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Diabetic Kidney Disease (DKD) is one of the most common microvascular
complications of diabetes mellitus and an important cause of end-stage renal
disease, with a complex pathogenesis and a lack of effective treatment. Lipid
metabolism disorders play a key role in the progression of DKD, mainly by
inducing mitochondrial dysfunction which in turn promotes renal injury. In
recent years, natural products have shown great promise in improving lipid
metabolism and mitochondrial homeostasis by virtue of their advantages of
multi-targeting and low toxicity. In this article, we review the mechanism of
mitochondrial dysfunction induced by lipid metabolism disorders in DKD, and
the intervention strategies of natural products.
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1 Introduction

Diabetic Kidney Disease (DKD) is one of the most common microvascular
complications of diabetes mellitus and an important cause of end-stage renal disease, with
a complex pathogenesis involving a variety of metabolic disorders and cellular damage
processes, and limited clinical treatments to effectively stop its progression (Liu et al., 2024).
Previous studies have focused on the renal damage caused by hyperglycemia, but in recent
years, lipid metabolism disorders have also received extensive attention as an important
factor in the progression of DKD (Hou et al., 2024; Zhang et al., 2025).

Mitochondrial dysfunction is particularly pronounced in the context of lipid
metabolism disorders, such as impaired fatty acid oxidation, sphingolipid metabolism
imbalance, enhanced oxidative stress, and dysregulated mitochondrial homeostasis, which
collectively contribute to the process of renal injury and fibrosis (Hou et al., 2024;
Narongkiatikhun et al., 2024; Zhou et al., 2023). Natural products show good prospects
in regulating lipid metabolism and maintaining mitochondrial homeostasis due to their
advantages of multi-targeting and low toxicity, and in-depth study of their molecular
mechanisms will help develop new therapeutic strategies to improve the prognosis of DKD
patients (Liu et al., 2024; Chen et al., 2023; Chung et al., 2023).
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TABLE 1 Nephroprotective effects of natural products in improving lipid metabolism disorder–induced mitochondrial dysfunction of DKD.

Mechanism Natural product Model Signaling pathways or
targets

References

Mitochondrial energy metabolism

Baicalin db/db mice CPT1α↑, FAO↑ Hu et al. (2024)

Berberine db/db mice
and PA induced
MPC-5 cells

PGC-1α↑, ROS↓
FAO↑

Qin et al. (2020)

Oleanolic Acid HFD/STZ rats AMPK↑, PGC-1α↑ Pan et al. (2024)

Jujuboside A db/db mice YY1↓, PGC-1α↑ Zha et al. (2024)

Marein db/db mice SGLT2↓,AMPK/ACC/PGC-1α↑ Yin et al. (2025)

Mitochondrial oxidative stress

Ginsenoside Rg5 HFD/STZ mice NLRP3↓, MAPK↓, ROS↓ Zhu et al. (2020)

Triptolide

db/db mice Nrf2↑,GPX4↑
SLC7A11↑,ROS↓

Wang et al. (2024a)

HFD/STZ mice miR-155-5p↓, BDNF↑,
ROS↓

Gao et al. (2022b)

Mitochondrial autophagy

Jujuboside A HFD/STZ rats PINK1/Parkin↑ Zhong et al. (2022)

Astragaloside IV db/db mice Drp1↓, LC-3Ⅱ↑, OPA↑,PINK1↑ Pei et al. (2022)

Kaempferide Diet-induced obese mice TUFM↑, mtROS↑
TFEB↑

Kim et al. (2021)

Mitochondrial dynamics
Resveratrol db/db mice PDE4D↓, PKA↑,Drp1(Ser637)↑ Zhu et al. (2023b)

Notoginsenoside Fc db/db mice HMGCS2↓, Drp-1↓, Fis1↓, Mfn2↑ Zhang et al. (2024b)

Natural products exert reno-protective effects through multiple
pathways, involving a variety of pathological mechanisms such as
impaired mitochondrial energy metabolism, enhanced oxidative
stress, dysregulated autophagy, and kinetic disorders. The related
mechanisms of action are summarized in Table 1 and Figure 1.

