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Introduction: Perioperative stroke is a rare but severe complication that
significantly impacts postoperative recovery and survival. This study aimed to
develop a machine learning-based predictive model for perioperative stroke
risk in patients undergoing noncardiac, nonvascular, and nonneurosurgical
procedures.

Methods: This retrospective cohort study was conducted using electronic
medical records from 106,328 patients at Henan Provincial People’s Hospital,
with data from 2,986 patients analyzed. Nine machine learning models were
developed to predict perioperative stroke risk, incorporating key variables such
as age, history of stroke, comorbidities, surgical factors, and intraoperative data.
The models’ performance was evaluated using standard metrics, including area
under the receiver operating characteristic curve (AUC), accuracy, sensitivity,
specificity, and F1 score.

Results: Among the nine models, the gradient boosting machine (GBM)
demonstrated the best performance. In the training set, GBM achieved an
AUC of 0.966 (95% CI: 0.957–0.975), with accuracy, sensitivity, specificity, and
an F1 score of 90.4%, 90.4%, 81.8%, and 79.0%, respectively. In the validation
set, the model maintained strong performance, with an AUC of 0.936 (95%
CI: 0.917–0.954), accuracy of 82.6%, sensitivity of 88.8%, specificity of 81.0%,
and an F1 score of 67.1%. In comparison, other models, such as logistic
regression, support vector machine (SVM), and neural networks, exhibited lower
AUC and less favorable performance metrics. Overall, GBM outperformed all
models, demonstrating the best balance across accuracy, sensitivity, specificity,
and F1 score.

Conclusion: The GBM model demonstrated strong predictive performance
and generalizability for perioperative stroke risk in noncardiac, nonvascular,
and nonneurosurgical patients. The integration of this model into a real-
time clinical decision support system enhances clinical decision-making by
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enabling the early identification of high-risk patients and facilitating personalized
interventions.

KEYWORDS

perioperative stroke, machine learning, gradient boosting machine (GBM), noncardiac,
nonvascular, and nonneurosurgical procedures, predictive model, clinical decision
support

1 Introduction

Perioperative stroke is a rare yet severe postoperative
complication characterized by the sudden onset of neurological
impairment during surgery. This condition significantly affects
recovery times and long-term survival outcomes (Mashour et al.,
2011). Perioperative stroke results from the interplay of preoperative
comorbidities, surgical risks, intraoperative hemodynamic
fluctuations, and individual physiological factors (Vlisides and
Mashour, 2016). Given the serious clinical consequences, improving
preoperative risk assessment methods is crucial.

Traditional risk assessment methods, such as static scoring
systems (e.g., CHA2DS2-VASc) (Tasbulak and Sahin, 2022),
rely heavily on manually selected variables, including age and
hypertension. Although these systems serve as useful tools for
initial risk stratification, they have notable limitations. Their
linear assumptions fail to account for nonlinear interactions,
such as the combined effect of carotid stenosis (>50%) and
intraoperative hypotension on stroke risk (Lengyel et al., 2024).
Moreover, these methods overlook dynamic intraoperative
factors, like fluctuations in the neutrophil-to-lymphocyte ratio,
which have been linked to postoperative thrombotic events.
These shortcomings undermine their generalizability across
different surgical populations, as demonstrated by a study
where traditional models failed to predict strokes in cancer
patients with hypercoagulable states (Al Mouslmani et al.,
2025). Furthermore, the manual selection of features can
result in the exclusion of important predictive factors, such
as intraoperative glycemic variability, diminishing the model’s
robustness.

In contrast, machine learning (ML) offers a promising
alternative by processing high-dimensional data and revealing
complex, nonlinear relationships. Recent studies have highlighted
its superior performance in predicting perioperative strokes
(Pfitzner et al., 2021; Abraham et al., 2023). For instance,
deep learning models integrating fibrinogen levels and carotid
plaque morphology have demonstrated high sensitivity in
predicting embolic strokes, outperforming traditional logistic
regression models (Jamthikar et al., 2021; Patel et al., 2024).
Additionally, reinforcement learning algorithms, which utilize
real-time hemodynamic data, have successfully reduced stroke
incidence in vascular surgery patients by adapting blood pressure
management strategies. However, despite these advancements,
research remains fragmented, with limited exploration of cross-
specialty applicability and integration of multi-omics data. As
a result, perioperative stroke prediction remains inadequately
addressed.

This study used real-world clinical data from a large-scale
database to develop predictive models for perioperative stroke

using various machine learning algorithms. By integrating
preoperative assessments, surgical variables, and perioperative
events, we aimed to create an early warning system that
enhances clinical decision-making and facilitates precision
interventions (Kwun et al., 2025).

2 Methods

2.1 Data source

This retrospective cohort study analyzed electronic medical
records of patients treated at Henan Provincial People’s Hospital
between November 2014 and June 2021. The database contained
comprehensive, high-quality demographic and clinical data,
including patient characteristics, comorbidities, and laboratory
results, forming a solid basis for analysis. The hospital’s Institutional
Review Board approved the study protocol (Approval No. 2021-
157), and all procedures complied with the Declaration of Helsinki.
The ethics committee waived the need for informed consent
due to the use of anonymized data and adherence to ethical
standards.

2.1.1 Inclusion criteria

1. Age ≥18 years, undergoing noncardiac, nonvascular, and
nonneurosurgical procedures under general anesthesia.

2. American Society of Anesthesiologists (ASA) physical status
classification I–III.

3. Availability of complete perioperative clinical and
laboratory data.

4. At least one postoperative follow-up within 30 days.

2.1.2 Exclusion criteria

1. Patients undergoing cardiac, major vascular, or neurosurgical
procedures.

2. Patients admitted preoperatively to neurology or neurological
intensive care units (neuro-ICUs).

3. Patients with ASA classification IV–V or classified as
critically ill.

4. Patients with missing or incomplete clinical/laboratory data.

Of the 106,328 patients who underwent noncardiac,
nonvascular, and nonneurosurgical surgeries, only those meeting
the inclusion criteria were enrolled. A flowchart of the study is
presented in Figure 1.
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FIGURE 1
Patient flow diagram. ASA, American Society of Anesthesiologists.

2.2 Data collection

2.2.1 Definition of perioperative stroke
The primary outcome was perioperative ischemic stroke,

defined as a clinically confirmed cerebral infarction occurring
within 30 days postoperatively. Diagnosis was confirmed through
imaging (CT/MRI) and neurologist evaluation (Mashour et al.,
2011). Diagnostic details were extracted from the electronic
medical records (Furie et al., 2011).

2.2.2 Clinical and perioperative parameters
The analysis included clinical data from 2,986

patients who underwent noncardiac, nonvascular, and
nonneurosurgical procedures. Comprehensive demographic,
clinical, imaging, and laboratory parameters were systematically
collected from the preoperative period through 7 days
postoperatively.

2.2.3 The key variables included the following

1. Demographics: Age, sex, height, weight, and BMI.
2. Surgical Parameters: ASA classification, procedure type and

duration, anesthesia duration and method, urine output, and
blood loss.

3. Comorbidities: Smoking, alcohol use, ascites, hypertension,
diabetes, cardiac disorders, COPD, renal disease, and
cerebrovascular disease.

4. Laboratory Tests: Complete blood count; creatinine, albumin,
and liver enzyme levels; and coagulation profiles.

5. Preoperative Medications: Antihypertensives, anticoagulants,
and antiplatelet agents, including documentation of
discontinuation timelines.

6. Intraoperative Monitoring: Blood pressure, heart rate,
temperature, bispectral index (BIS), and end-tidal CO2,
recorded at 5-min intervals.

