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Climate change is a powerful driver of stress, as it reinforces hotter and 
drier environments. For bees, the most concerning aspects of these new 
environmental conditions are the resistance and resilience of bees to changes 
in temperature, humidity and ultraviolet radiation, as well as the negative effect 
on diversity of food resources which can lead in nutritional stress. The climatic 
vulnerability of various bee species and subspecies varies worldwide, as they 
experience varying levels of stress and display distinct behaviors, weaknesses, 
and lifespans. To understand these differences, it is crucial to consider both 
the genetics and epigenetics of bees, as these factors play a key role in their 
response, resistance, and adaptation to new stressors. This review provides 
a guide of genetic and epigenetic markers involved in the cellular response 
of Apis mellifera to most common stressors derived from climate change. 
Understanding how the various molecular mechanisms interact to restore 
homeostasis during the stress response is essential for designing future studies 
based on molecular markers.
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 1 Introduction

Honey bees are social insects of great ecological and economic importance, but 
they have experienced substantial losses over the last years due to the action of several 
interacting biotic and abiotic stressors. These include invasive alien predators, parasites 
and pathogens, pesticides, and climate change [reviewed by Zhao et al. (2021), Even et al. 
(2012)]. One of the main impacts of climate change is the intensification of extreme 
weather events, such as heavy rainfall, prolonged droughts, and heat waves (IPCC-
Intergovernmental Panel on Climate Change, 2007), which may severely impact honey 
bees’ wellbeing. On one hand, these events can indirectly affect honey bee nutrition 
by disrupting the availability of floral resources and reducing the quantity and quality 
of nectar and pollen [reviewed by Obeso and Herrera (2018)]. On the other hand, 
they can directly cause heat stress on honey bees, impairing their foraging efficiency
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and metabolic functions [reviewed by Zhao et al. (2021)]. Whether 
honey bees are able to adapt and survive changes in temperature, 
humidity, and ultraviolet (UV) radiation, and to a reduction in 
the quantity and diversity of food resources, is a question of 
utmost importance. However, the vulnerability of bees to climatic 
vagancies is not necessarily the same worldwide. Even in the 
same environment, different bee species and subspecies may suffer 
different stress levels and exhibit different behaviours, weaknesses 
and lifespans [reviewed by Zhao et al. (2021)]. This would mean that 
bee species and subspecies may differ in their ability to adapt, resist 
and be resilient to environmental changes.

Genetic variability is key to resistance and adaptation in stressful 
environments. Several candidate Single Nucleotide Polymorphisms 
(SNPs) mapped to genes involved in reproduction, immunity, 
olfaction, circadian rhythm, lipids biosynthesis and storage were 
linked to local adaptation in the western honey bee Apis mellifera
(Chávez-Galarza et al., 2013; Wallberg et al., 2014; Chen et al., 2016; 
Henriques et al., 2018). However, beyond genetic determination, 
complex interactions between genetic and epigenetic factors 
are known to shape the diversity of organismal phenotypes 
(West-Eberhard, 2003). A phenotype can change in response to 
environmental signals without altering its genotype, resulting in 
modifications to an organism’s physiology and behaviour. This 
ability is called “phenotypic plasticity” and is remarkably developed 
in A. mellifera, which can respond to environmental cues to generate 
dramatically distinct phenotypes, such as queens or workers, 
through nutritional stimuli such as royal jelly (Winston, 1991; 
Corona et al., 2016). Interestingly, the A. mellifera genome has 
been described as structured with respect to plasticity, where stress-
related genes are organised into clusters that show coordinated gene 
expression in response to environmental changes (Duncan et al., 
2020). In addition to epigenetics, RNA processing mechanisms 
are also involved in phenotypic plasticity; splicing is the process 
by which introns are removed from a gene’s primary transcript, 
resulting either in a single functional protein (constitutive splicing) 
or in various structurally and functionally isoforms (alternative 
splicing). Alternative splicing (AS) can be triggered by physiological 
needs and environmental stimuli, often representing a primary 
source of phenotypic diversity within the proteome of eukaryotic 
cells [reviewed by Ast (2004), Blencowe (2006), Maniatis and 
Tasic (2002)]. It also plays a key role in cellular stress tolerance 
[reviewed by Biamonti and Caceres (2009)].

Genetic studies are a valuable tool to understand the effects of 
stressors on different molecular mechanisms. This review proposes 
genetic markers for Apis mellifera focusing mainly on climate change 
stressors such as temperature, humidity, UV exposure and food 
scarcity. These markers belong to different molecular mechanisms 
summarized in Figure 1, ranging from genetics to epigenetics, 
and affecting an organism´s phenotype. Thus, it can serve as 
a basis for designing new studies that consider the relationship 
with the stressor(s), as well as the type of gene expression 
(constitutive or inducible), splicing-related processes (key in PCR 
designs based on RNA) and epigenetic factors that might affect 
gene expression. In addition, the knowledge of the role of each 
marker in the corresponding cellular pathways will help future 
studies to select accurate molecular markers and correctly interpret
the results.

2 Methods

This review was based on a published bibliography of original 
articles, reviews, book chapters and web pages obtained from 
scientific sources such as PubMed (PubMed, 2025), Scopus (Scopus, 
2025), Google Scholar (Google Scholar, 2025), and Web of Science 
(Web Of Science, 2025). Candidate search terms are shown in 
Supplementary Material (Supplementary Table S1).

Gene descriptions and nomenclature follow the conventions 
established by NCBI. Given that the Apis mellifera genome 
has been characterized as organized in clusters associated 
with phenotypic plasticity (Duncan et al., 2020), the genetic 
markers referenced throughout this study were visualized as loci 
mapped onto their respective chromosomes (Figure 2). This was 
accomplished using the R package chromoMap v0.4.1 (Anand and 
Rodriguez Lopez, 2022). Such spatial representation of genomic 
features may prove instrumental for future research, particularly 
when selecting genetic markers based on their chromosomal
location.

3 What is stress for honey bees?

Although the term “stress” is commonly understood to have a 
negative connotation, stress is a natural state pervasive in all known 
biological systems. These systems maintain a complex dynamic 
equilibrium called homeostasis that is vulnerable to destabilization 
in the presence of stressors. After many years of controversy, stress 
is defined as a “state of homeostasis being challenged,” and stressors 
as “the factors with the potential to directly challenge homeostasis” 
[reviewed by Lu et al. (2021)]. An optimal stress level plays a 
key role in the health and adaptability of organisms. Depending 
on the level of exposure to the stressor(s), stress can be classified 
as: (i) distress (or bad stress), which occurs when the state of 
homeostasis is severely challenged by high levels of stress, inducing 
a severe response that impairs homeostasis and threatens health; 
(ii) sustress (or inadequate stress), which is the consequence of 
inappropriate stressor effects that do not challenge homeostasis but 
undermine its capacity, and threaten health, and (iii) eustress (or 
good stress), in which the system is mildly challenged by moderate 
levels of stressors, inducing a mild response, enhancing the buffering 
capacity of homeostasis and benefiting health [reviewed by Lu et al. 
(2021)]. Previous terminology defined “physiological” stress as 
encompassing environmental stress, intrinsic developmental stress 
and ageing [reviewed by Kagias et al. (2012)], initially understood as 
eustress. However, if an organism is unable to cope with one or more 
of these stressors, the level of stress increases (distress) and becomes 
pathological.

Regardless of its type or intensity, stress has various 
consequences at different levels. In honey bees, these consequences 
can be observed in their behavioral, physiological, and cellular 
responses. The first consists of the term “fight-or-flight.” For 
example, sting extension has been used to evaluate sensitivity to 
stressors in honey bees. This behaviour is widely considered to be 
indicative of stress as well as an aggressive response. Physiological 
responses include hormone and neurotransmitter levels. Finally, 
cellular responses consist of the activation of several molecular 
mechanisms to control the stressful state and restore the damage. 
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FIGURE 1
Overview of the genetic and cellular processes that lead to phenotypic changes. Cellular biomarkers include genes related to stress resistance 
(genotypes and gene-expression levels), epigenetic factors influencing gene expression, detection of mRNA variants produced by alternative splicing 
(AS), and the study of the corresponding synthetized proteins and their role in the different stress-related pathways such as heat shock response, 
immunity, metabolism and RedOx homeostasis. All of these characteristics confer different phenotypic plasticity to each individual.

Perhaps the best known and most studied cellular response is the 
production of stress-related proteins, such as Heat Shock Proteins 
(HSPs) and antioxidant enzymes, known as stress biomarkers 
(review by Even et al. (2012)]. At all these levels, cells and systems 
use different strategies to respond and adapt to environmental 
changes. Suppose these strategies are effective in coping with the 
stressful situation. In this case, the organism would undergo a 
process of adaptation, enabling it to survive and reproduce under 
new conditions. 

4 Temperature

Rising temperature is one of the main effects of climate change 
(IPCC-Intergovernmental Panel on Climate Change, 2007) and is of 
concern because temperature is one of the most stressful abiotic 
stresses on living organisms. But in addition to the effects of 
temperature on individual organisms, the consequences for an entire 
biocenosis depend on how each organism changes to adapt. For 
example, changes in temperature are affecting the hibernation cycle 
of honey bees (which would affect pollination, and hence plant 
reproduction), but also the timing and amount of flowering (which 
changes the availability of food resources for bees) (Obeso and 
Herrera, 2018). This example is very important because nutritional 
stress is an important indirect stressor to honey bees from rising 
temperatures [reviewed by Quinlan and Grozinger (2023)] and is 
discussed in section 7 of this review.

Focusing only on honey bees, the effect of temperature must 
be analysed from two perspectives: as a super-organism (colony) 
and at the individual level (single bee). In both cases, honey bees 
have developed mechanisms to resist stress and restore homeostasis. 
As a super-organism, they can regulate the temperature inside the 
colony, maintaining it constant at approximately 35 °C. In a cold 
environment, all the bees cluster around the queen and brood 
to generate and maintain heat (Southwick, 1985; Southwick and 
Heldmaier, 1987). In a warm environment, the colony employs 
a combination of ventilation, achieved through coordinated wing 
fanning by honey bees at hive entrance (at a rate of up to 60 L/min), 
and evaporative cooling, achieved through the use of water from the 
bee´s bodies to create droplets that cool down the nest (Southwick 
and Heldmaier, 1987; Jones and Oldroyd, 2006). All these actions at 
the community level require also actions at the individual level. Here, 
cellular mechanisms are key to coping with temperature changes.

