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Objective: This study aimed to investigate whether pre-sleep heart rate
variability (HRV) could predict chronic insomnia (Cl) and sleep quality in male
national-level team-based athletes.

Methods: A total of 174 athletes participated in this study, including 98
with Cl and 76 exhibiting normal sleeping patterns. Pre-sleep HRV was
assessed using heart rate chest straps, and sleep quality was evaluated
through polysomnography (PSG) before a single night's sleep. Binary logistic
regression was first used to predict Cl. Multiple linear regression and multi-layer
perceptron (MLP) neural network models were then used to predict measures
of sleep quality.

Results: Binary logistic regression revealed that measures of pre-sleep HRV
accurately predict Cl (R*> = 0.902 and 96% accuracy, AUC = 0.997). Multiple
linear regression showed that pre-sleep HRV had a moderate predictive capacity
for time awake (R> = 0.526, P < 0.001) and sleep efficiency (R? = 0481, P <
0.001). The multiple linear regression model's predicted values for sleep onset
latency (r = 0459, P < 0.01), sleep efficiency (r = 0.554, P < 0.001), and deep
sleep time (r = 0.536, P < 0.001) showed moderate positive correlations with
the corresponding actual values, whereas the MLP neural network’s predictions
were not significantly correlated with the actual values. In contrast, the MLP
neural network model was superior at predicting time awake when compared
to the multiple linear regression model (MLP: mean absolute percentage error
= 0.182 vs. Multiple linear regression: mean absolute percentage error = 0.516).
Conclusion: The present findings support the use of pre-sleep HRV not only to
predict Cl, but also some sleep continuity measures in national level athletes.

chronic insomnia, athlete, heart rate variability, autonomic nervous system, linear
regression model

1 Introduction

Chronic insomnia (CI) is the most common sleep disorder, affecting approximately
10% of the population (Morin and Jarrin, 2022). It is characterized by persistent difficulty
falling or staying asleep at least three times per week, for a period of 3 months or longer
(Perlis et al., 2005). Elite athletes have a higher prevalence of sleep disorders than the general
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population due to overtraining, inadequate recovery, travel and
performance pressure (Walsh et al., 2021). It is estimated that
13%-70% of athletes experience some form of sleep disruption,
with 22%-26% suffering from severe sleep issues (Gupta et al,
2017). This is highly problematic given that poor sleep impairs
athletic performance by reducing endurance, strength, speed, and
reaction time, while increasing perceived effort and the risk of injury
(Charest and Grandner, 2022). It also disrupts cognitive function,
such as attention and decision-making, whilst also slowing recovery
by altering hormonal balance and immune responses (Walsh et al.,
2011). Therefore, finding strategies that assist with the early
detection of CI and poor sleep quality remains a key focus for
coaches, practitioners and sport scientists.

Commonly used tools for detecting sleep disturbances in
athletes include the Pittsburgh Sleep Quality Index (PSQI) and
actigraphy (Walsh et al., 2021). While these methods are practical
and offer useful insights into sleep quality, polysomnography
(PSG) remains the “gold standard” for the accurate diagnosis of
sleep disorders as it provides more precise measurements of sleep
architecture and disturbances through directly recording brain
activity, eye movements, and muscle tone during sleep (Sateia,
2014). However, solely relying on sleep monitoring may delay
the early diagnosis and treatment of long-term sleep conditions,
such as CI (Garbarino and Bragazzi, 2024). Therefore, establishing
prediction models for CI based on PSG data is essential, as
they may offer a promising tool for the early diagnosis of
CI. This would enable the personalized timing of CI treatment
for individual athletes before significant declines in athletic
performance occur.

Heart rate variability serves as a useful measure of autonomic
nervous system function (Lehrer and Gevirtz, 2014), particularly
in understanding sleep-related neural regulation through the
balance between the sympathetic and parasympathetic branches
(Li et al., 2024). Enhanced parasympathetic activity, reflected by
higher high-frequency components of HRV, has been associated
with the onset of sleep and a higher proportion of deep sleep
(Grimaldi et al., 2019). In contrast, increased sympathetic activity
is linked to difficulties in falling asleep and a higher proportion
of light sleep (Michael et al., 2017). Long-term exercise training
at appropriate frequencies, intensities, and volumes can lead to
adaptive changes in HRV, whereas overtraining has been shown
to have maladaptive effects on HRV (Marzbani et al., 2016).
Notably, pre-sleep HRV biofeedback or relaxation techniques, such
as controlled breathing and meditation, have been found to improve
sleep quality by modulating HRV (Marzbani et al., 2016). These
findings suggest that HRV may not only influence sleep regulation
but could also have a role as a physiological predictor of sleep
quality and CL