7. IntraoperativeMedications: Inhalational anesthetics, diuretics,
and anticoagulants.

8. Intraoperative Fluids/Transfusions: Colloids, crystalloids, and
blood products.

9. Vasopressors: Ephedrine and phenylephrine.
10. Postoperative Medications: Statins, anticoagulants, and

antiplatelet agents (dosage and timing recorded) administered
within 7 days to prevent secondary cerebrovascular events.

2.3 Data preprocessing

The data preprocessing and model development for this study
involved feature selection, multiple imputation, and standardization
(Bellini et al., 2022). Variables were initially excluded based on
two criteria: (1) missing values exceeding 20% (Austin et al.,
2021) and (2) lack of established associations with perioperative
stroke, as supported by the literature and clinical expertise
(Mashour et al., 2011). After screening, 22 variables were retained:
emergency surgery, angina, valvular heart disease, stroke history,
tumor history, intraoperative mean arterial pressure ≤75 mmHg,
preoperative use of metoprolol/diuretics/insulin, intraoperative
use of remifentanil, age, surgical duration, preoperative red
blood cell/lymphocyte/basophil counts, mean corpuscular volume,
hematocrit, total protein, activated partial thromboplastin time
(APTT), prothrombin time (PT), fibrinogen, and succinylated
gelatine administration (Bijker et al., 2012).

Residual missing values were imputed using the R-based MICE
(Multiple Imputation by Chained Equations) package (Ren et al.,
2023). After imputation, all variables were Z-score normalized to
standardize data scales and minimize overfitting.
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2.4 Propensity score matching (PSM)

To minimize selection bias and create a balanced control
group, propensity scorematching (PSM) was performed. Propensity
scores were estimated using key demographic and clinical variables,
including age, sex, comorbidities (e.g., hypertension, diabetes, stroke
history), and other factors known to influence perioperative stroke
risk. These variables were chosen based on their clinical relevance,
established associations with stroke risk in the literature, and expert
consensus.

The matching procedure utilized the nearest neighbor matching
algorithmwith a 1:4 ratio, where each patient in the stroke groupwas
matched with four controls from the non-stroke group based on the
closest propensity score. No caliper was applied, although using one
could have improved match quality by restricting matches to those
with more similar propensity scores.

After matching, the balance between the stroke and non-stroke
groups was assessed using standardized mean differences (SMDs).
Covariates with an SMD of less than 0.1 were considered well-
balanced. This approach aimed to reduce confounding and ensure
comparability between the two groups.

The final cohort included 597 stroke patients and 2,388
non-stroke controls. Given the balanced group proportions, no
oversampling was needed to avoid prediction bias. The data were
randomly split into training (70%) and validation (30%) sets.
LASSO regression identified 11 key predictors, which were validated
through 10-fold cross-validation (Staartjes et al., 2022) (Figure 2).
These predictors included age, stroke history, succinylated gelatine,
preoperative APTT, hematocrit, basophil count, total protein,
hypotension, fibrinogen, surgical duration, and preoperative insulin.

2.5 Machine learning model development

A total of nine machine learning algorithms were developed
to predict perioperative stroke risk: logistic regression (LR),
support vector machine (SVM), gradient boosting machine (GBM),
neural network, extreme gradient boosting (XGBoost), k-nearest
neighbors (KNN), adaptive boosting (AdaBoost), light gradient
boostingmachine (LightGBM), and categorical boosting (CatBoost)
(Lundberg et al., 2020). The hyperparameters were optimized using
grid search, and model robustness was enhanced through 10-fold
cross-validation and resampling techniques (Collins et al., 2015).

Model performance was evaluated in three key areas:
discrimination, calibration, and clinical utility. Discriminatory
power was assessed by the area under the receiver operating
characteristic curve (AUC). Calibration was examined using
calibration plots and Brier scores. Decision curve analysis (DCA)
was used to evaluate the net clinical benefit across varying
decision thresholds (Steyerberg and Vergouwe, 2014). Additional
performance metrics, including accuracy, sensitivity, specificity,
precision, and F1 score, were derived from confusion matrices.

2.5.1 The optimal parameters for each model are
as follows

1. Logistic Regression (LR): C = 10, penalty = l2, solver = saga
2. Support Vector Machine (SVM): sigma = 0.001, C = 0.09

FIGURE 2
Presentation of the results of the LASSO regression analysis: (A)
Variable selection in the LASSO regression model: The left dashed
vertical line indicates the optimal lambda value (lambda⋅min)
corresponding to the minimum cross-validated error, while the right
dashed vertical line represents the largest lambda value within one
standard error of the optimal value (lambda.1se). (B) Coefficient
shrinkage patterns of the LASSO regression model: The trajectories
illustrate the coefficient paths for all candidate variables across
decreasing lambda values, demonstrating the feature selection
process through progressive regularization.

3. Gradient Boosting Machine (GBM): n.trees = 100,
interaction.depth = 5, shrinkage = 0.1, n.minobsinnode = 30

4. Multi-Layer Perceptron (MLP): size = 6, decay = 0.6
5. XGBoost (XGB): nrounds = 10, max_depth = 3, eta = 0.001,

gamma = 0.5, colsample_bytree = 0.5, min_child_weight = 1,
subsample = 0.6
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6. K-Nearest Neighbors (KNN): kmax = 12, distance = 1,
kernel = optimal

7. AdaBoost: mfinal = 2, maxdepth = 2, coeflearn = “Zhu”
8. LightGBM: objective = binary, metric = auc, learning_rate =

1.0, num_threads = 2
9. CatBoost: iterations = 100, eval_metric = AUC, learning_rate

= 0.03, random_seed = 123

2.6 Model interpretation and visualization

To enhance model interpretability and clinical transparency,
SHapley Additive exPlanations (SHAP) analysis was conducted to
assess the contribution of each feature to individual predictions. A
higher SHAP value indicates a greater influence of the variable on
stroke risk estimation (Lundberg et al., 2020).

2.7 Statistical analysis

Continuous variables are presented as medians with
interquartile ranges and compared using either t-tests or
Mann–Whitney U tests, depending on their distribution.
Categorical variables are reported as frequencies (percentages) and
analyzed with the chi-square test or Fisher’s exact test. Statistical
significance was set at P < 0.05. All analyses were performed using
R version 4.3.0. Model performance metrics included accuracy,
sensitivity, precision, specificity, F1 score, and AUC.

3 Results

3.1 Baseline patient characteristics

As shown in Figure 1, a total of 597 patients with confirmed
perioperative stroke were included in the stroke group. To
minimize selection bias and ensure a balanced control group,
propensity score matching (PSM) was performed using the nearest
neighbor matching algorithm at a 1:4 ratio. This was based on
key demographic and clinical variables, including age, sex, and
comorbidities, which were selected based on clinical relevance and
previous studies linking them to perioperative stroke risk. This
matching resulted in 2,388 controls for comparative analysis.

Balance between the stroke and non-stroke groups was assessed
using standardized mean differences (SMDs). Covariates with an
SMD of less than 0.1 were considered well-balanced after matching.
Thedatawere then divided intomodel development (n= 2,090, 70%)
and validation (n = 895, 30%) sets using stratified random sampling.
Table 1 presents the baseline characteristics of stroke and non-stroke
patients, while Table 2 outlines the intergroup differences between
the training and validation sets.

3.2 Performance evaluation of the nine
models

Nine machine learning models were developed to predict
stroke risk in noncardiac, nonvascular, and nonneurosurgical

patients. Figure 3 illustrates the model performance metrics,
including receiver operating characteristic (ROC) curves,
calibration plots, and decision curve analysis (DCA), for both the
training and validation sets.

The gradient boosting machine (GBM) model demonstrated
the best overall predictive performance. In the training set, GBM
achieved an AUC of 0.966 (95% CI: 0.957–0.975), with an accuracy
of 90.4%, sensitivity of 90.4%, precision of 70.1%, specificity of
81.8%, and an F1 score of 79.0%. Its performance remained
robust on the validation set, with an AUC of 0.936 (95% CI:
0.917–0.954), accuracy of 82.6%, sensitivity of 88.8%, precision of
53.9%, specificity of 81.0%, and an F1 score of 67.1%.