Heat stress negatively impacts key biological processes in honey 
bees, including physiological and behavioral development and 
immunocompetence (Bordier et al., 2017; Medina et al., 2018; 
Alqarni, 2020; Greenop et al., 2020). It is worth mentioning 
that the impact of heat stress on honey bees and their defence 
mechanisms vary across species and even subspecies [reviewed by 
Abou-Shaara et al. (2017), Zhao et al. (2021)]. In Apis mellifera, 
two of the 31 currently recognized subspecies (Ruttner, 1988; 
De la Rúa et al., 2009), A. mellifera ligustica (native to Italy) and 
A.m. carnica (native to the Balkan region), have been the focus of 
several comparative studies due to their widespread commercial use 
beyond their native ranges. A study on thermal limits and metabolic 
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FIGURE 2
Genomic map in Apis mellifera. Distribution of genes related to (A) heat shock response (Supplementary Table S2), (B) other heat stress-related 
pathways (Supplementary Table S3), (C) humidity (Supplementary Table S4), (D) Ultraviolet exposure (Supplementary Table S5), (E) nutrition 
(Supplementary Table S6), and (F) epigenetics (Supplementary Table S7). The figures were created using the R package chromoMap v0.4.1 (Anand and 
Rodriguez Lopez, 2022). The chromosomes were annotated using the honey bee reference genome Amel_HAv3.1.

rates showed that A .m. ligustica foragers are more tolerant to high 
temperatures than A. m. carnica (Kovac et al., 2007), suggesting 
that the Italian honey bee is better fit for warmer climates. In 
Saudi Arabia, several studies have compared the two commercial 
subspecies with the native A. m. jemenitica, which evolved in semi-
arid and desert environments. Interestingly, all the studies showed 
that A. m. ligustica and A. m. carnica had lower heat tolerance 
and survival rates than A. m. jemenitica (Abou-Shaara et al., 2012; 
Alattal et al., 2015; Alqarni et al., 2019). In another study comparing 
the native subspecies of Algeria, A. m. sahariensis and A. m. 
intermissa, a differential response to heat stress was also found. 
Interestingly, A.m. sahariensis, the subspecies adapted to the desert 
environment with extreme temperatures, reacted better to heat than 
A.m. intermissa, the subspecies native to the southern shore of the 
Mediterranean, where the average temperatures are comparatively 
milder (Khedidji et al., 2024). As for interspecific variability, a study 
in China showed a higher temperature adaptability in Apis cerana
than in A. mellifera. However, the contrary was observed on survival 
assays; under constant heat and humidity, A. mellifera showed higher 
survival rates than A. cerana (Li et al., 2019). These findings suggest 
that variations within the genus Apis must be studied to understand 

the different thermotolerances and metabolic responses to heat 
stress, as well as the expected differential transcriptional regulation. 
However, there are still many honey bee species and subspecies for 
which no information is available. 

4.1 Heat shock response

Heat is a highly negative stressor that alters important 
cellular structures and mechanisms, including actin filament 
organisation, protein aggregation, disruption of intracellular 
transport, fragmentation of the Golgi and endoplasmic reticulum, 
altering membrane-bound organelles, RNA splicing, ribosomal 
activity and translation, and ultimately leading to cell cycle arrest 
and stagnation of growth and proliferation [reviewed by Richter et al. 
(2010), Morimoto (2011)]. Due to its highly detrimental impact 
on cell integrity, heat triggers a quick and robust heat shock 
response (HSR) at the molecular level. This response involves the 
activation of heat shock genes encoding heat shock proteins (HSPs), 
antioxidant metabolism genes, and genes associated with alternative 
pathways related to heat stress (Figure 3). Activation of the HSR 
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FIGURE 3
General outline of heat stress in Apis mellifera showing related genes. One stressor, like heat, triggers the heat shock response (HSR) when proteins 
denaturation occurs. The HSR starts with the activation of Heat shock Factor (HSF), a transcription factor that induces the expression of heat shock (HS) 
genes. These genes encode various chaperones (HSP90, HSP70, HSP60 or chaperonines, HSP40 and small HSPs), which assist in refolding denatured 
proteins. Specially HSP40 (DnaJ) also regulates the expression of many antioxidant and HS genes. Stressors typically generate ROS, whose levels are 
controlled by antioxidant enzymes (AO). The genes encoding these enzymes can be activated by the presence of ROS, the action of DnaJ proteins 
(HSP40), the Nuclear Factor-Y (NF-Y), and Serine Proteases (SPs). Black, purple and yellow stars indicate alternative splicing (AS), involvement in 
immune pathways, and relationship with antioxidant metabolism, respectively.

enhances cellular resistance to stress, a phenomenon known as 
thermotolerance [reviewed by Calderwood and Ciocca (2008)]. 
Thermotolerance is defined as the temperature range between the 
lowest temperature (critical thermal minimum, CTmin) and the 
highest temperature (critical thermal maximum, CTmax) at which 
an organism can maintain muscle control [reviewed by Perez and 
Aron (2020)]. Consequently, thermal tolerance and its degree of 
plasticity play key roles in determining the geographical distribution 
of species.

However, the HSR is not triggered by heat per se but by the 
presence of unfolded proteins that result from a variety of stresses 
(Figure 3), including oxidative stress, heavy metals, ethanol or other 
toxic substances [reviewed by Richter et al. (2010)]. Therefore, some 
of the genes related to thermal stress will also be involved in another 
kind of resistance or adaptation associated with different stressors. 
On the other hand, the AS mechanism is also important in the HSR 
(Fujikake et al., 2005; Ruan et al., 2015) due to the generation of 
new and different isoforms relevant to function under new stressful 
conditions.

The temperatures experienced by honey bees during their 
normal activity result in a strong induction of HSR (McKinstry et al., 

2017). The HSR usually starts with the activation of Hsp genes 
through transcriptional factors, the heat shock factor (HSF) family, 
which specifically bind to the heat shock element (HSE) in the 
promoter region of the Hsp genes, and regulate their activity in 
normal conditions [reviewed by Morimoto (2011), Garbuz (2017). 
Therefore, the HSF family is considered a transcriptional activator 
of all significant Hsp genes, and it is required in the regulation of 
various environmental stresses [reviewed by Zhang et al. (2011), 
Wu (1995), Zou et al. (1998)]. Four Hsf-related genes have been 
described in A. mellifera (Supplementary Table S2), and changes in 
their expression have been observed in honey bees suffering from 
heat stress (McKinstry et al., 2017; Al-Ghzawi et al., 2022). 

4.1.1 Heat shock proteins
The key to HSR lies in the heat shock proteins (HSPs), which 

are proteins that protect or restore cellular structures or components 
that are prone to damage by heat shock. Not surprisingly, there is 
a broad functional classification of these stress-inducible proteins, 
such as molecular chaperones, components of the proteolytic 
system, RNA- and DNA-modifying enzymes, metabolic enzymes, 
regulatory proteins (like transcription factor or kinases), proteins 
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involved in sustaining cellular structures such as cytoskeleton, and 
finally, transport, detoxifying, and membrane-modulation proteins 
(Richter et al., 2010). Under moderate stress, the synthesis of HSPs 
is the basis of resistance to such stress and may even provide “cross-
protection” against other types of stress (Lindquist, 1986).

The most well-known HSPs are the molecular chaperones, both 
because they were the first to be discovered and because they 
are the most studied in relation to thermal stress. Their primary 
function is to assist in the folding and unfolding of proteins, and they 
are usually classified according to their molecular weight: HSP100 
(78–104 kDa), HSP90 (82–96 kDa), HSP70 (68–78 kDa), HSP60 or 
chaperonins (60 kDa), HSP40 or DNAj domain proteins (40 kDa) 
and small HSPs (sHSPs) or α-crystallin proteins (10–30 kDa) 
[reviewed by Garbuz (2017)]. Another classification of HSPs is 
based on the pattern of gene expression of the corresponding genes, 
which may be inducible or constitutive. Inducible Hsp genes are 
typically expressed at extremely low levels, but under stress, their 
transcription intensity increases by a factor of several hundred 
or several thousand relative to baseline. Contrarily, constitutive 
Hsp genes are expressed at relatively high levels even under 
normal temperatures (they are supposed to possess a physiological 
function), and their transcription increases only several-fold under 
stress (Pardue et al., 1980). In honey bees, HSPs seem to serve 
a significant role in their responses to abiotic stressors (Table 1), 
like high and low temperature, dehydration, UV radiation, and 
starvation (Kim et al., 2019). The most important HSPs involved in 
HSR in A. mellifera are HSP90, HSP70, HSP60, HSP40, and small 
HSPs (sHSPs) [reviewed by Abou-Shaara (2024)].

Among the many HSP families, HSP90 is one of the most 
abundant and universally expressed stress proteins. Hsp90 gene 
is generally overexpressed during HSR (Brunt and Silver, 1991; 
Pratt and Toft, 2003; Sonoda et al., 2007), and has also been 
related to morphological evolution (Rutherford and Lindquist, 
1998; Sollars et al., 2003; Specchia et al., 2010), reproduction, and 
brain development (Itoh et al., 1993; Izumoto and Herbert, 1993; 
Furay et al., 2006; Johnson and Brown, 2009). In A. mellifera, 
Hsp90 is caste- and age-specifically expressed in adult bees (Aamodt, 
2008), suggesting that Hsp90 is expressed constitutively. In the 
genome of A. mellifera, two homologous cytoplasmic Hsp90 genes 
are described, Hsp83 and Hsp90, which are located in linkage group 
1 (LG1) and LG7, respectively (Supplementary Table S2). These two 
genes produce two transcripts (A and B) by constitutive splicing 
(transcribed from the homolog in LG1 and LG7, respectively). 
Moreover, at least nine transcripts have been described from the LG7 
gene by the AS under stress conditions (Xu et al., 2010).