2 Mechanisms of mitochondrial
damage induced by disorders of lipid
metabolism and intervention of
natural products in DKD

The mechanism of mitochondrial dysfunction induced by
lipid metabolism disorders includes the following four types:
mitochondrial energy metabolism, mitochondrial oxidative stress,
mitochondrial autophagy andmitochondrial dynamics. Meanwhile,
we have compiled the research progress and therapeutic potential of
natural product intervention for mitochondrial damage in DKD.

2.1 Mitochondrial energy metabolism

Fatty acid oxidation (FAO) is an important part ofmitochondrial
energy metabolism, which is mainly carried out in renal
tubular epithelial cells. Due to the impermeability of the inner
mitochondrial membrane to fatty acyl-CoA, fatty acids rely on

the carnitine shuttle system to achieve transmembrane transport.
Within this system, the carnitine palmitoyltransferase 1α (CPT1α)
isoform of the CPT1 family acts as the first key enzyme, responsible
for transferring the fatty acyl group from coenzyme A to carnitine
to form acylcarnitine, thereby mediating the entry of fatty acids
into the mitochondrial matrix (Console et al., 2020). On this
basis, FAO mediates the entry of fatty acids into mitochondria
via CPT1α, which is subsequently converted to acetyl-coenzyme
A (acetyl-CoA) through a multi-step enzymatic reaction, and
enters the tricarboxylic acid (TCA) cycle to generate ATP, and
the enhancement of the activity or expression of CPT1 can
effectively attenuate renal fibrosis, suggesting that it may be a
potential drug target for improving renal function (Lin et al.,
2022). Peroxisome proliferator-activated receptor-γ coactivator-1α
(PGC-1α), as a transcriptional co-activator, also plays an important
role in the regulation of lipid metabolism and mitochondrial
function, and it regulates mitochondrial biosynthesis and function
by interacting with multiple nuclear receptors and transcription
factors (Gudiksen et al., 2025; Zhou et al., 2024; Yu et al., 2023;
Chambers and Wingert, 2020). In DKD, due to disordered lipid
metabolism, CPT1α and PGC-1α expression is downregulated,
resulting in blocked FAO, fatty acids are unable to be oxidized
adequately, and accumulate abnormally in renal tubular cells.
This lipid accumulation not only directly induced lipotoxicity,
but also accelerated apoptosis and renal tubular mesenchymal
fibrosis by enhancing the generation of Reactive Oxygen Species
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FIGURE 1
The protective effects of natural products in improving lipid metabolism disorder–induced mitochondrial dysfunction of DKD.

(ROS) and the collapse of mitochondrial membrane potential,
which further damaged the structure and function of mitochondria
(Zhou et al., 2024; Dusabimana et al., 2021).

Baicalin, themain flavonoid constituent of Scutellaria baicalensis
(a traditional Chinese medicine), exhibits antioxidant, anti-
inflammatory, anti-fibrotic, and apoptosis-modulating properties
(Li X. et al., 2025). A Recent study has systematically demonstrated,
through clinical samples, in vivo experiments, and in vitro assays,
that Baicalin alleviates renal fibrosis in DKD by upregulating
CPT1α expression and enhancing FAO. mRNA sequencing
revealed significant downregulation of CPT1α in DKD, which
was validated by immunohistochemistry in patient renal tissues
and in db/db mouse models. In vitro, Oil Red O staining and
oxygen consumption rate (OCR) assays confirmed that Baicalin
effectively improved lipid metabolic disorders and enhanced both
mitochondrial respiratory function and FAO capacity (Hu et al.,
2024). In addition, a variety of natural products targeting PGC-1α
and its related pathways have clear roles in regulating mitochondrial