This study aimed to investigate whether pre-sleep HRV
could predict CI and various indicators of sleep quality in
male national level team-sport athletes. Specifically, we sought to
determine whether pre-sleep HRV is associated with the presence
of CI and with key indicators of sleep quality. Additionally,
we aimed to compare the predictive effectiveness of different
modeling approaches. It was hypothesized that measures of pre-
sleep HRV would serve as reliable predictors of CI and sleep
quality outcomes.
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2 Methods
2.1 Ethical approval

The study was approved by the Ethics Committee of the
Beijing Sport University Sports Science Laboratory (Ethics Approval
Number: 2023277H). All participants were fully informed of the
experimental requirements and procedures and provided written
informed consent prior to participation. This study was carried out
in accordance with the principles outlined in the Declaration of
Helsinki, except for prior registration in a database.

2.2 Participants

The sample size for this study was determined based on a
multiple linear regression approach with a fixed model (G*Power
3.1), with 12 predictors R representing the deviation from 0.
Calculations were based on correlations between sleep onset latency
(SOL), time awake (TA), and pre-sleep HRV (Li et al., 2022). The
study was powered a priori to detect effect sizes of 0.3, with a = 0.05
and P = 0.95. This resulted in a minimum sample size of 23 for SOL
and 82 for TA. To account for attrition, recruitment was increased
by 20%, leading to a required minimum sample size of 102.

Only male national-level athletes (Tier 3) (McKay et al., 2022),
between the ages of 18-25 years, who participated in team sports
were recruited for the study. The inclusion criteria for CI athletes
were based on the International Classification of Sleep Disorders-
Third Edition (ICSD-3) (Sateia, 2014) and a Pittsburgh Sleep Quality
Index (PSQI) score of >7. In addition, athletes were required
to have no recent history of psychological stress (e.g., family
accidents, unemployment, major social conflicts), and potential
sleep disturbances caused by emotional disorders. Anxiety and
depression were assessed through the Hamilton Anxiety Rating
Scale (HAMA) and Hamilton Depression Rating Scale (HAMD)
with scores <7 required to enroll onto the study. Participants were
not taking psychiatric medications (e.g., sleeping medication), did
not habitually nap in the day, and were regularly training.

In total, 174 male national-level athletes were enrolled (age: 20
+ 1 year; body mass: 76 + 9 kg; height: 183 + 8 cm; training: 4-5
times/week; sport-specific training duration: 470 + 30 min/week)
onto the study. The types of team sports included basketball, soccer,
volleyball, rugby and ice hockey. Data collection was conducted
between November 2023 and November 2024 as this was off season
and therefore avoided long-distance travel, which would cause jet lag
or circadian rhythm disruption, and irregular training schedules.

2.3 Experimental protocol

Participants completed inclusion and exclusion screening,
informed consent forms, and were briefed on experimental
procedures. To avoid non-standard sleep patterns, participants slept
1-2 nights in the sleep laboratory with monitoring equipment prior
to commencing the study (Hu et al., 2024). To ensure participants
were not experiencing sleep disturbances prior to the study, which
included two laboratory familiarization nights, we compared PSQI
scores from the post-familiarization period to those at enrollment,
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with each score reflecting the preceding 1-month period. On testing
days, athletes avoided intense physical activity for 24 h. Athletes
were also advised to refrain from consuming foods and beverages
known to disrupt sleep, such as caffeine and spicy foods and to limit
excessive screen time by avoiding the use of devices such as mobile
phones and laptops over the 4 h before bedtime. Participants arrived
at the sleep laboratory 45-60 min before their usual bedtime. Prior
to sleep, anthropometric data were collected and HRV was measured
before the PSG was attached for overnight sleep monitoring. During
sleep monitoring, participants were not restricted to specific sleep or
wake times and were instructed to fall asleep and wake up naturally.