HSP70s are a large family of ubiquitous molecular chaperones 
that protect cells from the damaging effects of many proteotoxic 
stresses [reviewed by Hendrick and Hartl (1993), Voos and 
Röttgers (2002), Richter et al. (2010), Walter and Ron (2011), 
Rosenzweig et al. (2019)]. Hsp70 genes are inducible, have no or 
relatively short introns and are preferentially translated, allowing 
HSP70 proteins to accumulate rapidly in response to adverse 
environmental stimuli (Gkouvitsas et al., 2009; Sørensen, 2010; 
Zhang and Denlinger, 2010). There are no relevant data about 
the genetic variability of Hsp70 in A. mellifera, and three genes 
are annotated in its genome: Hsp70Ab-like, Hsp70Cb, and the 
mitochondrial Trap-1 (Supplementary Table S2). Furthermore, the 
expression of Hsp70 genes is upregulated in response to many 

stressors (Hendrick and Hartl, 1993), and it seems to be a good 
indicator of colony stress in different A. mellifera subspecies 
(Alqarni et al., 2019; Morammazi and Shokrollahi, 2020).

Within the HSP70, there is another group of proteins 
called “cognate forms” or HSC70. The HSC70 protein family is 
structurally and functionally similar to HSP70, but its properties are 
different (Liu et al., 2012). Hsc70 genes are constitutive, and their 
corresponding proteins are involved in regulating the life cycle of 
various viruses, as it has been described in “Immunity” section. 
These genes contain more introns than those of Hsp70, and their 
number is conserved in vertebrates but it is variable in invertebrates 
(Chuang et al., 2007). In A. mellifera there are three annotated 
Hsc genes (Supplementary Table S2) and two of them have been 
linked to heat stress. HSC70-3 is a conserved endoplasmic reticulum 
chaperone (Pincus et al., 2010; Walter and Ron, 2011; Johnston et al., 
2016; McKinstry et al., 2017) which is induced in honey bees under 
heat stress (i.e., 45 °C for 4 h) (McKinstry et al., 2017). Although 
viral infections alone induce Hsc70-3 expression, heat shock alone 
did not always lead to overexpression. However, honey bees that 
were both virus-infected and heat-shocked displayed greater Hsc70-
3 expression (McMenamin et al., 2020). On the other hand, Hsc70-4
is a core heat shock response gene that is induced by exposing 
honey bees to heat stress (i.e., 42 °C and 45 °C for 4 h) (Elekonich, 
2009; Mahat et al., 2016; Solís et al., 2016; McKinstry et al., 
2017). There is some heterogeneity in the expression of this 
gene, and genetic differences between subspecies may be one of 
the causes (McMenamin et al., 2020). The antiviral effect of both 
HSC70-3 and HSC70-4 proteins is due to the relationship between 
heat shock and RNAi machinery (discussed in the “Immunity” 
section below).

Chaperones of the HSP60 family are one of the most important 
components of the protein folding system in the mitochondrial 
matrix (Martin, 1997). HSP60, or chaperonins, forms a large homo-
oligomeric protein complex with an inner cavity that provides a 
protected environment for the ATP-dependent folding of unfolded 
or newly synthesized single proteins or protein domains (Voos 
and Röttgers, 2002). HSP60 works with the cochaperone HSP10 
(Voos and Röttgers, 2002), which is supposed to coordinate the 
behaviour of the single HSP60 monomers and regulate the ATPase 
cycle (Martin et al., 1993). In A. m. ligustica, highly expressed 
Hsp60 has been described at 45°C (Alqarni et al., 2019), and Hsp60
and Hsp10 under heat and cold stress (Kim et al., 2019). In the 
genome of A. mellifera, there is one gene for each HSP60 and 
HSP10 protein (Supplementary Table S2).

The group of HSP40/J-domain-containing proteins are the 
largest class of HSP70 cofactors. They bind the nonnative protein 
and deliver it to HSP70. The J domains of these proteins interact with 
the ATPase domain of HSP70 and stimulate the hydrolysis of bound 
ATP (Kampinga and Craig, 2010). HSP40 is categorized into three 
subfamilies, namely, DnaJA, DnaJB, and DnaJC (Craig et al., 2006; 
Kampinga and Craig, 2010; Craig and Marszalek, 2017; Zhao et al., 
2021). DnaJA1 regulates the expression of many antioxidant genes 
and heat shock genes (Figure 3), thereby improving the antioxidant 
ability of bees under heat stress (Li et al., 2020a). It is important 
to note that the expression levels of DnaJA1, DnaJB12 and DnaJC8
are upregulated under UV radiation, cold, and pesticide treatment 
in A. cerana cerana, and their silencing attenuates the resistance of 
this subspecies to λ-cyhalothrin stress (Li et al., 2018a). Within the 
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genome of A. mellifera there are 18 genes of the DnaJ family (Protein 
lethal (2) essential for life-like) (Supplementary Table S2).

Finally, small HSPs (sHSPs) are a wide family of proteins 
involved in HSR but also have protective functions under different 
stresses, such as cold, drought, oxidation, hypertonic stress, 
UV, heavy metals, and even stress by high population density 
(Dasgupta et al., 1992; Wang et al., 2007; Waters et al., 2008; 
Shih et al., 2021). It is important to note that some sHSPs also 
have a chaperone function in development (Sun and MacRae, 2005). 
Thus, their corresponding genes appear to be a family of both 
constitutive and inducible genes. Unfortunately, at present, there is 
no formal classification of this gene family in A. mellifera according 
to the pattern of gene expression. Interspecific genetic variability 
has been described in the genes coding for small HSPs. Insect 
sHSPs are generally species-specific, suggesting that functions of 
most sHSPs may have diverged across species. This variability likely 
reflects the role of sHSPs in the adaptation of insects to diverse 
ecological niches (Li et al., 2009). The C-terminal sequences of 
these proteins harbours the conserved α-crystallin domain, while 
the N-terminal remain variable. This indicates that the conserved 
C-terminal has a significant part in sustaining the chaperone and 
other functions, whereas the N-terminal may be associated with 
diverse expressions, functions, and evolutionary patterns within 
sHSPs (Li et al., 2009). On the other hand, most sHSP genes that 
are located on a single chromosome are usually arranged in tandem. 
This arrangement may enable organisms to rapidly respond to 
changing environmental conditions due to regulatory advantages. 
Tandem sHsp genes may be a better way for insects to regulate 
gene expressions in diverse environments (Li et al., 2009). In the 
A. mellifera genome there are eight sHsp genes annotated as protein 
lethal (2) essential for life (Supplementary Table S2). 

4.2 Other genes related to heat stress

4.2.1 Nuclear Factor-Y
The Nuclear Factor Y (NF-Y), also known as Heme Activator 

Protein (HAP) or CCAAT-Binding Factor (CBF), consists of three 
distinct subunits (NF-YA, NF-YB, and NF-YC) which are found 
in almost all organisms (Li et al., 2018b; Myers and Holt, 2018). 
Each animal NF-Y subunit is typically encoded by only one gene, 
the product of which can undergo different post-translational 
modifications and have various splicing forms (Li et al., 1992; 
Mantovani, 1999; Fujikake et al., 2005). In Drosophila melanogaster, 
NF-Y is essential for the growth and development of the thorax, eye, 
and R7 photoreceptors, as it regulates multiple signalling pathways, 
such as the extracellular signal-regulated kinases (ERK) and the c-
Jun N-terminal kinases (JNK) pathways (Yamaguchi et al., 2017; 
Li et al., 2018b). In bees, the expression levels of NF-YA, NF-YB, and 
NF-YC are induced by long- and short-term heat stress in A. c. cerana
and A. mellifera (Zhao et al., 2021). In A. c. cerana, the knockdown of 
NF-YB and NF-YC decreases the antioxidant capacity and increases 
the oxidative damage caused by heat (Figure 3). Upregulation of NF-
Y may increase the heat resistance of bees under different heat stress 
conditions by reducing oxidative damage and enhancing antioxidant 
ability (Li et al., 2020b). The expression of NF-YA, NF-YB, and NF-
YC in A. mellifera is not only induced by heat but also by several 
stress conditions (Table 1), including cold and UV light (Li et al., 
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2020b). There are four NF-Y genes annotated in the genome of A. 
mellifera (Supplementary Table S3). 

4.2.2 Zinc finger proteins
Zinc finger proteins (ZFP) are among the most abundant 

proteins in eukaryotic genomes. Their functions are diverse 
and include DNA recognition, RNA packaging, transcriptional 
activation, regulation of apoptosis, protein folding and assembly, 
and lipid binding (Laity et al., 2001). The expression of some genes 
encoding ZFP has been linked to heat stress (Droll et al., 2013; 
Liu et al., 2015) (Figure 3), cold, pesticides, and UV exposure in A. 
cerana, suggesting an important role of these proteins in resistance 
to a variety of environmental stressors (Guo et al., 2021) (Table 1). In 
A. mellifera, five ZFP genes (ZFP271, ZFP37, ZFP239, ZFP776, and 
ZFP93) have been described as upregulated under high-temperature 
exposure, while two (ZFP62 and ZFP628) have been described 
as downregulated (Ma et al., 2019). There are several ZFP genes
annotated along the genome of A. mellifera, so here we summarize 
the seven already cited (Supplementary Table S3). There are four loci 
annotated for ZFP271, two for ZFP37, two for ZFP239, and only one 
for zinc finger protein 776-like. The ZFP93 gene does not appear in 
the genome assembly of A. mellifera, but it encodes a ZFP of the 
KRAB (Kruppel-associated box) subfamily (Bellefroid et al., 1993), 
and there is a kruppel homolog 1 (Kr-h1) gene in A. mellifera. Finally, 
the two genes described downregulated are ZFP62 and ZFP628-
like. Regarding AS, different isoforms from ZFP genes have been 
predicted and annotated in GenBank. 