energy metabolism. Berberine is an isoquinoline alkaloid derived
from Chinese traditional medicine such as Huanglian, widely
used in the fields of hypoglycemia and lipid regulation, anti-
inflammation and anti-cancer (Xiong et al., 2022; Li et al.,
2023; Zhu L. et al., 2023).A study based on clinical samples and
experimental models systematically investigated the potential
mechanisms by which lipid metabolic disorders contribute to
mitochondrial dysfunction, as well as the therapeutic role of
berberine. In the clinical component, plasma samples from
patients with DKD were analyzed using gas chromatography–mass
spectrometry (GC-MS)-based metabolomics. The results revealed
characteristicmetabolic alterations, including reduced FAOcapacity
and abnormal levels of intermediates in the TCA cycle, suggesting
that impaired lipid metabolism may be a key contributor to
disrupted mitochondrial energy homeostasis. In the experimental
component, these findings were further validated using db/db
mice and palmitic acid (PA)-treated murine podocyte cell line
MPC5. The results demonstrated that berberine exerts protective
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effects by activating the AMPK/PGC-1α signaling pathway, thereby
enhancing FAO, improving mitochondrial function, and effectively
alleviating mitochondrial injury and dysfunction caused by lipid
metabolic imbalance (Qin et al., 2020). Oleanolic Acid, a pentacyclic
triterpenoid widely found in plants such as the traditional Chinese
medicine chasteberry, has been demonstrated to possess a variety of
biological activities such as anti-inflammatory, immunomodulatory,
antioxidant, autophagy-enhancing, and anti-fibrotic activities in
renal diseases. In a high-fat diet combined with streptozotocin
(HFD/STZ)-induced DKD rat model, Oleanolic Acid can inhibit
NF-κB-mediated inflammatory response, regulate mitochondrial
energy metabolism, lower blood glucose and lipid levels, and
reduce renal lipid deposition by activating the AMPK/PGC-1α
pathway (Liu Y. et al., 2022; Pan et al., 2024). Jujuboside A, a
triterpenoid saponin isolated from the traditional tranquilizing
medicine, Ziziphus jujuba var. spinosa, possesses anti-inflammatory,
antioxidant, and calcium homeostasis-regulating effects. In the
model of db/db mice, Jujuboside A restores mitochondrial function
and inhibits CytC-mediated Caspase9/Caspase3 cascade by down-
regulating transcription factor YY1 and enhancing PGC-1α
promoter activity to reduce mitochondria-dependent apoptosis
and attenuate renal tubular injury associated with DKD (Yang et al.,
2025; Zhang W. et al., 2024). Marein, the principal active compound
of Coreopsis tinctoria Nutt, exhibits anti-inflammatory and anti-
oxidant properties in various diseases, can directly target and inhibit
renal tubular SGLT2 expression, activate AMPK/ACC/PGC-1α
pathway and reduce renal ectopic lipid deposition, inflammation
and fibrosis in the db/db mice model (Zhou et al., 2023; Yin et al.,
2025). The above studies provide potential drug targets and
therapeutic strategies for intervening in impaired FAO and
disturbed energy metabolism in DKD.

2.2 Mitochondrial oxidative stress

In DKD, mitochondrial oxidative stress is a key link between
lipid metabolism disorders and kidney injury. Studies have shown
that abnormal accumulation of free fatty acids (FFA) and lipid
intermediate metabolites can induce ROS overproduction, damage
mitochondrial structure, and consequently disrupt renal tubular
epithelial cell function. Diabetes-related metabolic reprogramming
and chronic high-fat dietary intake can further exacerbate oxidative
stress and disrupt mitochondrial homeostasis, which in turn drives
the continued progression of DKD (Chae et al., 2023; Li and Sheikh-
Hamad, 2023). Targeting this mechanism, natural products can
alleviate oxidative stress and show good potential for intervention.

Ginsenoside Rg5 (Rg5), a triterpenoid saponin derived from
Panax ginseng, exhibits multi-target pharmacological activities and
has been extensively studied in the fields of anti-inflammation,
anti-tumor and neuroprotection (Gao X-F. et al., 2022). In the
HFD/STZ-inducedDKDmicemodel, Rg5 intervention significantly
improved blood glucose, blood creatinine and uric acid levels, and
attenuated glomerular structural damage. In terms of mechanism,
Rg5 inhibited the expression of NLRP3 inflammatory vesicle-
associated factors (including NLRP3, ASC, and Caspase-1), blocked
the activation of inflammatory signals, simultaneously inhibited the
phosphorylation of NF-κB and p38 MAPK, and lowered the levels
of the pro-inflammatory factors IL-1β and IL-18, which effectively