2.4 Sleep quality monitoring and evaluation

2.4.1 Subjective sleep quality

The PSQI was used to assess sleep quality (BUYSSE and
REYNOLDS, 1989) and included seven components: subjective
sleep quality, sleep latency, sleep duration, sleep efficiency, sleep
disturbances, use of sleeping medication, and daytime dysfunction.
Each component is scored on a scale from 0 to three and the total
PSQI score was calculated by summing the scores of all components.
As such, scores can range from 0 to 21, with higher scores indicating
greater sleep impairment (Mollayeva et al., 2016).

2.4.2 Objective sleep quality

A PSG system (Natus Medical Inc., San Carlos, Canada)
(EEG) (C4),
electrooculogram (EOG) (below the left and above the right eye),

recorded sleep using electroencephalogram
and electromyogram (EMG) (bilateral submental muscles) signals at
256 Hz. Sleep analysis was performed with RemLogic-E™ software,
following AASM Version 2.0 criteria (Berry et al, 2012). Data
were segmented into 30-s epochs, with signals filtered at 0.3-35 Hz
(EEG), 10-100 Hz (EOG, EMG), and a 50 Hz notch filter applied.
CI criteria followed ICSD-3 standards (SOL >30 min and/or TA
>30 min) (Sateia, 2014). Sleep quality measures included: SOL
(time from “start” to sleep onset), TST (total sleep time, including
4-6 cycles), LST (time in stages 1 and 2 NREM), DST (time in
stages 3 and 4 NREM), REM (time in REM), AT (time awake after
sleep onset), and SE (sleep efficiency, ratio of actual sleep time to

time in bed) (Berry et al., 2012).

2.4.3 HRV measurement and analysis

Heart rate variability is commonly used to assess the balance
between sympathetic and parasympathetic nervous activity (Santos-
De-Aratjo et al., 2022). In accordance with established guidelines,
HRV was measured at the same time of day before sleep for
a period of 5minin a quiet room, whilst participants were
awake, lying supine and breathing spontaneously (Laborde et al.,
2017). R-R intervals (the time between R waves in two QRS
complexes) were recorded for no less than 10 min using a Polar
H10 heart rate chest strap (Polar Electro, Finland). The data were
processed and analyzed using the Kubios HRV-standard software,
extracting 5-min segments to calculate HRV and assess autonomic
nervous status. This included measures of Mean R-R (MRR), Root
Mean Square of Successive RR Interval Differences (RMSSD),
SDNN (Standard Deviation of NN Intervals), TINN (Triangular
Interpolation of NN Interval Histogram), PNN50% (Percentage
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of Successive NN Intervals that Differ by More than 50 m), High
Frequency (HF), Mean Heart Rate (MHR), Stress Index (SI), Low
Frequency (LF), LF/HF Ratio (Ratio between sympathetic and
parasympathetic nervous system activity). Approximate Entropy
(ApEn) and Sample Entropy (SampEn): Non-linear measures that
evaluate the complexity and irregularity of HRV patterns.

2.4.4 HAMA and HAMD scales

The HAMA (Thompson, 2015) and the HAMD (Zimmerman
et al., 2013) scales are commonly used clinical instruments for
assessing levels of anxiety and depression. In this study, these scales
were used to exclude participants with sleep-related complications
caused by anxiety or depressive symptoms. The HAMA consists of
14 items, and the HAMD consists of 17 items. Both scales use a five-
point Likert scoring system (0-4), corresponding to “no symptoms,’

»

“mild symptoms;

» <

moderate symptoms,” “marked symptoms,” and
“severe symptoms,” respectively.

2.5 Model development

Binary logistic regression model: CI was initially diagnosed
based on the ICSD-3 criteria, alongside PSG data. CI status (1 =
CI present, 0 = no CI) was treated as the dependent variable, and
pre-sleep HRV variables, including HE, LE, LF/HF Ratio; Time-
domain: MRR, RMSSD, SDNN, TINN, PNN50%, MHR, SI; Non-
linear: ApEn and SampEn were used as independent variables for
binary logistic regression analysis. Data were randomly divided
into a training set (80%) and a validation set (20%) to perform a
train-validation split. The stepwise method is employed for variable
selection. In the model formula, p represents the probability of CI
(0/1 = 1), and 1-p represents the probability of no CI (0/1 = 0).
The Hosmer-Lemeshow (HL) test was used to evaluate the model’s
goodness-of-fit. R* values indicate the fit: The goodness-of-fit of the
binary logistic regression model was assessed through using the R*
value. Potential multicollinearity among the independent variables
was assessed using variance inflation factors (VIF), and variables
with VIF values exceeding the threshold of 10 were excluded from
the analysis to ensure the robustness of the model. To evaluate how
well independent variables explained the dependent variable, model
fit was classified using R? as follows: poor fit (<0.2), low fit (0.2-0.5),
moderate fit (0.5-0.8) and high level of fit (>0.8).