4.2.3 Serine proteases (SPs)
Serine proteases (SP) are endo- and exopeptidases involved 

in insect immunity and antioxidant systems (Ashida and Brey, 
1997), as well as the heat stress response in different bee species 
(Table 1). For example, in A. cerana, the gene enconding for 
the Clip-domain serine protease1 (AccSp1) is upregulated by 
temperature (4, 24 °C and 44 °C), H2O2, heavy metals, UV-light, 
and pesticides, thus linking SPs to its defence against abiotic 
stresses (Gao et al., 2019). There is a Sp1 gene annotated in the 
genome of A. mellifera (Supplementary Table S3). Regarding biotic 
stressors, SPs are directly involved in immunity, participating in the 
prophenoloxidase (PPO) activation pathway, RNA interference, and 
SP proteolytic cascade in the Toll signalling, as described below 
in the “Immunity” section. Compared with D. melanogaster and 
Anopheles gambiae, A. mellifera has much smaller gene families of 
SP, SPH, serpin (Serine Protease Inhibitors), PPO and other immune 
proteins (Evans et al., 2006). A search of the A. mellifera genome 
yielded 57 sequences with significant similarity to the S1 protease 
family: 44 SP and 13 SPH genes (Zou et al., 2006). SPHs are similar 
in sequence to S1 proteases but lack one or more of the catalytic 
residues in SPs. In addition, seven annotated genes in the honey 
bee genome encode five serpins (serpin 1–5) and two serpin-like 
proteins (Zou et al., 2006). SP inhibitors of the serpin superfamily 
are present in insect haemolymph to remove excess proteases and 
maintain homeostasis (Kanost, 1999). Finally, genes of SP putative 
substrates prophenoloxidase (PPO) and spätzle are described in the 
A. mellifera genome (Zou et al., 2006) (Supplementary Table S3). 

4.2.4 Antioxidant (AO) enzymes
Alterations in the oxidation states of intracellular metabolites 

and enzymes have historically been considered negative stressors, 
requiring strictly defensive responses. Cellular growth and survival 
require the coupling of electron-transfer reactions to the generation 
of ATP. These reactions depend on key cellular electron carriers 
and the stability of protein residues and cofactors. Redox enzymes 
are notoriously nonspecific, transferring electrons to any suitable 
acceptor they encounter. These molecular mechanisms represent 
a constant cellular stress balanced and maintained by redox 
homeostasis (Sporer et al., 2017). There are both primary and 
secondary antioxidant enzymes, which act directly or indirectly 
on reactive oxygen species (ROS) molecules. The first line of 
defence against ROS attack is provided by three different kinds 
of primary antioxidant enzymes, which act directly on ROS: 
superoxide dismutase, catalase and peroxidases. Superoxide 
dismutase (SOD) rearranges superoxide to oxygen and hydrogen 
peroxide, catalase prevents free hydroxyl radical formation by 
breaking down hydrogen peroxide into oxygen and water, and 
peroxidases (POD) catalyse an analogous reaction in which 
hydrogen peroxide is reduced to water by a reductant that acts 
as an electron donor, normally reduced thioredoxin (TRX) or 
glutathione (GSH). In addition, insects have three families of 
genes that encode antioxidant enzymes that act as peroxidases: 
TPXs, also known as peroxiredoxins (Radyuk et al., 2001), 
phospholipid-hydroperoxide GPX homologs with thioredoxin 
peroxidase activity (GTPX) (Missirlis et al., 2003), and glutathione 
S-transferases (GSTs) (Tang and Tu, 1994; Toba and Aigaki, 
2000). Secondary antioxidant enzymes that act indirectly on 
ROS include thioredoxin (TrxR) and methionine sulphoxide 
reductases (MsrA and MsrB), which are involved in protein 
reparation by catalysing the TRX-dependent reduction of 
methionine sulphoxide to methionine (Moskovitz et al., 1996;
Kumar et al., 2002).

In A. mellifera genome, 38 antioxidant genes were identified. 
In general, antioxidant genes encode small proteins with less 
than 250 amino acids, and most of them possess at least one 
intron (Corona and Robinson, 2006). Alternative splicing has 
been described as a common mechanism in the RNA processing 
of these genes, suggesting that the resulting different isoforms 
may play a role in stress resistance. About genetic variability, 
52 and 29 alleles are described for SOD1 and SOD2 in D. 
melanogaster, as well as 34 alleles for catalase (FlyBase, 2025). On 
the other hand, there is a relationship between redox enzymes 
and HSR (Figure 3). High temperatures exponentially increase 
metabolic rates, which means higher oxygen consumption and 
therefore higher production of ROS and more oxidative damage 
to organisms (Finkel and Holbrook, 2000; Gillooly et al., 2001; 
Belhadj Slimen et al., 2014; González-Tokman et al., 2020). Under 
long-term stress, the expression of additional Hsp and other gene 
family members is upregulated, which in turn scavenges ROS, 
enhances the antioxidant defence system of bees, and increases their 
survival rate [reviewed by Zhao et al. (2021)]. As mentioned in the 
“Heat Shock Proteins” subsection, DnaJA1 (HSP40) can regulate 
the expression of many antioxidant genes, thereby improving the 
antioxidant ability of bees under heat stress (Li et al., 2020b). It 
is important to note that oxidative stress response mechanisms 
are activated by many types of factors, including not only 

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1623705
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Sagastume et al. 10.3389/fphys.2025.1623705

heat stress but also nutritional stress, pesticides, pathogens, UV 
radiation, among others (Table 1). On the other hand, immunity 
molecular pathways can influence ROS levels by increasing 
the expression of antioxidant proteins (Zhang et al., 2016), as 
described in the “Immunity” section. Genes encoding antioxidative 
enzymes in A. mellifera are noted in Supplementary Material
(Supplementary Table S3). 

4.2.5 Acetylcholinesterase
Acetylcholinesterase (AChE) is a serine hydrolase that controls 

synaptic and neurohumoral cholinergic activity by hydrolyzing 
the neurotransmitter acetylcholine into acetic acid and choline 
[reviewed by Silman and Sussman (2008)]. A. mellifera has two 
genes, Ace1 and Ace2, that encode AChE1 and AChE2 proteins, 
respectively (Supplementary Table S3). In bee species belonging 
to Bombus and Apis, AChE2 acts as the synaptic enzyme, while 
AChE1 shows little catalytic activity. This suggests that AChE1 
may have become specialized to play non-synaptic functions (Kim 
and Lee, 2013). In A. mellifera, the expression of Ace1 changes 
depending on the rearing stage of the colony (Kim et al., 2017), 
and it appears to be connected to HSR (Kim et al., 2019). In 
addition, the genetic variability of Ace1 linked to pesticide resistance 
has been described in several insect species (Nabeshima et al., 
2003; 2004; Weill et al., 2004; Baek et al., 2005; Oh et al., 
2006; Alon et al., 2008; Kozaki et al., 2008; Jiang et al., 2009; 
Ramphul et al., 2009; Wu et al., 2010). AChE is the main target 
of organophosphorus (OP) and carbamate (CB) insecticides, to 
which A. mellifera displays unique sensitivity profiles (Hardstone 
and Scott, 2010), perhaps because AChE2 is its main synaptic AChE
(Kim and Lee, 2013). 

4.2.6 Corticotropin-releasing hormone-binding 
protein (CRH-BP)

Throughout evolution, highly conserved signalling molecules 
have been utilized to integrate stress responses, highlighting their 
important roles in survival. The corticotropin-releasing hormone 
(CRH), also known as corticotropin-releasing factor (CRF), is 
a neuroendocrine peptide that regulates various physiological 
responses to stresses (Seasholtz et al., 2002). It is considered to act as 
a neurotransmitter, coordinating various autonomic, hormonal, 
and behavioural responses to stresses, and may be involved in 
developmental processes (Muglia et al., 1995; Cortright et al., 
1997; Majzoub, 2006). The high homology of the CRH binding 
protein (CRH-BP) in honey bees to that in humans suggests that its 
function(s) has also been evolutionarily conserved (Ketchesin et al., 
2017). In A. mellifera, CRH-BP is a 322-amino-acid soluble protein 
structurally unrelated to the CRH receptors. The CRH-BP gene
(Supplementary Tables S3 and S5) is well-conserved and identifiable 
in insects. Although very few studies have focused on CRH-BP and 
stress in invertebrates, the Chinese honey bee A. cerana cerana
subjected to UV light, heat, or cold exhibited increased CRH-BP
mRNA in the head in a time-dependent manner (Liu et al., 
2011). These studies highlight the upregulation of invertebrate 
CRH-BP mRNA in response to stress (Ketchesin et al., 2017). 
Therefore, CHR-BP seems to be a promising protein candidate 
as a potential element involved in the stress response, and 
its action would be worth investigating in future studies
(Even et al., 2012).

5 Relative humidity

While temperature has been the main focus of climate 
change studies, changes in precipitation patterns are 
also key, not only because of water availability but also 
because of fluctuations in relative humidity (RH) (IPCC-
Intergovernmental Panel on Climate Change, 2007). In A. mellifera
colonies, a suitable RH of up to 75% is required for egg hatching 
(Ellis et al., 2008), and changes in RH can significantly affect 
larval development during incubation (Human et al., 2006) 
[reviewed by Abou-Shaara et al. (2017)]. In fact, when RH falls 
below 50%, there is a significant reduction in the number of 
normally hatched eggs (Li et al., 2016). Comparative studies of 
A. mellifera subspecies revealed that A.m. jemenitica eggs exhibit 
higher hatching rates than those of A.m. carnica at 50%–75% 
RH, while no eggs from either subspecies hatched at 30% RH
(Al-Ghamdi et al., 2014).

The bees can regulate humidity within the colony by 
evaporating water from nectar and regurgitating liquid droplets, 
helping to restore favourable RH conditions while also aiding in 
thermoregulation (Heinrich, 1980; Human et al., 2006; Kovac et al., 
2007). As for external conditions, no clear direct impact of RH in 
honey bees, including foraging activity, has been reported (Joshi and 
Joshi, 2010).