In contrast, the k-nearest neighbors (KNN) algorithm achieved
the highest training AUC of 0.988 (Figure 3A), but its performance
was less generalizable due to overfitting, as reflected in its lower
performance on the validation set. Specifically, KNN had an
accuracy of 86.6%, sensitivity of 89.4%, specificity of 85.9%,
precision of 61.3%, an F1 score of 72.7%, and an AUC of 0.930.

Similarly, CatBoost demonstrated competitive performance
with a validation AUC of 0.926 (Figure 3D). Its accuracy was 85.3%,
sensitivity 84.4%, specificity 85.5%, precision 59.2%, F1 score 69.6%,
and AUC 0.926.

Although KNN showed the highest training AUC, GBM was
ultimately selected as the optimal model due to its consistent
performance across both the training and validation sets. GBM
outperformed KNN on the validation set, achieving a higher AUC
and F1 score, and providing a better balance of sensitivity, specificity,
and precision. Despite CatBoost showing competitive results,
particularly in sensitivity and specificity, it was still outperformed
by GBM in accuracy, sensitivity, and AUC.

In conclusion, GBM demonstrated superior overall
performance, consistently outperforming KNN, CatBoost, and
other models, including logistic regression, neural networks,
XGBoost, and LightGBM (Table 3). Consequently, it was selected as
the optimal model for predicting perioperative stroke risk.

3.3 Model interpretability and visualization

Figure 4A presents the SHAP (SHapley Additive exPlanations)
summary plot for GBM, where the X-axis represents SHAP values
(higher values indicate stronger contributions to stroke prediction).
Feature magnitude is represented by a color gradient, ranging from
purple (high values) to yellow (low values).

The top four predictors of stroke risk were age, stroke history,
succinylated gelatine dosage, and preoperative activated partial
thromboplastin time (APTT). Older age, a prior stroke history,
higher succinylated gelatine use, and lower preoperative APTT
were strongly associated with an increased stroke risk. Other
significant factors included reduced haematocrit, lower basophil
count, elevated total protein, intraoperative hypotension (mean
arterial pressure ≤75 mmHg for ≥5 min), elevated fibrinogen levels,
longer surgical duration, and infrequent preoperative insulin use.

These findings were further supported by the feature importance
rankings in Figure 4B. The interpretability of the model was
also demonstrated through individualized case analyses. Figure 4C
shows SHAP force plots for a representative non-stroke patient,
highlighting feature-specific contributions to the prediction.
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TABLE 1 Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Characteristics Total No postoperative
ischemic stroke

N = 2,388

Postoperative
ischemic stroke

N = 597

P

Emergency surgery, n (%) <0.001

No 2,564 (86%) 2,094 (88%) 470 (79%)

Yes 421 (14%) 294 (12%) 127 (21%)

Sex, n (%) 0.003

male 1,351 (45%) 1,048 (44%) 303 (51%)

female 1,634 (55%) 1,340 (56%) 294 (49%)

Age, years 56 (44, 68) 52 (40, 63) 71 (66, 75) <0.001

Surgery length, min 143 (100, 210) 145 (100, 217) 136 (106, 198) 0.8

ASA classification, n (%) <0.001

I 224 (7.5%) 224 (9.4%) 0 (0%)

II 2,132 (71%) 1,814 (76%) 318 (53%)

III 629 (21%) 350 (15%) 279 (47%)

Amount of blood loss, ml 50 (20, 200) 50 (20, 200) 93 (48, 189) <0.001

Hypertension, n (%) <0.001

No 2,471 (83%) 2,089 (87%) 382 (64%)

Yes 514 (17%) 299 (13%) 215 (36%)

Diabetes, n (%) <0.001

No 2,735 (92%) 2,230 (93%) 505 (85%)

Yes 250 (8.4%) 158 (6.6%) 92 (15%)

Coronary heart disease, n (%) 0.006

No 2,844 (95%) 2,288 (96%) 556 (93%)

Yes 141 (4.7%) 100 (4.2%) 41 (6.9%)

Angina pectoris, n (%) <0.001

No 2,969 (99%) 2,384 (100%) 585 (98%)

Yes 16 (0.5%) 4 (0.2%) 12 (2.0%)

Valvular heart disease, n (%) <0.001

No 2,923 (98%) 2,372 (99%) 551 (92%)

Yes 62 (2.1%) 16 (0.7%) 46 (7.7%)

Myocardial infarction, n (%) <0.001

No 2,969 (99%) 2,382 (100%) 587 (98%)

Yes 16 (0.5%) 6 (0.3%) 10 (1.7%)

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Characteristics Total No postoperative
ischemic stroke

N = 2,388

Postoperative
ischemic stroke

N = 597

P

Heart failure, n (%) 0.017

No 2,979 (100%) 2,386 (100%) 593 (99%)

Yes 6 (0.2%) 2 (<0.1%) 4 (0.7%)

Atrial fibrillation, n (%) 0.085

No 2,976 (100%) 2,383 (100%) 593 (99%)

Yes 9 (0.3%) 5 (0.2%) 4 (0.7%)

Peripheral vascular disease,
n (%)

<0.001

No 2,678 (90%) 2,243 (94%) 435 (73%)

Yes 307 (10%) 145 (6.1%) 162 (27%)

Renal insufficiency, n (%) 0.14

No 2,973 (100%) 2,376 (99%) 597 (100%)

Yes 12 (0.4%) 12 (0.5%) 0 (0%)

Previous stroke, n (%) <0.001

No 2,729 (91%) 2,320 (97%) 409 (69%)

Yes 256 (8.6%) 68 (2.8%) 188 (31%)

Malignant tumor, n (%) <0.001

No 2,658 (89%) 2,097 (88%) 561 (94%)

Yes 327 (11%) 291 (12%) 36 (6.0%)

Preoperative hemoglobin, g/L 125 (112, 137) 127 (113, 139) 119 (108, 131) <0.001

Preoperative serum albumin,
g/L

39.6 (36.2, 43.4) 40.6 (37.0, 44.0) 36.8 (34.2, 39.1) <0.001

Preoperative total bilirubin,
μmol/L

10 (8, 15) 10 (8, 14) 11 (8, 15) 0.02

Preoperative thrombin time’s 16.70 (15.70, 17.70) 16.50 (15.50, 17.60) 17.10 (16.30, 17.87) <0.001

Preoperative ACEI drugs,
n (%)

<0.001

No 2,791 (94%) 2,252 (94%) 539 (90%)

Yes 194 (6.5%) 136 (5.7%) 58 (9.7%)

Preoperative ARB drugs, n (%) 0.002

No 2,838 (95%) 2,285 (96%) 553 (93%)

Yes 147 (4.9%) 103 (4.3%) 44 (7.4%)

(Continued on the following page)
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TABLE 1 (Continued) Baseline demographic and clinical characteristics of included patients diagnosed with or without ischemic stroke.

