated with vitreous
amyloidosis (Table 1). In patients with familial vitreous amyloidosis
(e.g., those carrying the TTR Gly83Arg mutation), vitreous
opacities are typically the initial symptom, and ocular symptoms
usually appear earlier than neurological symptoms. Our recently
published study on the long-term follow-up of vitreous amyloid
deposition caused by the TTR Gly83Arg mutation demonstrated
a 100% incidence of vitreous opacity in mutation carriers, and
patients experience recurrence after vitrectomy (Chen et al.,
2025). Vitreous biopsy specimens from TTR Gly83Arg patients
showed prominent amyloid deposits on Congo red staining,
with immunohistochemistry confirming TTR amyloid deposition
(Liu et al., 2014). Furthermore, while liver transplant recipients
exhibited a significant reduction in serum levels of the TTR
variant, their ocular manifestations did not improve markedly
(Hara et al., 2010). In addition to hepatocytes, RPE can also
synthesize and secrete TTR. Therefore, the TTR amyloid deposits
in the vitreous cavity are not derived from the liver but are likely
produced by RPE cells. Current therapeutic strategies targeting
TTR synthesis, secretion, and extracellular aggregation, such
as liver transplantation, TTR gene silencers (including RNA
interference therapies [Patisiran and Vutrisiran] and antisense
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TABLE 1 Mutations associated with ocular involvement (www.amyloidosismutations.com).

Mutation Early or classic symptom(s) Reference

Cys10Arg polyneuropathy, vitreous opacities, cardiomyopathy Uemichi et al. (1992)

Ser23Asn Cardiomyopathy, vitreous opacities Connors et al. (1999)

Val30Met Polyneuropathy, vitreous opacities Ishida et al. (2017)

Val30Gly central nervous system, vitreous opacities Martin et al. (2014)

Phe33Cys vitreous opacities, cardiomyopathy Lim et al. (2003)

Phe33Ile vitreous opacities, polyneuropathy Jacobson et al. (1988)

Arg34Gly vitreous opacities Levy et al. (2012)

Lys35Thr vitreous opacities Long et al. (2012)

Ala36Pro polyneuropathy, vitreous opacities Jones et al. (1991)

Trp41Leu vitreous opacities Yazaki et al. (2002)

Gly53Ala polyneuropathy, vitreous opacities, cardiomyopathy Douglass et al. (2007)

Glu54Gly polyneuropathy, vitreous opacities Reilly et al. (1995)

Glu54Lys polyneuropathy, vitreous opacities Togashi et al. (1999)

Leu55Gln Glaucoma, vitreous opacities, polyneuropathy Yazaki et al. (2002)

Leu55Arg vitreous opacities, polyneuropathy Long et al. (2012)

Leu55Pro polyneuropathy, vitreous opacities Jacobson et al. (1992)

Leu58Arg carpal tunnel syndrome, vitreous opacities Saeki et al. (1991)

Phe64Ser vitreous opacities, polyneuropathy Uemichi et al. (1999)

Tyr69His polyneuropathy, vitreous opacities Schweitzer et al. (2009)

Lys70Asn carpal tunnel syndrome, vitreous opacities Izumoto et al. (1992)

Val71Ala carpal tunnel syndrome, vitreous opacities Almeida Mdo et al. (1993)

Gly83Arg vitreous opacities Xie et al. (2017)

Ile84Asn vitreous opacities, carpal tunnel syndrome, cardiomyopathy Skinner et al. (1992)

Ile84Ser carpal tunnel syndrome, vitreous opacities, cardiomyopathy Dwulet and Benson (1986)

Ala97Ser polyneuropathy, cardiomyopathy, vitreous opacities Tachibana et al. (1999)

Tyr114Cys polyneuropathy, vitreous opacities Ueno et al. (1990)

oligonucleotides [Inotersen]), and TTR stabilizers (including
Tafamidis, Difunisal, and Acoramidis) are only applicable for
treating ATTRv polyneuropathy or ATTRv cardiomyopathy
(Adams et al., 2023; Ando et al., 2022). Although trace amounts
of tafamidis have been found in the cerebrospinal fluid and vitreous
humor of treated patients, it has not been conclusively proven
that tafamidis effectively crosses the blood-brain barrier or blood-
retinal barrier (Monteiro et al., 2018). Our previous study showed
that vitrectomy provides temporary visual improvement but does

not stop the ongoing secretion and deposition of TTR variants. To
date, no clinical evidence has confirmed that any approved or novel
therapies can effectively delay the progression of ocular symptoms,
likely due to their inability to penetrate the blood-retinal barrier.

TTR G83R represents a distinct mutation type that can induce
vitreous amyloidosis, although the precise molecular mechanisms
underlying its amyloid fibril formation remain incompletely
understood. Based on current research, we have analyzed several
potential pathogenic mechanisms: First, as previously discussed in

Frontiers in Physiology 05 frontiersin.org

https://doi.org/10.3389/fphys.2025.1623185
http://www.amyloidosismutations.com/
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Meng and Cai 10.3389/fphys.2025.1623185

FIGURE 3
Structure of TTR-RBP complex. (a) Structure representation of the TTR-RBP complex. TTR: blue. RBP4: pink. Retinol: green. (b) Detail of the contact at
the residue level between TTR and RBP4.

this study, the ER proteostasis regulatory pathway can influence
TTR secretion and extracellular aggregation through multiple
mechanisms. Compared to other TTR variants, TTR G83R may
more easily escape the ERQC system, consequently leading to
amyloid deposition in the vitreous cavity.