High humidity alone appears to have a limited impact on 
bees compared to high temperatures (Ma et al., 2019). However, 
rather than acting as an isolated stressor, humidity most relevant 
effect likely occurs in combination with temperature. These two 
variables are closely interconnected and, when combined, act as a 
new independent stressor. For example, low RH levels combined 
with high temperature can exacerbate heat stress, whereas high RH 
can reduce its severity. The highest rate of body water loss in A. 
mellifera occurs at 35 °C/0% RH, and the lowest occurs at 25 °C/
75% RH and 30 °C/100% (Atmowidjojo et al., 1997). Studies on A. 
m. jemenitica and A. m. carnica showed that body water loss rates 
increased with higher temperature and lower RH, while higher RH 
generally improved workers’ survival (Abou-Shaara et al., 2012). In 
A. mellifera and A. cerana, high RH was shown to have a protective 
effect on bee survival under high temperatures, which may be due 
to the inhibition of body water loss (Li et al., 2019). Therefore, 
although the effect of RH on bees was previously considered 
negligible (Joshi and Joshi, 2010), it appears to become an important 
stress factor when it drops below 50% in warm environments, 
conditions increasingly common in arid regions under a climate 
change scenario.

The protective effect of high RH under high temperatures is 
also evident at the molecular level. Ma et al. (2019) demonstrated 
this in their study on A. mellifera when examining its responses 
to various combinations of temperatures and RH. The authors 
reported 434 differentially expressed genes (DEGs) under high-
temperature treatments, 86 under high-humidity treatments, and 
266 in combined high-temperature and humidity treatments. This 
suggests that high humidity reduces the expression of heat response 
genes by nearly half in a heat-stress environment. However, when 
focusing solely on molecular responses to humidity stress under 
optimal temperature conditions, the expression of genes such as 
Pla2 (phospholipase A2) and Afp (antifreeze protein) increases 
with increasing humidity (Table 1), starting at RH levels above 
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50% (Ma et al., 2019). Pla2 encodes a cell membrane enzyme 
(PLA2) that cleaves fatty acids. When its activity increases, the 
hydrolysis reaction is enhanced, producing a variety of fatty acids, 
disturbing cell membrane metabolism and nerve signal transmission 
(Mahalka et al., 2011). It is important to note that the PLA2 
protein is involved in immunity through the arachidonic acid 
release in the eicosanoid pathway (McMenamin et al., 2018). 
There are 10 genes in the genome of A. mellifera referred to 
Pla2 (Supplementary Table S4). Afp encodes AFP, a proteinaceous 
compound with enhanced antifreeze properties, enabling it to 
bind to small ice crystals and inhibiting their growth and 
recrystallization. This mechanism helps minimize the damage 
caused by frozen water/ice to living organisms (Jia and Davies, 
2002). There is one gene in the genome of A. mellifera referred to 
Afp (Supplementary Table S4). 

6 Ultraviolet exposure

Climate change has been linked to stratospheric ozone 
depletion, which increases the amount of ultraviolet-B 
(UV-B) radiation that reaches the Earth’s surface (IPCC-
Intergovernmental Panel on Climate Change, 2007). This affects 
how organisms and ecosystems respond to it (Bernhard et al., 
2020). UV radiation is well-known for its detrimental effect on 
organisms. Yet, it is the universal source of non-ionizing radiation 
and is essential for life and its development on Earth. According 
to CIE (Commission Internationale de l’Eclairage, International 
Commission on Illumination), UV radiation can be divided into 
three ranges: UVA (320–400 nm), UVB (280–320 nm), and UVC 
(200–280 nm). Earth’s ozone layer blocks the majority of UVC, and 
a significant portion of UV-B, so the light near the Earth’s surface 
is enriched by UV-A, which has also been linked to oxidative 
types of mutation due to oxidative stress following irradiation 
[reviewed by Cockell and Knowland (1999)].

UV promotes photochemical reactions of ROS formation. In 
fact, one of the most susceptible biological targets of UV radiation 
is the DNA. When UV radiation enters a cell, it is absorbed by the 
aromatic rings of nucleotides and amino acids, leading to DNA and 
protein damage, respectively [reviewed by Cockell and Knowland 
(1999)]. However, it is important to note that repair mechanisms 
are not 100% efficient, so the lower the exposure to UV-radiation, 
the lower the damage and the greater the benefit to the organism 
[reviewed by Cockell and Knowland (1999)]. Hence, UV protection 
is key, particularly in a scenario of climate change with a prospective 
increase of UV radiation exposure.

Cells use a wide array of biological macromolecules to protect 
themselves against ROS by quenching oxygen free radicals. In 
insects, melanins are good examples of such macromolecules. 
Melanins can be classified into two groups: brown to black pigments 
termed eumelanin, and alkali-soluble yellow to reddish-brown 
pigments termed pheomelanin (Ito and Wakamatsu, 2008). They 
enhance the protective properties of the cuticle, acting as important 
barriers against environmental stressors such as UV radiation 
(Charlier et al., 2020). Melanins are produced by the enzymatic 
oxidation of tyrosine by tyrosinase followed by the conversion 
of dopa to 5,6-dihydroxy-indole. This is a phenolic and indolic 
compound and the basic building block of the eumelanin polymeric 

structure. This structure acts as the UV-absorbing chromophore 
[reviewed by Cockell and Knowland (1999)]. Recently, Charlier et al. 
(2020) used the electron paramagnetic resonance imaging (EPRI) 
technique to detect melanin in A. mellifera. They identified free 
radicals almost exclusively in the cuticle of the bee periphery 
of A. mellifera consistent with a eumelanin signal. This finding 
suggests that melanin–chitin complexes in the honey bee 
cuticle play a key role in UV defence (Charlier et al., 2020). 
Interestingly, these authors detected the presence of other free 
radicals in the centre of the honey bee head, suggesting the 
possible presence of neuromelanin in its brain, as in Drosophila
(Barek et al., 2018).

At the molecular level, melanization is an immunological 
process that results from the combination of humoral and 
cellular processes that occur during encapsulation and healing 
to cope with non-pathogen-mediated and pathogen-mediated 
injuries. In the honey bee, and insects in general, melanization 
acts as an important cellular defence mechanism responsible 
for eliminating a large number of bacterial cells, parasites 
and xenobiotics (Eleftherianos et al., 2009; McMenamin et al., 
2018). Simultaneously with the formation of melanin and its 
polymerization together with other proteins to encapsulate the 
invading agent, reactive oxygen and nitrogen intermediates are 
released, which collaborate with the destruction of the agent 
(Negri et al., 2016). Melanization is mediated by a humoral protein, 
prophenoloxidase (PPO) (González-Santoyo and Córdoba-Aguilar, 
2012; Negri et al., 2019) and A. mellifera possesses only one PPO gene
(Supplementary Table S5).

Several markers involved in temperature stress (see 
“Temperature” section) are also involved in UV stress (Table 1). 
For example, in A. cerana, the expression of DnaJA1, DnaJB12 
and DnaJC8 are upregulated under exposure to both climatic 
stressors (Li et al., 2018a). Furthermore, as for temperature, 
sHSPs can develop the protection function under UV stress 
conditions not only in honey bees but also in other animals and 
even plants (Dasgupta et al., 1992; Waters et al., 2008). Although 
very few studies have focused on CRH-BP response to stress in 
invertebrates, it has been shown that A. cerana cerana subjected 
to UV radiation exhibited increased CRH-BP mRNA in the 
head in a time-dependent manner (Liu et al., 2011). On the 
other hand, it is worth noting that UV promotes photochemical 
reactions leading to ROS formation, so antioxidant enzymes are 
also involved in UV stress. Finally, the serine protease AccSp1
gene, which is directly involved in ROS metabolism, seems to 
play different roles in resistance to UV radiation in A. cerana
(Gao et al., 2019). 

7 Nutrition

Although the interactions between plants and their insect 
pollinators are often the result of a long history of co-evolution, 
climate change can quickly disrupt the timing of their life 
cycles by altering their phenology and distribution (Hughes, 
2000; Scaven and Rafferty, 2013; Gérard et al., 2020). Changes 
in plant physiology under realistic climate change scenarios 
may alter flowering patterns and the duration and intensity 
of blooming (Scaven and Rafferty, 2013; Inouye, 2020). This 
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disruption could lead to food shortages for pollinators and, in some 
cases, even contribute to their extinction (Memmott et al., 2007;
Dalton et al., 2023).

The abundance and diversity of floral resources play a crucial 
role in honey bee health, as they significantly influence immune 
response (Alaux et al., 2010; Di Pasquale et al., 2013; Martelli et al., 
2022; Corona et al., 2023). The survival of bee colonies relies 
heavily on the availability of pollen, which provides proteins, 
lipids, and micronutrients, and nectar, which supplies carbohydrates 
(Brodschneider and Crailsheim, 2010). In temperate climates, bees 
typically experience nutritional stress as winter approaches due to 
the diminishing availability of food resources (Mattila and Otis, 
2007; Knoll et al., 2024). This issue has gained particular attention 
because many bees face low dietary diversity due to climate change
(Goulson et al., 2015).

At the molecular level, bees that consume a protein-rich diet 
exhibit signs of anabolism, lipid metabolism, and an increased 
expression of genes encoding nursing-related proteins, such 
as vitellogenin and major royal jelly protein 1 (Bitondi and 
Simoes, 1996; Corona et al., 2007; 2023; Ament et al., 2008; 
Azzouz-Olden et al., 2018). In contrast, bees subjected to 
suboptimal nutrition, typically characterized by the intake of 
diets lacking proteins, display a reduction in nitrogen and lipid 
metabolism, reduction in antioxidant response, and different 
gene expression patterns (Martelli et al., 2022). These include 
altered expression in cuticle maturation genes, the over-expression 
of genes involved in the modulation of circadian rhythm and 
other genes related to the foraging behavioral state, such as 
those involved in the insulin/insulin-like growth signaling 
(IIS), juvenile hormone (JH) and Target of Rapamycin (TOR) 
(Figure 4) (Supplementary Table S6) (Corona et al., 2007; 2023; 
Ament et al., 2008; Azzouz-Olden et al., 2018; Martelli et al., 
2022). These nutrient-sensing pathways include the Forkhead 
box O subfamily of gene (FOXO) [reviewed by Murtaza et al. 
(2017)], a transcription factor involved in multiple biological 
processes including the regulation of aging, nutrient levels response, 
and stress response (Hwangbo et al., 2004; Semaniuk et al., 
2021a; Semaniuk et al., 2021b). FOXO proteins are known to 
regulate translation of environment-induced stimuli into gene 
expression and their antioxidant role [reviewed by Murtaza et al. 
(2017)]. In A. mellifera genome there is only one FOXO gene
(Supplementary Table S6).