inhibited the inflammatory response in renal tissues. In addition, the
levels of oxidative stress markers ROS, NOX4 and TXNIP decreased
significantly and the level of MDA was reduced, accompanied
by the upregulation of the activities of antioxidant enzymes SOD
and GSH-PX in the renal tissues of the mice in the intervention
group of Rg5, suggesting that Rg5 plays a synergistic role in anti-
inflammatory and antioxidant effects through the regulation of
oxidative stress and the cross-regulation of NLRP3/MAPK/NF-κB
pathway, thus delaying DKD disease. and thus slowing down the
pathologic process of DKD (Zhu et al., 2020).

Triptolide (TP), a triterpenoid extracted from the traditional
Chinese medicine Tripterygium wilfordii Hook. F., has anti-
inflammatory, antioxidant, and podocytoprotective effects
(Li Q. et al., 2025). It was shown that TP intervention significantly
improved proteinuria and alleviated glomerular filtration barrier
damage caused by the abnormal transformation of the slit
diaphragm (SD) to tight junction (TJ) of podocytes in a db/db
mouse model, and the mechanism was closely related to the
activation of the Nrf2 signaling pathway. TP upregulates the
expression of downstream antioxidant factors GPX4, FTH1, and
SLC7A11, and inhibits the iron transport protein TFR1, which
reduces ROS generation and alleviates mitochondrial oxidative
stress and dysfunction (Wang H-Q. et al., 2024). In addition, in the
HFD/STZ-induced DKD mouse model, TP intervention effectively
reduced fasting blood glucose and urinary protein levels, and
ameliorated renal histopathological alterations and ultrastructural
abnormalities in podocytes.Themechanism of action of TP involves
downregulation of miR-155-5p expression, enhancement of brain-
derived neurotrophic factor (BDNF) and podocyte marker protein
Nephrin expression, and significant inhibition of inflammatory and
oxidative stress factors, such as ROS and IL-1β, to synergistically
alleviate the damage and mitochondrial dysfunction of podocytes
in a number of pathways. cell injury and mitochondrial dysfunction
from multiple pathways (Gao J. et al., 2022). Although natural
compounds such as Rg5 and TP have demonstrated potential in
mitigating oxidative stress and improving mitochondrial function,
current studies predominantly rely on ROS levels and the expression
of oxidative stress–related proteins. However, existing evidence
lacks direct assessment of mitochondrial function (e.g., respiratory
chain activity, membrane potential, and electron microscopy
ultrastructure), which limits the mechanistic understanding of their
specific targets. Future research should integrate comprehensive
functional evaluations to substantiate theirmitochondrial protective
mechanisms.

2.3 Mitochondrial autophagy

Mitochondrial autophagy is the intracellular process of selective
degradation of damaged mitochondria, which plays an important
role in slowing down the progression of DKD as a key mechanism
for maintaining mitochondrial homeostasis. Disturbances in lipid
metabolism disrupt the structure and function of the mitochondrial
membrane and activate mitochondrial autophagy to remove
damaged mitochondria. This process plays an important role
in delaying renal injury and disease progression by reducing
ROS production, alleviating lipid peroxidation stress, effectively
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alleviating oxidative stress and blocking apoptotic pathways
(Ruan et al., 2024; Shin et al., 2022; Wang et al., 2021).