Characteristics Total No postoperative
ischemic stroke

N = 2,388

Postoperative
ischemic stroke

N = 597

P

Preoperative steroids, n (%) 0.2

No 2,395 (80%) 1,928 (81%) 467 (78%)

Yes 590 (20%) 460 (19%) 130 (22%)

Preoperative β-blockers, n (%) <0.001

No 2,770 (93%) 2,283 (96%) 487 (82%)

Yes 215 (7.2%) 105 (4.4%) 110 (18%)

Preoperative calcium channel
blockers, n (%)

<0.001

No 2,462 (82%) 2,105 (88%) 357 (60%)

Yes 523 (18%) 283 (12%) 240 (40%)

Perioperative nonsteroidal
drugs, n (%)

<0.001

No 507 (17%) 493 (21%) 14 (2.3%)

Yes 2,478 (83%) 1,895 (79%) 583 (98%)

Colloids, mL 500 (0, 500) 500 (0, 500) 383 (85, 500) 0.013

Crystals, mL 1,500 (1,000, 2,000) 1,500 (1,000, 2,000) 1,500 (1,191, 1,912) 0.018

Blood product usage, n (%) <0.001

No 2,511 (84%) 2,105 (88%) 406 (68%)

Yes 474 (16%) 283 (12%) 191 (32%)

Intraoperative steroids, n (%) <0.001

No 2,336 (78%) 1,957 (82%) 379 (63%)

Yes 649 (22%) 431 (18%) 218 (37%)

P-values were determined using χ2 or Fisher’s exact tests for categorical variables and analysis of variance or Kruskal–Wallis tests for continuous variables. Categorical data were reported as
frequencies (percentages), and continuous variables were reported as medians (quartiles). ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II, receptor blockers; ASA,
american society of anesthesiologists; BMI, body mass index; MAP, mean arterial pressure.

Figures 5A,B complement these statistical findings by presenting
the confusion matrix for the GBM model, showing both actual and
predicted values. Finally, Figure 6 presents the performance metrics
of the GBM model across the 10-fold cross-validation.

4 Discussion

This study developed a perioperative stroke risk prediction
model for patients undergoing noncardiac, nonvascular, and
nonneurosurgical procedures. By integrating multiple machine
learning algorithms with a large-scale perioperative database from
Henan Provincial People’s Hospital, we identified 16 key factors

contributing to perioperative stroke risk prediction (Bilimoria et al.,
2013). While traditional perioperative stroke assessment tools,
such as the National Institutes of Health Stroke Scale (NIHSS),
modified Rankin Scale (mRS), and ABCD2 score, are useful for
preliminary risk identification, they have limitations in predicting
future stroke incidence (Birman-Deych et al., 2005; Sacco et al.,
2013). This study is the first to create a prediction model specifically
designed for Chinese surgical patients undergoing noncardiac,
nonvascular, and nonneurosurgical procedures. It systematically
integrates standardized demographic data, comorbidities, and
health-related indicators, providing significant innovation. The
model’s strength lies in its ability to reveal complex interactions
among high-dimensional variables through machine learning,
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TABLE 2 Baseline demographic and clinical characteristics of included patients between training and validation sets.

Characteristics Total Training sets n = 2,090 Validation sets n = 895 P

Ischemic stroke, n (%) >0.9

No 2,388 (80%) 1,672 (80%) 716 (80%)

Yes 597 (20%) 418 (20%) 179 (20%)

Emergency surgery, n (%) 0.8

No 2,564 (86%) 1,797 (86%) 767 (86%)

Yes 421 (14%) 293 (14%) 128 (14%)

Sex, n (%) 0.2

male 1,351 (45%) 931 (45%) 420 (47%)

female 1,634 (55%) 1,159 (55%) 475 (53%)

Age, (Median [Q1, Q3]), yr 56 (44, 68) 56 (43, 68) 56 (44, 68) >0.9

Surgery length, (Median [Q1, Q3]), min 143 (100, 210) 143 (100, 212) 144 (100, 210) 0.6

ASA classification, n (%) 0.8

I 224 (7.5%) 153 (7.3%) 71 (7.9%)

II 2,132 (71%) 1,499 (72%) 633 (71%)

III 629 (21%) 438 (21%) 191 (21%)

Amount of blood loss, ml 50 (20, 200) 50 (20, 200) 50 (20, 182) 0.2

Hypertension, n (%) 0.3

No 2,471 (83%) 1,740 (83%) 731 (82%)

Yes 514 (17%) 350 (17%) 164 (18%)

Diabetes, n (%) 0.5

No 2,735 (92%) 1,920 (92%) 815 (91%)

Yes 250 (8.4%) 170 (8.1%) 80 (8.9%)

Coronary heart disease, n (%) 0.15

No 2,844 (95%) 1,999 (96%) 845 (94%)

Yes 141 (4.7%) 91 (4.4%) 50 (5.6%)

Angina pectoris, n (%) 0.6

No 2,969 (99%) 2,080 (100%) 889 (99%)

Yes 16 (0.5%) 10 (0.5%) 6 (0.7%)

Valvular heart disease, n (%) 0.7

No 2,923 (98%) 2,048 (98%) 875 (98%)

Yes 62 (2.1%) 42 (2.0%) 20 (2.2%)

(Continued on the following page)

Frontiers in Physiology 09 frontiersin.org

https://doi.org/10.3389/fphys.2025.1624898
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Cong et al. 10.3389/fphys.2025.1624898

TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training and validation sets.

Characteristics Total Training sets n = 2,090 Validation sets n = 895 P

Myocardial infarction, n (%) 0.051

No 2,969 (99%) 2,075 (99%) 894 (100%)

Yes 16 (0.5%) 15 (0.7%) 1 (0.1%)

Heart failure, n (%) 0.2

No 2,979 (100%) 2,084 (100%) 895 (100%)

Yes 6 (0.2%) 6 (0.3%) 0 (0%)

Atrial fibrillation, n (%) 0.7

No 2,976 (100%) 2,084 (100%) 892 (100%)

Yes 9 (0.3%) 6 (0.3%) 3 (0.3%)

Peripheral vascular disease, n (%) >0.9

No 2,678 (90%) 1,875 (90%) 803 (90%)

Yes 307 (10%) 215 (10%) 92 (10%)

Renal insufficiency, n (%) >0.9

No 2,973 (100%) 2,081 (100%) 892 (100%)

Yes 12 (0.4%) 9 (0.4%) 3 (0.3%)

Previous stroke, n (%) 0.5

No 2,729 (91%) 1,906 (91%) 823 (92%)

Yes 256 (8.6%) 184 (8.8%) 72 (8.0%)

Malignant tumor, n (%) 0.4

No 2,658 (89%) 1,854 (89%) 804 (90%)

Yes 327 (11%) 236 (11%) 91 (10%)

Preoperative hemoglobin, (Median [Q1, Q3]), g/L 125 (112, 137) 125 (112, 137) 125 (111, 137) >0.9

Preoperative serum albumin, (Median [Q1, Q3]), g/L 39.6 (36.2, 43.4) 39.6 (36.2, 43.4) 39.6 (36.2, 43.3) 0.9

Preoperative total bilirubin, (Median [Q1, Q3]), μmol/L 10 (8, 15) 10 (8, 15) 10 (8, 15) >0.9

Preoperative thrombin time, (Median [Q1, Q3]), s 16.70 (15.70, 17.70) 16.70 (15.70, 17.70) 16.74 (15.70, 17.83) 0.1

Preoperative ACEI drugs, n (%) 0.2

No 2,791 (94%) 1,963 (94%) 828 (93%)

Yes 194 (6.5%) 127 (6.1%) 67 (7.5%)

Preoperative ARB drugs, n (%) 0.14

No 2,838 (95%) 1,979 (95%) 859 (96%)

Yes 147 (4.9%) 111 (5.3%) 36 (4.0%)

(Continued on the following page)
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TABLE 2 (Continued) Baseline demographic and clinical characteristics of included patients between training and validation sets.