The connection between honey bee nutrition and behavioral 
development is further highlighted by the fact that nutritional 
stress is associated to precocious foraging (Fewell and Winston, 
1992; Schulz et al., 1998), changes in colony demographics, 
and, ultimately, colony collapse (Perry et al., 2015). Research 
indicates that similarly to nutritional stress, thermal stress reduces 
the expression levels of nurse-associated genes (vg and mrjp1)
and increases the expression of foraging-associated genes (e.g., 
juvenile hormone esterase) (Bordier et al., 2017; Corona et al., 
2023) suggesting that thermal stress can induce the physiological 
changes linked to precocious foraging, potentially affecting the 
overall fitness of the colony. In support of this idea, it has 
been shown that bees raised under high temperatures exhibited 
an increased probability of dancing and foraging earlier in life
(Becher et al., 2009).

7.1 Phenolamines

Unlike vertebrates, honey bees do not synthesize the 
catecholamines norepinephrine and epinephrine but use instead 
the phenolamines tyramine (TA) and octopamine (OA) to perform 
similar physiological functions (Roeder, 2020). Both biogenic 
amines affect the locomotor behaviour of adult worker honey bees 
(Fussnecker et al., 2006). Additionally, OA plays an important 
role in associative learning and memory (Menzel et al., 1996; 
Blenau and Baumann, 2001; Roeder et al., 2003) by mediating and 
modulating the reward in appetitive learning (Hammer and Menzel, 
1995; Scheiner et al., 2006; Kim et al., 2013). The activation of 
receptors of tyramine and octopamine are closely related to adenylyl 
cyclase activity, which can be activated or inhibited in order of 
the receptor type or subtype (Blenau et al., 2000; Grohmann et al., 
2003; Mustard et al., 2005; Beggs et al., 2011; Balfanz et al., 2014; 
Reim et al., 2017). Adenylyl cyclase (or adenylate cyclase) catalyzes 
the conversion of ATP to 3′,5′-cyclic AMP. Genes encoding adenylyl 
cyclase (Ac76E) and the octopamine receptor (OA) have been 
described as “starvation genes” in underfed honey bees (Azzouz-
Olden et al., 2018). Six adenylyl cyclase genes and four octopamine 
receptor genes have been annotated in the A. mellifera genome
(Supplementary Table S6). 

7.2 Storage proteins

Insect storage proteins are an important source of amino 
acids, particularly during metamorphosis. In honey bees, the 
most known storage protein is the lipoprotein Vitellogenin (Vg), 
which possesses multiple functions such as royal jelly production 
(Amdam et al., 2003), promotion of longevity (Amdam and Omholt, 
2002; Seehuus et al., 2006; Corona et al., 2007), and immunity 
(Amdam et al., 2004). Vg has also been proposed as a plausible 
candidate for a stress marker together with the juvenile hormone 
(JH) which is also considered to be related to stress responses. Both 
are involved in oxidative stress (Seehuus et al., 2006; Corona et al., 
2007) and heat stress in A. mellifera (Bordier et al., 2017). There is 
only one Vg gene in A. mellifera genome (Supplementary Table S6), 
but three Vg-like genes have also been described with different 
evolutionary patterns and functions (Salmela et al., 2016).

Other important storage proteins in honey bees are the 
hexamerins. They are the most abundant proteins in larval 
haemolymph and essentially participate in the dynamics of 
amino acid storage and exploitation, which occurs during insect 
development (Telfer et al., 1991). There are four hexamerin genes 
in the honey bee genome corresponding to subunits 70A, 70B, 
70C and 110 (Supplementary Table S6). The hex70a, hex70b and 
hex70c genes are arranged in tandem in chromosome 8, whereas 
hex110 is dispersed in chromosome 11, exhibiting unusual features 
throughout its sequence (Martins et al., 2010). The JH exerts a 
strong and positive influence on the expression of hex70b and 
hex70c, while its effect on the expression of hex70a and hex110
is comparatively weaker (Martins et al., 2010). As for nutritional 
effects, similar to Vg, hexamerins expression increases when honey 
bees are fed pollen (DeGrandi-Hoffman et al., 2021), thus being 
reliable indicators of good nutritional status.
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FIGURE 4
Nutritional molecular pathways connected to immunity. In the insulin/insulin-like signalling (IIS) pathway, insulin-like peptides (ILPs) and insulin-like 
growth factors (IGFs) bind to the insulin receptor and CHICO receptor substrate. Phosfatidylinositol-3-OH kinase (Pi3K) activates the 
phosphatidylinositol (PiP2 to PiP3) reaction ultimately promoting cell differentiation, and organ growth and thereby an increase in lifespan (Pan and 
Finkel, 2017). The AGC family kinase AKT inhibits the Forkhead box O subfamily of gene (FOXO). The FOXO proteins play an antioxidant role and 
regulate the autophagy process. TOR pathway is stimulated by growth factors and free amino acids but inhibited by hypoxia and ATP depletion 
(Abraham, 2009). TOR is a serine/threonine protein kinase belonging to the phosphoinositide 3-kinase-related family, which is highly conserved 
among eukaryotes (Pan and Finkel, 2017). Pi3K plays a role in the TOR pathway when it is stimulated by growth factors, activating AKT. Yellow, purple 
and green stars indicate relationship with antioxidants, immune pathways, and nutrition, respectively (Abraham, 2009; Emlen et al., 2012; 
Koyama et al., 2013; McMenamin et al., 2018).

8 Other cellular mechanisms involved 
in stress resistance

In addition to the pathways that are directly or indirectly 
involved in stress management, cells have several general 
mechanisms that are activated in stressful situations, such as changes 
in RNA processing and epigenetic factors. They all act independently 
of the organism’s genetic background and directly influence its 
phenotypic plasticity (Figure 1), and, therefore, its resistance and 
adaptability to new environments. This section reviews the major 
ones in A. mellifera and their role in stress. 

8.1 Alternative splicing

Modulation of RNA processing is involved in stress tolerance 
in insects (Fujikake et al., 2005; Ding et al., 2014; Ruan et al., 
2015; Pai et al., 2017). In RNA processing, the splicing machinery 
(spliceosome) recognises exons with high accuracy, removes the 
introns from the pre-mRNA molecule, and ligates the exons to 
form a mature mRNA. This process is known as “constitutive 
splicing.” On the other hand, alternative splicing (AS) is the process 
by which the exons of primary transcripts (pre-mRNAs) can be 

spliced in different arrangements to produce structurally and 
functionally distinct mRNA and protein variants, or isoforms 
(Figure 5). AS is involved in many physiological processes, 
including the response to biotic and abiotic stresses [reviewed 
by Biamonti and Caceres (2009)]. The production of proteins 
with diverse domain rearrangements from the same gene is the 
main AS mechanism for pathogen-resistance genes. These mRNA 
variants have been identified for many genes, particularly those 
involved in the regulation of stress responses, such as protein 
kinases, transcription factors, splicing regulators and pathogen-
resistance genes (Mastrangelo et al., 2012). This occurs according 
to physiological needs and environmental stimuli, and often 
represents a primary source of phenotypic diversity within the 
proteome of eukaryotic cells (Ast, 2004; Blencowe, 2006; Neves-
da-Rocha et al., 2019). Therefore, alternative-splicing isoforms 
produced by stress-related genes could be used as proxies of stress.

8.2 Epigenetics

Epigenetic phenomena include all processes by which the 
expression of a gene can be altered (overexpressed or silenced), 
resulting in a phenotypic change while the genotype remains 
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FIGURE 5
Scheme of constitutive and alternative splicing. In constitutive splicing, total coding DNA is retained in the final mRNA product and translated into a 
protein, and all introns are fully spliced during posttranscriptional RNA processing. In alternative splicing, introns can be spliced in more than one way, 
resulting in different sets of exons in the mature mRNA, and hence, in different series of related proteins called isoforms (Ast, 2004).

unchanged. The best-known epigenetic phenomena are the 
methylation of nucleotides (i.e., fixation of a methyl radical 
on a nucleotide) and changes in the configuration of histones. 
Both mechanisms are the major regulators of gene expression 
in all organisms (Glastad et al., 2019) and act as a major source 
of phenotypic plasticity (Berger et al., 2009). The genome of
A. mellifera has been described as structured with respect to 
plasticity, with genes related to stress response being organized into 
clusters that are marked by histone modifications (Duncan et al., 
2020). Epigenetic mechanisms can be triggered by environmental 
factors such as heavy metals or persistent organic pollutants, which 
can modulate epigenetic marks such as acetylation or methylation 
(Foret et al., 2009; Collotta et al., 2013). With regard to climate 
change, DNA methylation and histone/chromatin modifications 
have been linked to thermal stress responses and facilitate 
transgenerational epigenetic inheritance of thermal adaptation 
[reviewed by McCaw et al. (2020), de Carvalho (2023)]. These 
modifications also enable populations to adapt to local and global 
climate gradients. 