Multiple linear regression model: Data were first normalized
(X-Min)/(Max-Min). HRV measures were set as independent
variables, and measures of sleep quality were treated as dependent
variables. Data were randomly divided into a training set
(80%) and a validation set (20%) to perform a train-validation
split. The R* value ranges from 0 to 1, with higher values
indicating better fit. The tolerance of the prediction equation
must exceed 0.1, and the VIF must be less than 10, indicating no
multicollinearity. The Durbin-Watson test values ranged from 0 to
4, demonstrating independence between variables and the absence
of autocorrelation.

Neural network model: The Multi-Layer Perceptron (MLP)
neural network model was constructed by randomly dividing data
into a training set (80%) and a validation set (20%) to perform
a train-validation split. The training data were normalized (X-
Min)/(Max-Min) to ensure uniform data scaling. The activation
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function was ReLU, and weights were optimized using the Adam
optimizer with an initial learning rate of 0.001. L2 regularization
was set at 0.0001, the maximum number of iterations was 200,
and the optimization tolerance was 0.0001. The current model
architecture employed a single hidden layer comprising 100
neurons, which is a similar approach to earlier studies involving
comparable data structures and sample sizes (Sheela and Deepa,
2013). To evaluate the robustness of this configuration, we also
tested alternative architectures with varying numbers of hidden
neurons (e.g., 50, 150, and 200) as well as models with multiple
hidden layers. However, these modifications did not further
enhance performance.

2.5.1 Model construction and validation

A train-validation split of the binary logistic regression, multiple
linear regression, and neural network models were carried out
by firstly randomly dividing data into a training set (80%) and
validation set (20%). The validation methodology for both the MLP
neural network and multiple linear regression models was executed
as follows: The training data set was first used to construct the
models, and the validation data set (HRV) was then incorporated
into the formula obtained from the training set to generate the
predicted values. Parameters of sleep quality measured by the PSG
validation set were tested for consistency by comparing them to
the sleep parameters predicted by the validation data set. The
performance of multiple linear regression and MLP neural network
models was evaluated and compared using the following metrics:
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE)
and Mean Absolute Percentage Error (MAPE). Using the reserved
20% validation subset, the binary logistic regression model (fitted
on the training set) was validated by applying its coefficients to the
HRYV data to compute event probabilities. These probabilities were
converted to binary classifications using a decision threshold of 1
(1 = CI present, 0 = no CI). Model discrimination was assessed
via the Area Under the Receiver Operating Characteristic Curve
(AUC-ROC).

2.6 Statistical analysis

Data normality was first assessed using the Kolmogorov-
Smirnov test. Pearson correlation coefficients were used to evaluate
the relationship between observed and predicted sleep quality.
The magnitudes of the correlations were classified as follows:
trivial (<0.1), small (0.1-0.3), moderate (0.3-0.5), large (0.5-0.7),
very large (0.7-0.9), and extremely large (>0.9) (Hopkins et al,
2009). Bland-Altman analyses were used to assess reliability. The
mean and difference between observed and predicted sleep quality
values were then calculated to establish the limits of agreement
(95% distribution range), and 95% limits of agreement (95%
LoA) were constructed (Giavarina, 2015). Paired t-tests were used
to compare the adaptation of PSQI, while independent t-tests
were used to compare the differences in HRV and sleep quality
(PSG) between groups. Data are reported as mean * standard
deviation (M + SD). The skew distribution is expressed as the
median (upper quartile to lower quartile). Statistical significance
was accepted as a < 0.05. All statistical analyses were performed
using SPSS 26.0.
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3 Results
3.1 Sleep and pre-sleep HRV characteristics