In DKD, impaired mitochondrial autophagy mediated by the
PINK1/Parkin pathway is one of the important mechanisms of
mitochondrial dysfunction. Studies have shown that Jujuboside
A significantly reduces blood glucose and 24 h urine protein and
improves renal tissue structure and function in the HFD/STZ-
induced DKD rat model. The mechanism includes activation
of CaMKK2-AMPK-p-mTOR signaling axis, upregulation of
mitochondrial autophagy key proteins PINK1 and Parkin,
enhancement of autophagy activity, and promotion of damaged
mitochondrial clearance; at the same time, Jujuboside A also
inhibited the expression of NOX4, reduced the production of
O2- and H2O2 and enhanced the activities of SOD, CAT, and
GPx, and thus alleviated the effects of antioxidant enzymes.
Antioxidant enzyme activities, thereby alleviating oxidative
stress and mitochondrial respiratory chain disorders, inhibiting
the expression of mitochondrial apoptotic proteins such as
Bax, CytC, Apaf-1, etc., demonstrating the protective effect of
multi-targeted synergistic regulation of mitochondrial function
(Zhong et al., 2022). Astragaloside IV (AS-IV) is the main
active ingredient of the traditional Chinese medicine Astragalus
membranaceus, which possesses a variety of pharmacological
activities in anti-inflammatory, antioxidant, immune-enhancing
and anti-tumor aspects (Zha et al., 2024). AS-IV exhibited
significant nephroprotective effects in the db/db mouse model
by modulating the mitochondrial quality control network.AS-
IV intervention significantly downregulated the expression of
mitochondrial cleavage proteinsDrp1 andMFF, while up-regulating
the expression of the fusion proteins OPA1 and MFN2, as well
as mitochondrial autophagy-associated proteins PINK1, Parkin,
and LC3-II, which synergistically regulated the mitochondrial
This can synergistically regulate mitochondrial cleavage, fusion
and autophagy, and maintain the dynamic balance and functional
stability of mitochondria (Pei et al., 2022).

Additionally, kaempferide (Kaem), a natural flavonoid
from Kaempferia galanga, exhibits antiviral, anti-inflammatory,
and antioxidant activities such as antiviral, anti-inflammatory,
antioxidant, and antifibrotic (Shadman et al., 2025; Zhou et al.,
2022; Du et al., 2025). Studies have shown that Kaem induces
mitochondrial reactive oxygen species (mtROS) production,
promotes lysosomal calcium efflux, and activates the transcription
factor EB (transcription factor EB) by directly binding to
mitochondrial elongation factor TUFM (mtROS). Transcription
factor EB (TFEB) nuclear translocation, which enhances autophagy
activity independently of the mTOR pathway. Animal experiments
also confirmed that Kaem intervention could promote lipid droplet
degradation and alleviate high-fat diet-induced lipid accumulation
and metabolic abnormalities, suggesting that it has a good potential
to intervene in lipid metabolism remodeling by regulating the
mitochondria-autophagy axis (Kim et al., 2021). Although this study
did not use a DKDmodel, it revealed the pathological mechanism of
mitochondrial dysfunction induced by lipidmetabolismdisorders in
the context of a high-fat diet, which provides an important reference
for further exploring the application of natural products in DKD.
In summary, natural products enhance mitochondrial autophagy
function and effectively alleviate mitochondrial damage caused

by lipid metabolism disorders by targeting the activation of the
PINK1/Parkin pathway or regulating the TUFM-TFEB axis.

2.4 Mitochondrial dynamics

Mitochondrial dynamics, including the process of
mitochondrial fusion and division, is an important mechanism
for maintaining the functional integrity of mitochondria
and homeostasis of energy metabolism. Recent studies have
demonstrated that lipid metabolism disorders in DKD can disrupt
mitochondrial dynamic homeostasis by altering mitochondrial
membrane lipid composition and the expression of key regulatory
proteins (Ge et al., 2020). Li et al. reported that carbohydrate-
response element-binding protein (ChREBP), a glucose-responsive
transcription factor and a central regulator of lipogenesis,
not only governs lipid synthesis but also promotes ether
phospholipid production through the transcriptional upregulation
of glyceronephosphate O-acyltransferase (Gnpat). This process
enhances mitochondrial fission and exacerbates mitochondrial
morphological abnormalities. Inducible knockdown of ChREBP in
podocytes significantly reduced mitochondrial fragmentation and
improved the renal phenotype in db/db mice, suggesting that lipid
metabolic reprogramming may influence mitochondrial dynamics
via modulation of mitochondrial lipid architecture (Li et al.,
2023).In addition, abnormal remodeling of cardiolipin—a critical
phospholipid of the inner mitochondrial membrane—has been
implicated in mitochondrial dysfunction in DKD. Studies have
shown that acyl-CoA: lysocardiolipin acyltransferase-1 (ALCAT1)
is markedly upregulated in the glomeruli of DKD patients and
db/db mice, resulting in the accumulation of oxidized cardiolipin
(ox-CL). This accumulation triggers a loss of mitochondrial
membrane potential, reduced adenosine triphosphate (ATP)
production, and increased reactive oxygen species (ROS) levels.
In vitro experiments revealed that knockdown of ALCAT1
mitigated high glucose-induced mitochondrial injury, whereas
ALCAT1 overexpression exacerbated the pathological changes.
Mechanistically, ALCAT1 modulates mitochondrial dynamics
through the AMP-activated protein kinase (AMPK) signaling
pathway, thereby contributing to excessive mitochondrial fission
and impaired mitophagy (Hao et al., 2024).