8.2.1 DNA methylation
DNA methylation is a covalent modification that occurs by 

the addition of a methyl group to the fifth carbon of cytosines, 
mostly in CG dinucleotides (CpG) (Klose and Bird, 2006; Suzuki 
and Bird, 2008; Zemach et al., 2010; Moore et al., 2013) (Figure 6), 
although adenine methylation can also occur (Ratel et al., 2006). 
Moreover, DNA is not the only nucleic acid that can be modified; 
RNA can also undergo modifications that impact gene expression 
post-transcriptionally (Sieber et al., 2021), creating a new layer of 
dynamic gene regulation [reviewed by Kan et al. (2022)]. Recent 

studies suggest that the epitranscriptome of honeybees may play a 
role in stress responses (Bataglia et al., 2021; 2022).

In contrast to the heavily methylated genomes of mammals, 
the invertebrate genomes are sparsely methylated in a “mosaic” 
fashion, with most methylated CpG dinucleotides found across gene 
bodies (Wedd and Maleszka, 2016). The gene body methylation is 
frequently associated with active transcription (Wedd et al., 2022), 
and it seems to be an important feature of caste determination 
in social insects (Sieber et al., 2021). Some studies on the honey 
bee have shown strong links between gene body methylation and 
AS (Wedd et al., 2016). In addition, the existence of non-CpG 
methylation events in honey bee introns, potentially playing a role in 
the regulation of AS, has been also proposed (Cingolani et al., 2013).

DNA methylation is controlled by DNA methyltransferases 
(DNMTs). DNMT1 is responsible for maintaining methylation 
states across cell divisions, whereas DNMT3 is involved in de 
novo methylation (Klose and Bird, 2006), although these functions 
can overlap (Jeltsch and Jurkowska, 2014; Karemaker and Baubec, 
2020). DNA methylation can be reversible, in particular through 
the action of the ten/eleven translocation (TET) family enzymes 
(Kohli and Zhang, 2013). Regarding maintained methylation states, 
allele-specific methylation is known to occur in honey bees 
(Remnant et al., 2016; Wedd et al., 2016). Interestingly, honey 
bee males seem to harbour individual-specific DNA methylation 
patterns in their semen and these patterns are often associated 
with genotypic variation. It means that genes that are variable at 
the epigenetic level appear to be more likely to be variable at the 
genetic level. This sequence polymorphism could be an important 
determinant of the DNA methylation state at many loci in honey 
bees, contributing both to the individual-specificity of epigenetic 
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FIGURE 6
Main epigenetic phenomena in honey bees. DNA methylation occurs by the addition of a methyl group to the fifth carbon of cytosines, mostly in CG 
dinucleotides (CpG). Histone modifications involve the disruption of histone-DNA interactions, causing nucleosomes to unwind and genes to become 
accessible to the transcriptional machinery, allowing subsequent gene activation.

marks and to their retention across generations (Yagound et al., 
2019). While there is evidence that gene expression patterns are 
sometimes heritable, additional experimental analyses are required 
to conclusively demonstrate that DNA methylation is the epigenetic 
cause of such heritable effect (Glastad et al., 2019). 

8.2.2 Histone post-translational modifications 
(hPTMs)

Eukaryotic DNA is packaged in basic and repeating structural 
units (nucleosomes), where a segment of DNA wound around 
the histone cores (Figure 6). These histone cores are composed 
of several subunits (H2A, H2B, H3 and H4), and each one 
contains amino acid tails that are sites of post-translational 
regulation (Spotswood and Turner, 2002). Some modifications 
disrupt histone-DNA interactions, causing nucleosomes to unwind. 
In this open chromatin conformation, DNA becomes accessible to 
the transcriptional machinery, enabling subsequent gene activation. 
In contrast, modifications that reinforce histone-DNA interactions 
create a very compact chromatin where the transcriptional 
machinery cannot access the DNA, resulting in gene silencing.

Histone post-translational modifications (hPTMs) consist of a 
diverse set of epigenetic signals that can alter transcription either by 
the addition of a chemical group to a histone protein or by specific 
protein binding to histone tails (Glastad et al., 2019). Regarding the 
former mechanism, lysine acetylation is perhaps the most studied 
modification, as it was one of the first discovered to influence 
transcriptional regulation. Acetylation of lysine residues results 
in neutralization of histone charge, weakening the nucleosome 
structure and making DNA accessible for transcriptional factors 
binding, significantly increasing gene expression (Roth et al., 2001). 

Acetyl groups are added to lysine residues of histones H3 and H4 
by histone acetyltransferases (HAT) and removed by deacetylases 
(HDAC). The action of these two types of enzymes results in 
opposite gene expression outcomes (Bernstein et al., 2007). Diverse 
compounds can inhibit deacetylases, and they are known as 
HDAC inhibitors (HDACis). They act by triggering histone tail 
acetylation and play an important role in epigenetic gene regulation 
(Marks et al., 2003). In insects, HDACis can accelerate growth, 
extend longevity, and help overcome injuries (Zhao et al., 2005; 
Mukherjee et al., 2012; Zhao et al., 2005; Mukherjee et al., 2012) 
and, when produced in high doses, they may arrest cell growth 
and induce apoptosis (Shao et al., 2004; Tabuchi et al., 2006). In 
A. mellifera, the HDACis activity has been linked to the regulation 
of immune and detoxification genes under stress from pesticides 
and Nosema (Hu et al., 2017), and, interestingly, to the epigenetic 
mechanism of royal jelly (Spannhoff et al., 2011). Importantly, 
similar to methylation patterns, emerging evidence suggests that 
information stored in nucleosomal hPTMs can be transmitted across 
cell divisions (Glastad et al., 2019). 

8.2.3 Non-coding RNAs (ncRNAs)
Non-coding RNAs (ncRNAs) are a varied class of RNAs that are 

not translated into proteins. Some of ncRNA products may have no 
specific function, but others play a key role in regulating cellular 
processes (Glastad et al., 2019). There are four types of ncRNAs 
that have been suggested to have a potential epigenetic effect: 
PIWI-interacting RNAs (piRNAs), microRNAs (miRNAs), small 
interfering RNAs (siRNAs), and long noncoding RNAs (lncRNAs). 
The small regulatory RNAs (piRNAs, miRNAs and siRNAs) form 
the RNAi (RNA interference) pathway, which is responsible for 
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RNA-based antiviral immunity (see “immunity” section). RNAi is 
a post-transcriptional sequence-specific gene silencing mechanism 
that is involved in regulating gene expression in most organisms 
[reviewed by Ding (2010)]. Among them, miRNAs and siRNAs 
are major post-transcriptional gene expression regulators (reviewed 
by Richard et al. (2021)]. On the other hand, there is evidence 
that piRNAs and lncRNAs are linked to epigenetic effects that 
are particularly strong in insects [reviewed by Chambeyron and 
Seitz (2014)].

The small regulatory piRNAs are highly variable, short (21–35 
nucleotides), single-stranded ncRNAs that are the primary small 
RNAs mediating chromatin modifications within insect genomes 
[reviewed by Chambeyron and Seitz (2014)]. In various organisms 
they are associated with PIWI proteins, which are part of Argonaute 
proteins [reviewed by Luteijn and Ketting (2013)]. They act to 
silence transposable elements (TEs), which are ubiquitous in insect 
genomes and can cause damage through aberrant recombination 
events and deleterious mutations. Interestingly, some piRNAs are 
maternally transmitted to offspring (Chambeyron and Seitz, 2014; 
Glastad et al., 2019). Another class of small regulatory RNAs are 
miRNAs, which are one of the best-studied classes of ncRNAs, 
although molecular evidence that they influence chromatin or are 
passed on through cell divisions in a truly epigenetic manner is 
still largely lacking in insects (Glastad et al., 2019). Finally, the 
siRNAs interact with proteins from the same families of miRNAs. It 
is important to note that, in addition to their epigenetic properties, 
siRNAs constitute an important antiviral defence mechanism 
in plants, fungi, nematodes, and arthropods, and the role of 
RNAi in honey bee antiviral defence has been demonstrated in 
laboratory-based experiments (McMenamin et al., 2018). Lastly, 
lncRNAs are transcripts of more than 200 nucleotides that are 
present in almost all eukaryotic organisms (Mercer et al., 2009) 
and share the potential for regulating gene expression at both 
transcriptional and post-transcriptional levels (Engreitz et al., 2016). 
They have been found to function in developmental processes in 
honey bees (Choudhary et al., 2021). 

9 Immunity

Immunity is one of the main physiological mechanisms that 
regulate the overall survival of an organism, and, therefore, immune 
stress requires a substantial nutritional and energetic cost [reviewed 
by Lochmiller and Deerenberg (2000)]. The immune system of 
honey bees consists of a complex set of individual immune 
mechanisms and a special type of behavioural adaptations that 
protect against biotic and abiotic stress factors. As social insects, at 
the colony level, honey bees exhibit a collective defence mechanism 
known as “social immunity,” while at the individual level, they rely on 
cellular and humoral immune reactions. Within humoral immunity, 
antimicrobial peptides (AMPs) play a key role (Danihlík et al., 
2015). At the molecular level, several immune pathways have 
been described in A. mellifera. These are mainly Jak/STAT (Janus 
Kinase/Signal Transducer and Activator of Transcription), RNAi 
(RNA interference), Toll via NF-ĸΒ (Nuclear Factor ĸΒ/Dorsal), 
Imd (immune deficiency) via NF-ĸΒ/Relish, JNK (c-Jun N-
terminal kinase), MAPK (Mitogen-Activated Protein Kinases), 

autophagy, eicosanoid biosynthesis, endocytosis, melanization, and 
Prophenoloxidase (PPO) (McMenamin et al., 2018) (Figure 7).

Most of the stressors described in this review, directly or 
indirectly can modify the expression of genes related to at least 
one of these pathways (Table 1). For example, the first step when 
pathogens enter honey bee is the host recognition pathogen-
associated molecular patterns from the invading microorganisms 
(PAMP recognition), which rapidly promote the activation of an SP 
cascade (Figure 7) [reviewed by McMenamin et al. (2018)]. Serine 
proteases, which have been described related to heat stress (see 
section 4), are also directly involved in immunity, as they are key 
in melanisation, wound healing, and phagocytosis stimulation by 
participating in the prophenoloxidase (PPO) activation pathway, 
RNAi, and SP proteolytic cascade in the Toll signalling [reviewed by 
Lu et al. (2014), McMenamin et al. (2018)] (Figure 3). Three genes of 
SP putative substrates, PPO, spätzle-1, and spätzle-2, are described in 
the A. mellifera genome (Zou et al., 2006). However, Phenoloxidase 
has been also linked to heat stress, existing different levels of 
enzymatic activity in workers, queens and drones exposed to the 
same stressful situation during development (Medina et al., 2020).