The data of 12 participants were excluded due to electrode
detachment and erroneous PSG data, and nine did not complete the
experiment. There were no significant differences between CI and
normal sleep groups in age, height, or weight (P > 0.05). The absence
of significant differences in PSQI scores between the screening phase
and the month prior to study participation indicated that there
were no differences in sleep disturbances and sleep quality prior
to commencing the study. The PSQI scores of the CI group were
significantly higher than those of the normal sleep group (CI group:
10.96 + 2.13 vs. normal sleep group: 4.04 + 1.69, P < 0.01), with our
PSG data indicating that the prevalence of CI among male athletes
in this study was 56% (95% CI: 49%-64%). When compared to the
normal sleep group, the CI group showed an increased duration of
SOL (P < 0.001, mean difference = 11.94 min, d = 0.68), and TA
(P < 0.001, mean difference = 41.68 min, d = 2.28). In addition,
there was also a decrease in the duration of TST (P < 0.001, mean
difference = —42.94 min, d = 0.84), SE (P < 0.001, mean difference =
—10.4%, d = 2.18), and DST (P < 0.001, mean difference = —3.7%, d
= 1.133). Athletes with CI also exhibited lower values for a range of
pre-sleep HRV measures when compared to the normal sleep group,
including MRR (P < 0.001, mean difference = —213.68 m, d = 1.68),
RMSSD (P < 0.001, mean difference = —49.35 m, d = 2.01), PNN50
(P <0.001, mean difference = —41.84%, d = 2.86), ApEn (P < 0.001,
mean difference = —0.23, d = 1.66), and SampEn (P < 0.001, mean
difference = —0.35, d = 1.49) (Table 1).

3.2 Binary logistic regression model for the
prediction of ClI

Binary logistic regression analysis was conducted using
measures of HRV as independent variables and the presence of CI
(0/1) as the dependent variable (Table 2). The model automatically
filters out RMSSD, PNN50, MHR, and SampEn, as they are all
negatively correlated with CI (R* = 0.902). The HL goodness-of-
fit test indicated a good model fit (P = 1.000 > 0.05). The final
model equation is as follows: In (p/1-p) = 28.317-0.073*RMSSD-
0.222"PNN50-11.436"SampEn. The accuracy of using HRV
measures to predict CI was 96%, respectively (Table 3). Using
the validation set, the integrated diagnostic model achieved an
accuracy of 97.14% and an excellent discriminative ability (AUC
= 0.997). At the optimal threshold (0.493), both sensitivity and
specificity exceeded 96%, indicating strong clinical applicability. In
contrast, individual HRV metrics (RMSSD, PNN50, and SampEn)
performed at chance level, with AUCs ranging from 0.023 to
0.072, highlighting their limited diagnostic value when used
in isolation.

3.3 Multiple linear regression model for
predicting sleep quality

A multiple linear regression model was developed using pre-
sleep HRV measures as independent variables and sleep quality as
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TABLE 1 Sleep, HRV and EEG test results of athletes included in the model (M + SD).

10.3389/fphys.2025.1627287

Variable type Dependent Group Normal sleep P Value Cohen’'s d
variable summary
TST/min 421.54 +55.51 44572 + 44.69 402.78 + 56.02* <0.001 0.835
SOL/min 20.91 + 18.60 14.19 +9.50 26.13 +22.01"* <0.001 0.675
TA/min 42.67 + 27.61 19.20 + 7.04 60.87 +23.55"* <0.001 2279
Sleep quality SE/% 89.55 +7.04 95.42+1.76 85.00 + 617 <0.001 2.182
LST/% 6132 +6.36 62.75 +5.76 60.21 + 6.61 0.008 0.407
DST/% 2234+3.71 24414322 20.74 +3.26™ <0.001 1133
REM/% 16.34 + 3.89 15.67 + 3.80 16.86 + 3.90 0.045 0.308
MRR/ms 901.02 + 165.42 1,021.37 + 125.19 807.69 + 128.60*** <0.001 1.681
SDNN/ms 46.14 + 26.54 43.65+23.36 48.04 +28.71 0.282 0.165
RMSSD/ms 52.24 + 34.69 80.04 + 30.36 30.68 + 18.94™ <0.001 2.008
PNN50/% 26.36 % 25.41 49.93 +19.19 8.09 +9.73* <0.001 2.860
TINN/ms 23527 +136.74 23422 +150.16 236.08 + 126.13 0.931 0.014
HF/Hz 0.26 +0.07 0.26 +0.07 0.26 +0.06 0.723 0.056
HRV
MHR/bpm 68.89 + 12.67 69.59 + 13.29 68.35 + 12.20 0.522 0.098
SI 12.02 +7.98 12.61 + 8.66 11.55 +7.42 0.388 0.132
LF/Hz 0.09 +0.08 0.09 +0.12 0.08 +0.02 0.248 0.177
LF/HF 1.96 +2.67 2174327 1.80 +2.10 0.371 0.137
ApEn 1.03 +0.18 1.16 + 0.09 0.93 +0.17** <0.001 1.663
SampEn 1.70 £ 0.29 1.89 +0.17 1.54 + 027 <0.001 1.485