Lipotoxicity, along with other forms of metabolic stress,
constitutes a critical factor contributing to mitochondrial dynamic
disequilibrium. Studies have shown that lipotoxicity induces
excessive mitochondrial fragmentation and disrupts the balance
between fusion and cleavage, which leads to mitochondrial
structural damage and dysfunction (Jia et al., 2024; Adebayo et al.,
2021; Tanriover et al., 2023), and this imbalance not only affects
the normal function of mitochondria, but also exacerbates
pathological damage to the kidney (Sun et al., 2025; Li and Susztak,
2025). Excessive cleavage also induces a number of pathological
processes such as apoptosis, decreased mitochondrial membrane
potential, and impaired respiratory function, which have been
demonstrated in a variety of disease models (Liu et al., 2023).
Among them, the mitochondrial splitting protein Drp1 and the
fusion protein Mfn2 are key factors that regulate mitochondrial
dynamics. In this context, natural product intervention has attracted
attention as a potential strategy for homeostatic regulation of
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mitochondrial dynamics. a review by Rahmani et al. indicated that
a variety of natural products can effectively alleviate mitochondrial
dysfunction triggered by excessive cleavage and play a protective
role in multi-organ injury models by inhibiting the expression
of Drp1, regulating its phosphorylation status and mitochondrial
translocation, and othermechanisms (Rahmani et al., 2023). Studies
have further shown that dysregulation of lipid metabolism can
induce excessive mitochondrial cleavage through activation of
the PDE4D/PKA pathway, which promotes the phosphorylation
of Drp1, leading to mitochondrial dysfunction. In this process,
Resveratrol, a polyphenolic natural product found in grapes,
thujone and other plants, has been shown to play an important
protective role in the regulation of mitochondrial dynamics,
with multiple pharmacological activities such as antioxidant,
anti-inflammatory, anticancer, and improvement of obesity
(Ei et al., 2025; Ibars-Serra et al., 2025). In the db/db mice
model, Resveratrol inhibits the dephosphorylation of Drp1 at
the Ser637 site by activating the PDE4D/PKA signaling axis,
thereby blocking mitochondrial cleavage and membrane potential
decrease, improving mitochondrial function, and mitigating DKD-
associated kidney injury (Zhu X. et al., 2023). Notoginsenoside
Fc is a protopanaxadiol-type saponin extracted from the leaves
of Panax notoginseng, a traditional Chinese medicine, with
various pharmacological activities such as antiplatelet aggregation,
improvement of vascular endothelial function, anti-inflammatory
and antioxidant properties. Research indicates thatNotoginsenoside
Fc can regulate the HMGCS2 pathway to inhibit the expression of
Drp1 and Fis1 in the db/db mice model, enhance mitochondrial
fusion mediated by Mfn2, maintain mitochondrial dynamics
balance, and downregulate proteins related to proptosis such
as TXNIP, NLRP3 and GSDMD-NT, thereby significantly
improving mitochondrial damage and alleviating cell proptosis
(Shen et al., 2024; Zhang Y. et al., 2024). In summary, abnormal
lipidmetabolism exacerbates mitochondrial dysfunction in DKD by
altering mitochondrial membrane lipid composition, expression of
key regulatory factors and related signaling pathways. Targeting core
nodes such as ChREBP, ALCAT1 and Drp1, combined with natural
products to intervene in the cleavage-fusion imbalance, is expected
to provide a new strategy to slow down the progression of DKD.