Characteristics Total Training sets n = 2,090 Validation sets n = 895 P

Preoperative steroids, n (%) 0.3

No 2,395 (80%) 1,666 (80%) 729 (81%)

Yes 590 (20%) 424 (20%) 166 (19%)

Preoperative β-blockers, n (%) 0.8

No 2,770 (93%) 1,941 (93%) 829 (93%)

Yes 215 (7.2%) 149 (7.1%) 66 (7.4%)

Preoperative calcium channel blockers, n (%) 0.7

No 2,462 (82%) 1,728 (83%) 734 (82%)

Yes 523 (18%) 362 (17%) 161 (18%)

Perioperative nonsteroidal drugs, n (%) 0.2

No 507 (17%) 368 (18%) 139 (16%)

Yes 2,478 (83%) 1,722 (82%) 756 (84%)

Colloids, mL 500 (0, 500) 500 (0, 500) 500 (0, 500) 0.7

Crystals, mL 1,500 (1,000, 2,000) 1,500 (1,000, 2,000) 1,500 (1,000, 2,000) 0.7

Blood product usage, n (%) 0.8

No 2,511 (84%) 1,756 (84%) 755 (84%)

Yes 474 (16%) 334 (16%) 140 (16%)

Intraoperative steroids, n (%) 0.4

No 2,336 (78%) 1,626 (78%) 710 (79%)

Yes 649 (22%) 464 (22%) 185 (21%)

P-values were determined using χ2 or Fisher’s exact tests for categorical variables and analysis of variance or Kruskal–Wallis tests for continuous variables. Categorical data were reported as
frequencies (percentages), and continuous variables were reported as medians (quartiles). ACEIs, angiotensin-converting enzyme inhibitors; ARBs, angiotensin II, receptor blockers; ASA,
american society of anesthesiologists; BMI, body mass index; MAP, mean arterial pressure.

leading to enhanced predictive accuracy and offering robust
evidence for stroke prediction in this surgical cohort (Deo, 2015).

Through LASSO regression analysis, we identified 11 key
predictive variables. As shown in Figure 2, advanced age, a history
of stroke, increased succinylated gelatine administration, and
lower preoperative activated partial thromboplastin time (APTT)
were significantly associated with increased stroke risk. Other
independent predictors included reduced haematocrit, decreased
preoperative basophil count, elevated preoperative total protein,
mean arterial pressure ≤75 mmHg for ≥5 min, elevated preoperative
fibrinogen levels, prolonged surgical duration, and infrequent
preoperative insulin use.

These findings align with existing literature. Advanced age
and a prior history of stroke are well-established predictors of
perioperative stroke risk (Mashour et al., 2011). Age-related changes
such as vascular aging and arteriosclerosis impair cerebral perfusion

(Fanning et al., 2024), increasing cerebrovascular fragility and stroke
susceptibility. Older patients with a history of cerebrovascular events
exhibit significantly higher rates of postoperative stroke recurrence
than those without such history (Vlisides and Mashour, 2016).
Additionally, the frequent coexistence of chronic comorbidities
such as hypertension, diabetes, and atherosclerosis in older
populations further exacerbates perioperative stroke risk through
shared pathological mechanisms (Sultan et al., 2020). These
findings underscore the importance of thorough preoperative risk
stratification and tailored interventions for high-risk groups.

Coagulation abnormalities are another critical determinant
of perioperative stroke risk. The dose-dependent relationship
between succinylated gelatine administration (commonly used in
hepatectomy fluid management) and postoperative coagulation
dysfunction can predispose individuals to stroke (Kuang et al.,
2024). Experimental evidence shows that gelatine inhibits platelet
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FIGURE 3
The performance and comparison of nine different predictive models: (A) ROC Curves for the Training sets; (B) Calibration Curve for the Training sets;
(C) Decision Curve Analysis for the Training sets; (D) ROC Curves for the Validation sets; (E) Calibration Curve for the Validation sets; (F) Decision Curve
Analysis for the Validation sets.
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FIGURE 4
SHAP of the model: (A) Characteristic attributes in SHAP. The abscissa is the SHAP value, and each line denotes a feature. Higher eigenvalues are
indicated by purple dots, and lower eigenvalues are indicated by yellow dots; (B) Feature importance ranking of the Gradient Boosting Machine (GBM)
model; (C) Interpretability analysis of 1 independent samples. Hx-CVD:a preoperative history of stroke. SG: succinylated gelatin. PTS-APTT:
preoperative APTT. PTS-HCT: preoperative hematocrit. PBC: preoperative basophil count. PTS-TP: preoperative total protein. LBP: hypotension.
PTS-FIB: preoperative fibrinogen. OT: operative time. PTS-INS: preoperative insulin.
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FIGURE 5
Confusion matrix for the GBM model: (A) Confusion matrix for the Training sets; (B) Confusion matrix for the Validation sets.

aggregation, particularly at doses exceeding 20 mL/kg (Cai et al.,
2021), and induces endothelial cell activation and hypercoagulable
states with prolonged administration (Malerba et al., 2017).
Similarly, preoperative hypocoagulable profiles (indicated by
reduced APTT) and elevated fibrinogen levels serve as markers
of prothrombotic tendencies, promoting thrombogenesis and
cerebrovascular events (Li et al., 2022; Alemayehu et al., 2024).
These findings highlight the importance of preoperative coagulation
profiling and evidence-based corrective strategies to mitigate
perioperative stroke risk.

Perioperative haemodynamic fluctuations, surgical duration,
and insulin management were also identified as key stroke
risk factors. Intraoperative hypotension, a major contributor
to cerebral hypoperfusion, impairs cerebral blood flow and
increases susceptibility to ischemic stroke (Mazzeffi et al., 2021;
Wongtangman et al., 2021). Prolonged surgery duration increases
exposure to physiological stress, elevating the risk of postoperative
complications, including cerebrovascular events (Mazzeffi et al.,
2021). Among diabetic patients, those with suboptimal insulin use
or poor glycemic control have a significantly higher likelihood of
postoperative stroke compared to those with good glycemic control
(Eshuis et al., 2011; Sacco et al., 2024). These findings emphasize the
need for maintaining haemodynamic stability, optimizing glycemic
control, and managing intraoperative blood pressure as essential
strategies for reducing stroke risk.

In terms of model performance, the gradient boosting machine
(GBM) outperformed other models in the validation cohort,
achieving superior AUC values, accuracy, specificity, sensitivity,
and F1-score metrics. Decision curve analysis (DCA) demonstrated
substantial net clinical benefits for the GBM model across most
threshold probabilities, except in highly risk-averse scenarios
(Figures 3C,F). Calibration analysis produced Brier scores of 0.05

(95% CI: 0.045–0.057) for the validation sets and 0.072 (95% CI:
0.06–0.085) for the test sets, indicating excellent alignment between
predicted probabilities and observed outcomes. A comprehensive
evaluation confirmed the robustness and generalizability of the
GBM, establishing it as the optimal model. Its computational
efficiency, adaptability to complex scenarios, and ability to handle
high-dimensional nonlinear relationships affirm its superiority in
medical data analytics (Langenberger et al., 2023).

Despite the widespread use of logistic regression in clinical
research, its application in perioperative stroke prediction has
notable limitations. First, logistic regression’s linearity assumption
restricts its predictive power, failing to account for complex
interactions and nonlinear associations, thus compromising
prediction accuracy (Nusinovici et al., 2020; Song et al., 2023).
Second, these models struggle with dynamic data integration,
particularly real-time intraoperative monitoring parameters
and time-dependent variables (e.g., the interaction between
anticoagulant withdrawal duration and surgical timing) (Klug et al.,
2024). Additionally, logistic regression models rely heavily on
manual feature engineering, risking the omission of critical
predictors, such as intraoperative micro-embolic signals or
postoperative fluctuations in the neutrophil-to-lymphocyte ratio
(NLR) (Zhuang et al., 2021; Oh et al., 2024). Emerging evidence
suggests that these dynamic indicators could improve predictive
performance by up to 15% (Zhuang et al., 2021).

Moreover, logistic regression is highly sensitive to class
imbalance, often requiring remedial techniques like oversampling,
which can introduce prediction bias (van den Goorbergh et al.,
2022). More importantly, the model lacks the ability to dynamically
recalibrate risk, preventing real-time prediction adjustments
(Xue et al., 2022). Studies suggest this limitation may lead
to the misclassification of up to 38% of high-risk patients
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FIGURE 6
Performance metrics of the GBM model across the 10-fold cross-validation.