Significant differences between CI, and normal sleep groups are denoted as follows: “P < 0.05, P < 0.01, ™P < 0.001. Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake,
TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean R-R, MRR; standard deviation of NN, SDNN; root mean square of successive rr interval

differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; triangular interpolation of nn interval histogram, TINN; high frequency, HF; mean heart rate,
MHR; stress Index, SI; low frequency, LF; approximate entropy, ApEn; sample entropy, SampEn.

TABLE 2 Binary logistic regression results of HRV before sleep for predicting ClI.

Independent Regression Standard z-value | Wald p-value | Oddsratio 95% Clfor VIF | Tolerance
variable coefficient = error OR

RMSSD/ms -0.073 0.028 -2.572 6.615 0.010 0.930 0.880-0.983 1615 | 0.619
PNN50/% -0.222 0.084 ~2.657 7.057 0.008 0.801 0.680-0.943 1638 | 0.610
SampEn ~11.436 4737 ~2.414 5.828 0.016 0.000 0.000-0.116 1459 | 0.685

McFadden R? = 0.902. Abbreviations: root mean square of successive rr interval differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; mean heart

rate, MHR; sample entropy, SampEn.

the dependent variable (Table 4). All model variables satisfied the
conditions of variable importance in projection (VIP <10), tolerance

>0.1, and D-W statistics within the range of 0-4, indicating no

multicollinearity issues. The model demonstrated a moderate fit for
predicting TA (R* = 0.526, P < 0.001) and SE (R® = 0.481, P < 0.001).

Frontiers in Physiology

The remaining measures of TST, SOL, LST, DST and REM exhibited
poor predictive values, with R* values below 0.2.

The predictive equation was validated by applying HRV data
from a validation set of 35 cases (20%) (Table5). The actual
and predicted values of SOL demonstrated a moderate positive
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TABLE 3 Accuracy of the binary logistic regression model for predicting insomnia based on pre-sleep HRV.

Predicted
value

Prediction error rate

Numeric type

Prediction accuracy

0 56 3 94.91% 5.09%

Actual Value
1 3 77 96.25% 3.75%
Summary 95.58% 4.42%

TABLE 4 Multiple linear Regression Model of Pre-sleep HRV for Predicting Sleep Quality.

Dependent Regression Adjusted p-value VIF Tolerance | D-W  Standardizec 95% CI
variable equation R? B

TST =0.422 +0.390" 0.109 16.768 <0.001 1 1 1.772 0330 0.203-0.576
RMSSD

SOL =0.243-0.270" 0.093 14.034 <0.001 1 1 1.199 -0.305 ~0.412 ~ -0.129
RMSSD

TA =0.892-0.588" 0.526 49.849 <0.001 1.006-1453 | 0.688-0.995 1.794 PNN50:0.577 | -0.730 ~ —0.446
PNN50-0.300" MHR: 0.193 ~0.482 ~ ~0.119
MHR- ApEn: 0.201 ~0.453 ~ ~0.081
0.267*ApEn

SE =0.502 +0.235" 0.481 41.678 <0.001 1.010-1.498 | 0.668-0.990 1.616 RMSSD:0.204 0.085-0.385

RMSSD+0.332" PNNS50: 0.515 0.237-0.428
PNN50+0.201" MHR: 0.204 0.080-0.322
MHR

LST =0.205 + 0.340" 0.074 10.992 0.001 1 1 1.661 0273 0.139-0.542
SampEn

DST =0.374 +0.201* 0.16 12912 <0.001 1.347 0.742 1.593 MRR: 0.215 0.034-0.369
MRR+0.194*ApEn ApEn: 0.245 0.052-0.336

REM =0.708-0.384" 0.069 10.185 0.002 1 1 1.567 -0.263 -0.621 ~ ~0.148
SampEn

Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean R-R, MRR; root
mean square of successive rr interval differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; high frequency, HF; mean heart rate, MHR; approximate

entropy, ApEn; sample entropy, SampEn.

correlation (P < 0.01), while the actual and predicted values
of TA, SE, and DST showed a strong positive correlation (P <
0.01). No correlations were observed between the predicted and
actual values for LST and REM (P > 0.05). The Bland-Altman
scatterplot (Figure 1) revealed that the probability of agreement
within the limits of consistency for all predicted values ranged from
91%-97%.