3 Conclusion and perspectives

Mitochondrial dysfunction driven by lipid metabolic disorders
constitutes a key mechanism in DKD pathogenesis. By virtue of
multi-target regulation and good safety, natural products have
shown broad application prospects in improving lipid metabolism
abnormalities and restoring mitochondrial homeostasis. In this
article, we reviewed a variety of representative active natural
products, including baicalin, berberine, oleanolic acid, jujuboside
A, marein, Rg5, TP, AS-IV, Kaem, resveratrol and notoginsenoside
Fc. These natural products exert reno-protective effects through
multiple pathways, effectively intervening in DKD-related
mitochondrial damage and dysfunction. Their mechanisms of
action include: activating the AMPK/PGC-1α pathway to enhance
FAO; inhibiting the overproduction of mitochondrial ROS to
alleviate oxidative stress; regulating the PINK1/Parkin pathway

to promote mitochondrial autophagy; and targeting the Drp1/Mfn2
pathway to maintain the dynamic balance of mitochondria.
Although the therapeutic potential of natural products in DKD
has received widespread attention, their safety concerns cannot
be ignored. For example, TP possesses pharmacological activities
such as anti-inflammatory, antioxidant and immunomodulatory
activities, which can ameliorate the pathological damage in DKD.
However, several studies have shown that this natural product
exhibits significant dose-dependent toxicity under high dose
conditions involving multiple systems such as the liver, kidney,
intestinal tract and reproductive organs (Wang L. et al., 2024;
Liu Y-T. et al., 2022; Wang et al., 2023). Therefore, in addition
to in-depth research on the pharmacodynamic mechanisms and
targets of the natural product, its toxicological evaluation and dose-
effect relationship studies should be strengthened to clarify the safe
dose range, so as to provide a reliable guarantee for the clinical
transformation of the natural product.

Although some progress has been made in basic research on
natural products for the treatment of DKD, most of them focus
on a single target or signaling pathway and lack multi-omics
integration from gene, transcription, protein to metabolism level.
Clinical evidence is still limited, and most of the existing studies
have focused on the intervention of traditional Chinese medicine
(TCM) compounding, which involves complex components and is
difficult to systematically reveal its mechanism of action. Although
previous studies based on clinical samples from patients with
DKD have employed techniques such as immunohistochemistry
(IHC), Western blotting, metabolomics (including lipidomics),
and transmission electron microscopy (TEM) to reveal a close
association between impaired FAO, TCA cycle disruption,
mitochondrial membrane lipid remodeling, and mitochondrial
dysfunction (Hu et al., 2024; Qin et al., 2020; Hao et al., 2024),
these investigations have primarily focused on disease mechanisms.
To date, there is a lack of clinical validation regarding the
effects of natural products, particularly single-compound herbal
constituents. Current evidence largely stems from preclinical
studies, and prospective randomized controlled clinical trials are still
lacking, limiting the comprehensive evaluation of their therapeutic
efficacy and safety. Future studies should incorporate single-cell
RNA sequencing (scRNA-seq) to delineate the cell-type–specific
responses within glomeruli and proximal tubules under conditions
of lipid metabolic imbalance and mitochondrial dysfunction. The
application of spatial transcriptomics will enable the spatial co-
localization of metabolic activity and the tissue microenvironment.
In addition, the use of multi-platform metabolomics technologies
(e.g., ^1H-NMR and LC-MS) can facilitate the dynamic tracking
of key metabolic pathways such as FAO and the TCA cycle. In
terms of disease modeling, human kidney organoids derived from
induced pluripotent stem cells (iPSCs) have been successfully
applied to recapitulate podocyte development under specific genetic
backgrounds, providing a novel platform for investigating lipid
metabolism–induced cellular injury in DKD (Wang G. et al.,
2024). Moving forward, there is an urgent need to design and
implement high-quality clinical trials on the basis of mechanistic
research, in order to effectively bridge experimental evidence and
clinical application of natural products.Through the comprehensive
integration of multi-omics data and clinical sample validation, the
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regulatory mechanisms by which natural products modulate the
“lipid metabolism–mitochondrial function axis” are expected to
be systematically elucidated, thereby offering precise therapeutic
targets and advancing translational strategies for DKD intervention.
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