(Cooper et al., 2016). These limitations make logistic regression
insufficient for modern perioperative stroke prediction in
precision medicine (Kim et al., 2023).

This study introduces key advancements in perioperative stroke
prediction through the following innovations:

1. Data Integration: We consolidated the perioperative database
from Henan Provincial People’s Hospital, integrating
preoperative baseline characteristics, intraoperative dynamic
monitoring metrics (e.g., haemodynamic fluctuations, heart
rate, and oxygen saturation), and postoperative complications.
This integration provides comprehensive insights into patients’
physiological status.

2. Cohort Expansion: The analysis included over 10,000 surgical
cases, making it the largest cohort in perioperative stroke
prediction research. This large-scale approach improves
model robustness and generalizability, enhancing clinical
applicability.

3. Novel Predictive Framework: We developed a gradient
boosting machine (GBM) model capable of processing
both structured clinical data and intraoperative continuous
monitoring signals. The model showed exceptional
discriminative performance (AUC 0.936), outperforming

traditional regression models in perioperative stroke
prediction.

4. Clinical Decision Support System: A real-time decision
support system based on this predictive model was
implemented, offering dynamic risk score updates and alerts.
Currently being piloted in three tertiary hospitals, the system
has received positive feedback for its ability to identify
high-risk patients early and facilitate timely interventions.

These innovations collectively improve the accuracy of
perioperative stroke prediction and support the clinical
implementation of predictive models. The established framework
offers a practical solution for optimizing perioperative care.

Although this study represents significant progress, several
limitations should be acknowledged. First, the retrospective
nature of the analysis, relying on a single data source, may
introduce potential selection bias (Oh et al., 2024). Second, the
absence of key stroke-related variables such as genetic profiles
and socioeconomic factors limits the comprehensiveness of the
risk assessment. Finally, as a retrospective cohort study, the
lack of prospective follow-up data for disease progression may
introduce confounding factors. Future studies should incorporate
updated datasets to further refine and validate the model.
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Despite these limitations, this research addresses a critical gap in
perioperative stroke prediction, using advanced algorithms like the
gradient boosting machine (GBM) to enhance predictive accuracy.
The web-based prediction platform developed offers considerable
clinical potential for rapid high-risk patient identification and
personalized interventions (Teng et al., 2024). This tool also
empowers patients with self-assessment capabilities, improving
disease awareness and management.

5 Conclusion

This study developed a machine learning-based model for
perioperative stroke prediction, demonstrating superior accuracy
compared to traditional methods. The gradient boosting machine
(GBM) model, leveraging a wide range of clinical data, showed
robust performance and generalizability. Furthermore, the
integration of a real-time decision support system enhances the
model’s clinical utility, aiding in early identification of high-risk
patients and enabling personalized interventions.

Data availability statement

The raw data supporting the conclusions of this article will be
made available by the authors, without undue reservation.

Ethics statement

The studies involving humans were approved by Henan
Provincial People’s Hospital’s Ethics Review Committee. The
studies were conducted in accordance with the local legislation
and institutional requirements. The ethics committee/institutional
review board waived the requirement of written informed consent
for participation from the participants or the participants’ legal
guardians/next of kin because The need for informed consent was
waived by the ethics committee because of compliance with ethical
standards and the use of anonymized data.

Author contributions

XC: Writing – original draft, Writing – review and editing,
Conceptualization, Data curation, Formal Analysis, Funding
acquisition, Investigation, Methodology, Project administration,
Resources, Software, Supervision, Validation, Visualization. XZ:
Data curation, Conceptualization, Methodology, Writing – review
and editing. RZ: Formal Analysis, Conceptualization, Data curation,

Writing – review and editing. YL: Investigation, Software, Data
curation, Writing – review and editing. LL: Investigation, Software,
Writing – review and editing. JZ: Writing – original draft, Writing –
review and editing.

Funding

The author(s) declare that financial support was received for the
research and/or publication of this article. This study was supported
by grants from the National Natural Science Foundation of China
(grant nos. 82071217).

Acknowledgments

Wewould like to thank Linlin Xu andTongyan Sun ofHangzhou
Le9 Healthcare Technology Co., Ltd., for their assistance in the
clinical data extraction during the study.

Conflict of interest

The authors declare that the research was conducted in the
absence of any commercial or financial relationships that could be
construed as a potential conflict of interest.

Generative AI statement

The author(s) declare that no Generative AI was used in the
creation of this manuscript.

Publisher’s note

All claims expressed in this article are solely those of the
authors and do not necessarily represent those of their affiliated
organizations, or those of the publisher, the editors and the
reviewers. Any product thatmay be evaluated in this article, or claim
thatmay bemade by itsmanufacturer, is not guaranteed or endorsed
by the publisher.

Supplementary material

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fphys.2025.
1624898/full#supplementary-material

References

Abraham, J., Bartek, B., Meng, A., Ryan King, C., Xue, B., Lu, C., et al. (2023).
Integrating machine learning predictions for perioperative risk management: towards
an empirical design of a flexible-standardized risk assessment tool. J. Biomed. Inf. 137,
104270. doi:10.1016/j.jbi.2022.104270

Alemayehu, E., Mohammed, O., Belete, M. A., Mulatie, Z., Debash, H., Gedefie, A.,
et al. (2024). Association of prothrombin time, thrombin time and activated partial
thromboplastin time levels with preeclampsia: a systematic review and meta-analysis.
BMC Pregnancy Childbirth 24 (1), 354. doi:10.1186/s12884-024-06543-7

Frontiers in Physiology 17 frontiersin.org

https://doi.org/10.3389/fphys.2025.1624898
https://www.frontiersin.org/articles/10.3389/fphys.2025.1624898/full#supplementary-material
https://www.frontiersin.org/articles/10.3389/fphys.2025.1624898/full#supplementary-material
https://doi.org/10.1016/j.jbi.2022.104270
https://doi.org/10.1186/s12884-024-06543-7
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org


Cong et al. 10.3389/fphys.2025.1624898

Al Mouslmani, M., Alahmad, M. A., Akman, Z., Rossi, R., Rahman, M., and Nanna,
M. G. (2025). CHA(2)DS(2)-VASc score in patients with atrial fibrillation and cancer:
a U.S. Nationwide study. Am. J. Cardiol. 249, 59–64. doi:10.1016/j.amjcard.2025.04.025

Austin, P. C., White, I. R., Lee, D. S., and van Buuren, S. (2021). Missing data in
clinical research: a tutorial on multiple imputation. Can. J. Cardiol. 37 (9), 1322–1331.
doi:10.1016/j.cjca.2020.11.010

Bellini, V., Valente, M., Bertorelli, G., Pifferi, B., Craca, M., Mordonini, M., et al.
(2022). Machine learning in perioperative medicine: a systematic review. J. Anesth.
Analg. Crit. Care 2 (1), 2. doi:10.1186/s44158-022-00033-y

Bijker, J. B., Persoon, S., Peelen, L. M., Moons, K. G., Kalkman, C. J., Kappelle,
L. J., et al. (2012). Intraoperative hypotension and perioperative ischemic stroke
after general surgery: a nested case-control study. Anesthesiology 116 (3), 658–664.
doi:10.1097/ALN.0b013e3182472320

Bilimoria, K. Y., Liu, Y., Paruch, J. L., Zhou, L., Kmiecik, T. E., Ko, C. Y., et al. (2013).
Development and evaluation of the universal ACS NSQIP surgical risk calculator: a
decision aid and informed consent tool for patients and surgeons. J. Am. Coll. Surg. 217
(5), 833–42.e423. doi:10.1016/j.jamcollsurg.2013.07.385