Second, the vitreous may have a specific affinity for the TTR
G83R mutant protein. The structure of TTR indicates that residues
K80, L82, G83, and I84 are responsible for forming the EF
helical loops of the two subunits of the tetramer, and this region
mediates the interactions between the proteins (Ferguson et al.,
2021; Zanotti et al., 2008). Research shows that the G83R mutation
in TTR brings this subunit closer to the R62 residue of RBP,
significantly reducing the stability of the TTR-RBP complex due
to electrostatic repulsion, as both share the same charge (Liu et al.,
2014). The mutation replaces the neutral hydrophilic glycine with
a positively charged arginine at this position, likely enhancing
its anion-binding capacity. We know that the vitreous is rich in
hyaluronic acid, a polyanionic polymer synthesized and secreted by
vitreous cells (Bishop, 2000). Therefore, hyaluronic acid may adsorb
TTR G83R, which subsequently aggregates in the vitreous cavity to
form amyloid deposits.

Third, under normal physiological conditions, ROL absorbed
from dietary sources is stored as retinyl palmitate in hepatic stellate
cells (Martin Ask et al., 2021). When needed, ROL is released from
retinyl palmitate through hydrolysis by retinyl ester hydrolase
(Haemmerle and Lass, 2019; Wagner et al., 2020). The ROL is then
transported from stellate cells to hepatocytes via retinol-binding
protein 1 on the surfaces of both cell types. Within hepatocytes,
ROL binds to retinol-binding protein 4 (RBP4), forming the holo-
RBP4 complex, which subsequently associates with TTR to create
the ternary holo-RBP4-TTR complex (Figure 3). This complex is
then secreted from hepatocytes into systemic circulation. The holo-
RBP4-TTR complex delivers ROL to RPE cells, where it activates the
signaling receptor and transporter of retinol 6 on the cell surface
(Kawaguchi et al., 2007). After ROL enters RPE cells to participate
in the visual cycle, TTR and RBP4 return to systemic circulation for
metabolism by the liver and kidneys (Steinhoff et al., 2022; Yin et al.,
2014). Notably, TTR exhibits a very low affinity for RBP4 without
ROL. Upon delivery of ROL to the RPE by the holo-RBP4-TTR
complex, TTR dissociates from RBP4. In vitro studies demonstrate

that holo-RBP4 binds to TTR in a concentration-dependentmanner
to form a complex, which not only stabilizes the TTR tetramer but
also prevents its dissociation into selectively folded monomers that
are prone to fibril formation. More importantly, in the presence
of holo-RBP4, T4 exhibits a stronger inhibitory effect on fibril
formation compared to using either T4 or holo-RBP4 alone (White
andKelly, 2001; Yin et al., 2014). Furthermore, when the liver cannot
provide enough ROL, other organs can utilize circulating dietary
ROL (Nishimoto et al., 2020). A study demonstrated that retinol
binding protein receptor 2 (RBPR2) knockout mice supplemented
with dietary ROL have decreased retinoid levels in the eye
without pathological changes, while RBPR2 knockout mice not
supplemented with ROL develop thinning of the photoreceptor
layer, resulting in visual impairment (Radhakrishnan et al., 2022).
The ROL in the retina is primarily derived from the holo-RBP4-
TTR complex delivered to RPE cells via systemic circulation, while
a minor portion originates from dietary ROL that enters the
retina directly through the retinal capillary network. RPE cells may
compensate by secreting TTR to facilitate the transport of this
portion of ROL, and subsequent ROL release may predispose TTR
to aggregation.

In summary, there is a significant lack of precise treatment
options for vitreous amyloidosis. Future research should focus on
clarifying its pathogenesis, particularly exploring the regulatory
mechanisms of RPE cells that can produce TTR in the eye. A key
scientific question is whether specific regulatory factors exist in RPE
cells that can influence the conformational stability of TTR variants
and mediate their escape from the ERQC system. Additionally, in
our TTR Gly83Arg mutant mouse model, vitreous opacity was the
sole pathological manifestation, with amyloid deposition detected
exclusively in the vitreous while showing negative results in the
heart, liver, brain, and kidneys (Ran et al., 2018). This phenomenon
provides important support for the compensatory pathological
mechanism of the “liver-RPE axis,” whereby gene mutations lead
to insufficient TTR secretion by the liver, triggering negative
feedback regulation that induces compensatory TTR secretion
from the RPE to deliver dietary ROL and maintain visual cycle
function, and the subsequent release of ROLmay predispose TTR to
aggregation. Currently, the mechanism by which RPE cells regulate
TTR secretion is a key research priority for our team.
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5 Conclusion

The ERQC pathway can recognize and retain unstable TTR
variants to prevent their secretion. However, any factor that
enhances the stability of TTR variants in the ER or activates the
ER secretory pathway may allow TTR variants to escape from
the ERQC. These secreted non-native tetramers dissociate into
monomers, which then aggregate to form amyloid fibrils that
ultimately deposit in tissues and organs.

In familial vitreous amyloidosis, ocular involvement typically
appears as the first symptom. Importantly, the progression of
ocular amyloidosis is unaffected by liver transplantation, potentially
because the RPE continues to produce TTR variants locally.
Therefore, future research needs to investigate how ER regulates
the secretion and extracellular aggregation of TTR variants in
different tissues. Elucidating these mechanisms may help clarify
the tissue-specific causes of vitreous amyloidosis. Through such
efforts, we aim to identify specific biomarkers for monitoring
disease progression and guiding targeted therapeutic interventions
in vitreous amyloidosis.
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