Regarding heat, there is a close relationship between the iRNAs 
and HSPs in honey bees. The RNAi pathway is initiated by 
Dicer-2 cleavage of viral dsRNA into 21–22 bp siRNAs, which are 
then loaded into Argonaute-2 (Ago2), the catalytic component of 
the RNA Induced Silencing Complex (RISC). Within this route, 
a putative serine/threonine cyclin-dependent kinase (MF116383) 
acts in non-specific dsRNA-mediated antiviral responses [reviewed 
by McMenamin et al. (2018)] (Figure 7). McMenamin et al. 
(2020) conducted an in-depth study of A. mellifera, comparing 
the transcriptomic response to heat shock and viral infections. 
The mf116383 gene was the only immune-related gene of this 
pathway consistently induced by heat treatment alone and it has 
been suggested to serve as a point of cross-talk between the 
generalized antiviral immune response and the HSR in honey bees. 
On the other hand, the expression of Hsc70-3, Hsc70-4, and Hsp90
was found to be positively correlated with Dicer-like (Dcr-like)
and Argonaute2 (Ago2), suggesting co-regulation of these genes 
(McMenamin et al., 2020). Cognate forms of Hsp70 are involved 
in regulating the life cycle of various viruses, such as mediating 
attachment and endocytosis (Iša et al., 2004), penetration and 
uncoating, transcription and replication (Du et al., 2011), assembly 
and budding (Prange et al., 1999), and modulating autophagy 
(Beere, 2004). HSC70-4 is an important chaperone for the assembly 
of the RISC in Drosophila S2 cells and other flies (Dorner et al., 2006; 
Iwasaki et al., 2010). While further studies are needed to determine 
the mechanisms leading to the co-regulation of immune genes and 
HSP-encoding genes, it may be beneficial to co-regulate HSPs and 
HSP client proteins (Iwasaki et al., 2010). Meanwhile, heat stress 
in honey bee colonies has been linked to a reduction in virus and 
parasite infections [reviewed by Zhao et al. (2021)]. Finally, RNAi 
is not only key to antiviral defence and closely related to HSR, but 
may also act as epigenetic factors. The RNAi pathways is constituted 
by piRNAs, miRNAs and siRNAs, and is involved in regulating 
gene expression in most organisms [reviewed by Ding (2010)] (see 
“epigenetics” subsection).

Within the Toll pathway (Figure 7), NF-ĸB transcriptional 
factors are crucial in immunity, inflammatory response, cellular 
adhesion, differentiation, proliferation, autophagy, senescence, and 
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FIGURE 7
Immunity pathways in the honey bee. The main immunity pathways are represented together with the biotic stressors that are able to activate them: 
Jak/STAT (Janus Kinase/Signal Transducer and Activator of Transcription), RNAi (RNA interference), Toll via NF-ĸΒ (Nuclear Factor ĸΒ/Dorsal), Imd 
(immune deficiency) via NF-ĸΒ/Relish, JNK (c-Jun N-terminal kinase), MAPK (Mitogen-Activated Protein Kinases), autophagy, eicosanoid biosynthesis, 
endocytosis, and melanization and Prophenoloxidase (PPO). Genes involved in abiotic stress induced by climate change are highlighted: red, green, 
white, purple, and yellow stars indicate an association with heat, nutrition, humidity, UV, and oxidative stress, respectively. Redrawn based
on (McMenamin et al., 2018).

apoptosis (Bonizzi and Karin, 2004). In A. mellifera, NF-ĸB factors 
Dorsal are encoded by two dorsal homologues genes, Dorsal-1
and Dorsal-2 (Evans et al., 2006). Dorsal-1 produces two isoforms 
through alternative splicing (DORSAL-1A and DORSAL-1B) (Fan, 
2001; Evans et al., 2006), and arguably this allows for a refinement of 
Toll-induced immune function. At this point, there is an important 
relationship between immunity and oxidative stress, consisting of 
both ROS influencing the activation of NF-κB pathway, and NF-κB 
pathway influencing the ROS levels by increasing the expression 
of antioxidant genes (Zhang et al., 2016). On the other hand, in 
adult bees, Dorsal genes are directly involved in the regulation of 
AMP genes together with Imd pathway (McMenamin et al., 2018), 
as Defensine1 (Lourenço et al., 2018) and Apidaecin (Prisco et al., 
2016). The activation of both Toll and Imd pathways also governs 
the expression of Abaecin (McMenamin et al., 2018). Defensin genes 
have been described as predictive markers of honey bee colony 
health linked to viral infections (Barroso-Arévalo et al., 2019). 
Two Defensin genes are described in honey bees: Defensin1 and 
Defensin2. Sequences of these two genes revealed their different 
structure in a phylogenetic analysis, with Defensin1 forming a 
clade with two other hymenopteran defensins, whereas Defensin2
grouped with coleopteran defensins (Klaudiny et al., 2005). In 
contrast to other invertebrates, heat shock in A. mellifera represses 
the expression of certain antimicrobial peptide genes such as 
Hymenoptaecin, Defensin1 and Abaecin (McKinstry et al., 2017). 
This may be due to an energetic trade-off in the honeybee 
between cellular mechanisms for maintaining proteostasis 

and the immune response, as both are energetically costly
(Powers and Balch, 2013).

The link between nutrition and immunity is well known. 
In fact, “nutritional immunology” is a discipline that studies 
the composition of the diet to optimise the immune response 
(Ponton et al., 2011). The interaction between nutritional and 
immune pathways is as wide as complex. For example, miRNAs 
have been described as acting on the insulin and TOR pathways 
(Shi et al., 2015), while PiP3, AKT and TOR inhibit autophagy 
(Figure 4) (McMenamin et al., 2018). On the other hand, inadequate 
nutrition stimulates adenylate kinase (Ak6) (involved in stress-
induced pathways), NF-ĸB, and genotoxic/non-genotoxic stress 
(Hou et al., 2008; Barrio et al., 2014; Hasygar and Hietakangas, 2014; 
Corona et al., 2023). Furthermore, VG is involved in immunity in 
honey bees (Amdam et al., 2004). Recently, Azzouz-Olden et al. 
(2018) conducted an in-depth study comparing well- and poorly-
fed honey bees between two groups comprising infected and non-
infected individuals with the microsporidium Nosema apis. The 
authors showed that poorly fed and infected individuals underwent 
a significant upregulation of some genes related to the Toll pathway, 
such as Sph, serpine-1 (Nec), Tub, Cactus, PGRP-S3 and AMP 
genes (like Apisimin). On the other hand, during melanisation (see 
section 6), melanins are produced by the enzymatic oxidation of 
tyrosine by tyrosinase, which is the enzyme’s main activating system 
(PPO). Tyrosinase depends upon tyrosine, which derives from 
phenylalanine, an essential amino acid that can only be obtained 
from ingested food. In addition, the defensive compounds produced 
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by the bees are rich in nitrogen, requiring a significant investment of 
their resources. Hence, the PO response involves a high energetic 
cost for each bee (González-Santoyo and Córdoba-Aguilar, 2012;
Negri et al., 2019).

It is important to note that the PLA2 protein, 
involved in stress induced by humidity, is involved in 
immunity through the arachidonic acid release in the 
eicosanoid pathway (McMenamin et al., 2018). 

10 Conclusion

Predicting how climate change will impact honey bees is 
complex and challenging. It will not only directly affect individual 
bees and colonies but also compound existing stressors, alter 
the ecosystems they inhabit, and introduce new and additional 
pressures. Higher temperatures, changes in humidity, and increased 
exposure to UV radiation will not only affect bee biology 
but also contribute to colony stress, alter plant flowering (and 
thus bee food resources), and influence disease dynamics. These 
factors can both benefit the pathogens under the new conditions 
and weaken the host organisms. In this review, we aimed to 
summarise a guide of molecular targets potentially linked to climate 
change stress, along with the cellular pathways directly involved 
or related. Genetic studies are a valuable tool for addressing 
these issues, and understanding the related mechanisms and 
pathways is essential for correctly interpreting molecular insights. 
Knowing which genes are involved in a specific pathway, what 
they are like, what their transcripts are like, how they express 
under stress, and how they affect other pathways, provides a 
basis for future studies aimed at measuring not only the degree 
of stress in honey bees but also its consequences for their
cell biology.
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Glossary

AChE Acetylcholinesterase

Ace Acetylcholinesterase gene

AMPs antimicrobial peptides

AO Antioxidant

AS Alternative splicing

CpG Cytosine-Guanine dinucleotide

CRH-BP Cortico-releasing hormone-binding protein

HDAC Histone Deacetylase

HDACis Histone Deacetylase inhibitors

DNMTs DNA methyltransferases

hPTMs Histone post-translational modifications

HS Heat Shock

HSC Heat Shock Protein cognate form

HSF Heat Shock Factor

HSE Heat Shock Element

HSR Heat Shock Response

HSP Heat Shock Proteins

FOXO Forkhead box O subfamily of genes

GSH glutathione

GST glutathione S-transferase

IIS Insulin/insulin-like growth factor signalling

RNAi RNA of interference

JH juvenile hormone

ncRNAs Non-coding RNAs

NF-Y Nuclear Factor Y
OA Octopamine

PPO prophenoloxidase

PO phenoloxidase

RH Relative humidity

ROS reactive oxygen species

sHSP small Heat Shock Proteins

SP Serine Protease

STK Serine/threonine kinase

SNP Single Nucleotide Polymorphism

SOD Superoxide dismutase

TA Tyramine

TEs Transposable elements

TOR Target of Rapamycin

TRX thioredoxin

UV Ultraviolet

VG Vitellogenin

ZFP Zinc Finger Protein
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