Birman-Deych, E.,Waterman, A.D., Yan, Y., Nilasena, D. S., Radford,M. J., andGage,
B. F. (2005). Accuracy of ICD-9-CMcodes for identifying cardiovascular and stroke risk
factors. Med. Care 43 (5), 480–485. doi:10.1097/01.mlr.0000160417.39497.a9

Cai, Y., Zhang, M., Wang, Y., Wang, N., Zhang, L., and Zhang, K. (2021). Latamoxef-
induced coagulation disorders: incidence and risk factors. J. Clin. Pharm. Ther. 46 (5),
1382–1386. doi:10.1111/jcpt.13435

Collins, G. S., Reitsma, J. B., Altman, D. G., and Moons, K. G. (2015). Transparent
reporting of a multivariable prediction model for individual prognosis or diagnosis
(TRIPOD): the TRIPOD statement. Bmj 350, g7594. doi:10.1136/bmj.g7594

Cooper, M., Arhuidese, I. J., Obeid, T., Hicks, C. W., Canner, J., and Malas, M.
B. (2016). Perioperative and long-term outcomes after carotid endarterectomy in
hemodialysis patients. JAMA Surg. 151 (10), 947–952. doi:10.1001/jamasurg.2016.1504

Deo, R. C. (2015). Machine learning in medicine. Circulation 132 (20), 1920–1930.
doi:10.1161/circulationaha.115.001593

Eshuis, W. J., Hermanides, J., van Dalen, J. W., van Samkar, G., Busch, O. R.,
van Gulik, T. M., et al. (2011). Early postoperative hyperglycemia is associated
with postoperative complications after pancreatoduodenectomy. Ann. Surg. 253 (4),
739–744. doi:10.1097/SLA.0b013e31820b4bfc

Fanning, J. P., Campbell, B. C. V., Bulbulia, R., Gottesman, R. F., Ko, S. B., Floyd, T.
F., et al. (2024). Perioperative stroke. Nat. Rev. Dis. Prim. 10 (1), 3. doi:10.1038/s41572-
023-00487-6

Furie, K. L., Kasner, S. E., Adams, R. J., Albers, G. W., Bush, R. L., Fagan,
S. C., et al. (2011). Guidelines for the prevention of stroke in patients with
stroke or transient ischemic attack: a guideline for healthcare professionals from
the american heart association/american stroke association. Stroke 42 (1), 227–276.
doi:10.1161/STR.0b013e3181f7d043

Jamthikar, A. D., Gupta, D., Mantella, L. E., Saba, L., Laird, J. R., Johri, A. M.,
et al. (2021). Multiclass machine learning vs. conventional calculators for stroke/CVD
risk assessment using carotid plaque predictors with coronary angiography scores as
gold standard: a 500 participants study. Int. J. Cardiovasc. Imaging 37 (4), 1171–1187.
doi:10.1007/s10554-020-02099-7

Kim, R. C., Schick, S. E., Muraru, R. I., Roch, A., Nguyen, T. K., Ceppa, E. P.,
et al. (2023). Do weekend discharges impact readmission rate in patients undergoing
pancreatic surgery? J. Gastrointest. Surg. 27 (12), 2815–2822. doi:10.1007/s11605-023-
05864-w

Klug, J., Leclerc, G., Dirren, E., and Carrera, E. (2024). Machine learning for early
dynamic prediction of functional outcome after stroke. Commun. Med. (Lond) 4 (1),
232. doi:10.1038/s43856-024-00666-w

Kuang, L., Lin, W., Wang, D., and Chen, B. (2024). Abnormal coagulation after
hepatectomy in patients with normal preoperative coagulation function. BMC Surg. 24
(1), 136. doi:10.1186/s12893-024-02406-2

Kwun, J. S., Ahn, H. B., Kang, S. H., Yoo, S., Kim, S., Song, W., et al. (2025).
Developing a machine learning model for predicting 30-day major adverse cardiac and
cerebrovascular events in patients undergoing noncardiac surgery: retrospective study.
J. Med. Internet Res. 27, e66366. doi:10.2196/66366

Langenberger, B., Schulte, T., and Groene, O. (2023). The application of
machine learning to predict high-cost patients: a performance-comparison
of different models using healthcare claims data. PLoS One 18 (1), e0279540.
doi:10.1371/journal.pone.0279540

Lengyel, B., Magyar-Stang, R., Pál, H., Debreczeni, R., Sándor Á, D., Székely, A., et al.
(2024). Non-invasive tools in perioperative stroke risk assessment for asymptomatic
carotid artery stenosis with a focus on the circle of willis. J. Clin. Med. 13 (9), 2487.
doi:10.3390/jcm13092487

Li, Z., Yu, B., Zhang, J., Shen, J., Wang, Y., Qiu, G., et al. (2022). Does abnormal
preoperative coagulation status lead to more perioperative blood loss in spinal
deformity correction surgery? Front. Surg. 9, 841680. doi:10.3389/fsurg.2022.841680

Lundberg, S. M., Erion, G., Chen, H., DeGrave, A., Prutkin, J. M., Nair, B., et al.
(2020). From local explanations to global understanding with explainable AI for trees.
Nat. Mach. Intell. 2 (1), 56–67. doi:10.1038/s42256-019-0138-9

Malerba, M., Nardin, M., Radaeli, A., Montuschi, P., Carpagnano, G. E., and Clini,
E. (2017). The potential role of endothelial dysfunction and platelet activation in
the development of thrombotic risk in COPD patients. Expert Rev. Hematol. 10 (9),
821–832. doi:10.1080/17474086.2017.1353416

Mashour, G. A., Shanks, A. M., and Kheterpal, S. (2011). Perioperative stroke and
associated mortality after noncardiac, nonneurologic surgery. Anesthesiology 114 (6),
1289–1296. doi:10.1097/ALN.0b013e318216e7f4

Mazzeffi, M., Chow, J. H., Anders, M., Gibbons, M., Okojie, U., Feng, A., et al. (2021).
Intraoperative hypotension and perioperative acute ischemic stroke in patients having
major elective non-cardiovascular non-neurological surgery. J. Anesth. 35 (2), 246–253.
doi:10.1007/s00540-021-02901-3

Nusinovici, S., Tham, Y. C., Chak Yan, M. Y., Wei Ting, D. S., Li, J., Sabanayagam,
C., et al. (2020). Logistic regression was as good as machine learning for
predicting major chronic diseases. J. Clin. Epidemiol. 122, 56–69. doi:10.1016/j.jclinepi.
2020.03.002

Oh, M. Y., Jung, Y. M., Kim, W. P., Lee, H. C., Kim, T. K., Ko, S. B., et al. (2024).
Prediction for perioperative stroke using intraoperative parameters. J. Am. Heart Assoc.
13 (16), e032216. doi:10.1161/jaha.123.032216

Patel, R. J., Willie-Permor, D., Fan, A., Zarrintan, S., and Malas, M. B. (2024). 30-
Day risk score for mortality and stroke in patients with carotid artery stenosis using
artificial intelligence based carotid plaque morphology. Ann. Vasc. Surg. 109, 63–76.
doi:10.1016/j.avsg.2024.05.016

Pfitzner, B., Chromik, J., Brabender, R., Fischer, E., Kromer, A., Winter,
A., et al. (2021). Perioperative risk assessment in pancreatic surgery using
machine learning. Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. 2021, 2211–2214.
doi:10.1109/embc46164.2021.9630897

Ren, B., Lipsitz, S. R., Weiss, R. D., and Fitzmaurice, G. M. (2023). Multiple
imputation for non-monotone missing not at random data using the no self-
censoring model. Stat. Methods Med. Res. 32 (10), 1973–1993. doi:10.1177/
09622802231188520

Sacco, R. L., Kasner, S. E., Broderick, J. P., Caplan, L. R., Connors, J. J., Culebras,
A., et al. (2013). An updated definition of stroke for the 21st century: a statement
for healthcare professionals from the American Heart Association/American Stroke
Association. Stroke 44 (7), 2064–2089. doi:10.1161/STR.0b013e318296aeca

Sacco, S., Foschi, M., Ornello, R., De Santis, F., Pofi, R., and Romoli, M. (2024).
Prevention and treatment of ischaemic and haemorrhagic stroke in peoplewith diabetes
mellitus: a focus on glucose control and comorbidities.Diabetologia 67 (7), 1192–1205.
doi:10.1007/s00125-024-06146-z

Song, Y. X., Yang, X. D., Luo, Y. G., Ouyang, C. L., Yu, Y., Ma, Y. L., et al.
(2023). Comparison of logistic regression andmachine learningmethods for predicting
postoperative delirium in elderly patients: a retrospective study. CNS Neurosci. Ther. 29
(1), 158–167. doi:10.1111/cns.13991

Staartjes, V. E., Kernbach, J. M., Stumpo, V., van Niftrik, C. H. B., Serra, C., and
Regli, L. (2022). Foundations of feature selection in clinical prediction modeling. Acta
Neurochir. Suppl. 134, 51–57. doi:10.1007/978-3-030-85292-4_7

Steyerberg, E.W., andVergouwe, Y. (2014). Towards better clinical predictionmodels:
seven steps for development and an ABCD for validation. Eur. Heart J. 35 (29),
1925–1931. doi:10.1093/eurheartj/ehu207

Sultan, I., Bianco, V., Kilic, A., Jovin, T., Jadhav, A., Jankowitz, B., et al. (2020).
Predictors and outcomes of ischemic stroke after cardiac surgery. Ann. Thorac. Surg.
110 (2), 448–456. doi:10.1016/j.athoracsur.2020.02.025

Tasbulak, O., and Sahin, A. (2022). The cha2ds2-VASc score as an early predictor
of graft failure after coronary artery bypass surgery. Cureus 14 (3), e22833.
doi:10.7759/cureus.22833

Teng, X., Han, K., Jin, W., Ma, L., Wei, L., Min, D., et al. (2024). Development
and validation of an early diagnosis model for bone metastasis in non-small cell
lung cancer based on serological characteristics of the bone metastasis mechanism.
EClinicalMedicine 72, 102617. doi:10.1016/j.eclinm.2024.102617

van den Goorbergh, R., van Smeden, M., Timmerman, D., and Van Calster, B.
(2022). The harm of class imbalance corrections for risk prediction models: illustration
and simulation using logistic regression. J. Am. Med. Inf. Assoc. 29 (9), 1525–1534.
doi:10.1093/jamia/ocac093

Vlisides, P., and Mashour, G. A. (2016). Perioperative stroke. Can. J. Anaesth. 63 (2),
193–204. doi:10.1007/s12630-015-0494-9

Wongtangman, K., Wachtendorf, L. J., Blank, M., Grabitz, S. D., Linhardt, F. C.,
Azimaraghi, O., et al. (2021). Effect of intraoperative arterial hypotension on the risk of
perioperative stroke after noncardiac surgery: a retrospective multicenter cohort study.
Anesth. Analg. 133 (4), 1000–1008. doi:10.1213/ane.0000000000005604

Xue, Y., Chen, S., Zhang, M., Cai, X., Zheng, J., Wang, S., et al. (2022). The
prediction models for high-risk population of stroke based on logistic regressive
analysis and lightgbm algorithm separately. Iran. J. Public Health 51 (5), 999–1009.
doi:10.18502/ijph.v51i5.9415

Zhuang, D., Sheng, J., Peng, G., Li, T., Cai, S., Din, F., et al. (2021).
Neutrophil to lymphocyte ratio predicts early growth of traumatic intracerebral
haemorrhage. Ann. Clin. Transl. Neurol. 8 (8), 1601–1609. doi:10.1002/acn3.
51409

Frontiers in Physiology 18 frontiersin.org

https://doi.org/10.3389/fphys.2025.1624898
https://doi.org/10.1016/j.amjcard.2025.04.025
https://doi.org/10.1016/j.cjca.2020.11.010
https://doi.org/10.1186/s44158-022-00033-y
https://doi.org/10.1097/ALN.0b013e3182472320
https://doi.org/10.1016/j.jamcollsurg.2013.07.385
https://doi.org/10.1097/01.mlr.0000160417.39497.a9
https://doi.org/10.1111/jcpt.13435
https://doi.org/10.1136/bmj.g7594
https://doi.org/10.1001/jamasurg.2016.1504
https://doi.org/10.1161/circulationaha.115.001593
https://doi.org/10.1097/SLA.0b013e31820b4bfc
https://doi.org/10.1038/s41572-023-00487-6
https://doi.org/10.1038/s41572-023-00487-6
https://doi.org/10.1161/STR.0b013e3181f7d043
https://doi.org/10.1007/s10554-020-02099-7
https://doi.org/10.1007/s11605-023-05864-w
https://doi.org/10.1007/s11605-023-05864-w
https://doi.org/10.1038/s43856-024-00666-w
https://doi.org/10.1186/s12893-024-02406-2
https://doi.org/10.2196/66366
https://doi.org/10.1371/journal.pone.0279540
https://doi.org/10.3390/jcm13092487
https://doi.org/10.3389/fsurg.2022.841680
https://doi.org/10.1038/s42256-019-0138-9
https://doi.org/10.1080/17474086.2017.1353416
https://doi.org/10.1097/ALN.0b013e318216e7f4
https://doi.org/10.1007/s00540-021-02901-3
https://doi.org/10.1016/j.jclinepi.2020.03.002
https://doi.org/10.1016/j.jclinepi.2020.03.002
https://doi.org/10.1161/jaha.123.032216
https://doi.org/10.1016/j.avsg.2024.05.016
https://doi.org/10.1109/embc46164.2021.9630897
https://doi.org/10.1177/09622802231188520
https://doi.org/10.1177/09622802231188520
https://doi.org/10.1161/STR.0b013e318296aeca
https://doi.org/10.1007/s00125-024-06146-z
https://doi.org/10.1111/cns.13991
https://doi.org/10.1007/978-3-030-85292-4\string_7
https://doi.org/10.1093/eurheartj/ehu207
https://doi.org/10.1016/j.athoracsur.2020.02.025
https://doi.org/10.7759/cureus.22833
https://doi.org/10.1016/j.eclinm.2024.102617
https://doi.org/10.1093/jamia/ocac093
https://doi.org/10.1007/s12630-015-0494-9
https://doi.org/10.1213/ane.0000000000005604
https://doi.org/10.18502/ijph.v51i5.9415
https://doi.org/10.1002/acn3.51409
https://doi.org/10.1002/acn3.51409
https://www.frontiersin.org/journals/physiology
https://www.frontiersin.org

	1 Introduction
	2 Methods
	2.1 Data source
	2.1.1 Inclusion criteria
	2.1.2 Exclusion criteria

	2.2 Data collection
	2.2.1 Definition of perioperative stroke
	2.2.2 Clinical and perioperative parameters
	2.2.3 The key variables included the following

	2.3 Data preprocessing
	2.4 Propensity score matching (PSM)
	2.5 Machine learning model development
	2.5.1 The optimal parameters for each model are as follows

	2.6 Model interpretation and visualization
	2.7 Statistical analysis

	3 Results
	3.1 Baseline patient characteristics
	3.2 Performance evaluation of the nine models
	3.3 Model interpretability and visualization

	4 Discussion
	5 Conclusion
	Data availability statement
	Ethics statement
	Author contributions
	Funding
	Acknowledgments
	Conflict of interest
	Generative AI statement
	Publisher’s note
	Supplementary material
	References