3.4 Multiple linear regression model for
predicting sleep quality

The pre-sleep TA prediction values had a strong positive
correlation with the measured values (P < 0.01), while the prediction
values for other sleep parameters showed no significant correlation
with their measured values (P > 0.05) (Table 6). The mean absolute
error range between the measured and predicted values was
0.120-0.269, the root mean square error range was 0.157-0.299,

Frontiers in Physiology

the mean absolute percentage error range was 0-1.059, and the
bias range was —0.174 to 0.028. The results of the consistency
test indicated that the boundary probability ranges were between
94% and 97% (Figure 2).

4 Discussion

This study aimed to investigate whether pre-sleep HRV could
predict CI and a range of sleep quality indicators in male
national level team-sport athletes. We hypothesized that pre-sleep
HRV would reliably predict both CI and sleep quality outcomes.
Consistent with our hypothesis, the analysis using pre-sleep HRV
measures within a binary logistic regression model demonstrated
an accurate prediction of CI. Furthermore, stepwise multiple linear
regression moderately predicted sleep continuity measures of time
awake and SE, but was poor at predicting sleep stages, such as LST,
DST and REM. In general, the stepwise multiple linear regression
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TABLE 5 Multiple linear Regression Results of Pre-sleep HRV for Predicting Sleep Quality.

Dependent The boundary probability for consistency
variable
Predicted | MAE RMSE MAPE Lower Upper Probability
value limit limit within
consistenc
limits
TST 0.52+0.21 0.52+0.07 0.101 0.120 0.155 0.248 -0.398 0.390 94.29% ~0.004
SOL 0.20+0.19 0.18 +0.05 0.127 0.153 0.287 0.459** ~0.306 0.361 94.29% 0.028
TA 0.34 +0.26 0.39 +0.22 0.207 0.254 0516 0.554*** -0.486 0.372 91.43% -0.057
SE 0.80+0.16 0.76 +0.14 0.083 0.104 0.109 0.536""* -0.248 0.322 94.29% 0.037
LST 0.41+0.17 0.43 +0.05 0.142 0.174 0337 -0.101 -0.388 0.338 97.14% -0.025
DST 0.57+0.17 0.58 +0.07 0.136 0.163 0.284 0.602* -0.288 0.276 94.29% ~0.006
REM 0.46 +0.20 0.45 +0.06 0.13 0.159 0313 0.080 -0.392 0.412 97.14% 0.010

Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean absolute error,
MAE; root mean squared error, RMSE; mean absolute percentage error, MAPE.
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Bland-Altman Scatter Plot for Predicting Sleep Structure Using Multiple Linear Regression Models of Pre-sleep HRV. Abbreviations: (A) total sleep time,
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TABLE 6 Neural network model of pre-sleep HRV for predicting sleep quality.

Dependent The boundary probability for consistency
variable
Predicted MAE | RMSE MAPE Lower Upper Probability
value Limit Limit within
consistenc

limits
TST 0.52 +0.21 0.63 +0.08 -0.03 0.188 0.255 0.136 -0.571 0.343 94.29% -0.114
SOL 0.20+0.19 0.17 +0.07 0.19 0.142 0.176 0.152 -0.333 0.390 94.29% 0.028
TA 0.34 +0.26 0.42 +0.20 0.555"** | 0.170 0.220 0.182 -0.502 0.341 94.29% ~0.080
SE 0.80+0.16 0.88+0.12 0.319 0.142 0.184 0.077 -0.415 0.253 94.29% -0.081
LST 0.41+0.17 0.52 +0.07 0315 0.161 0.189 0.221 -0.436 0.202 97.14% -0.117
DST 0.57+0.17 0.70 + 0.09 0311 0.186 0.219 0.145 ~0.460 0.200 97.14% -0.130
REM 0.46 +0.20 0.56 + 0.07 -0.16 0.188 0.235 0.201 ~0.540 0.347 97.14% -0.097

Caption -Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM., mean
absolute error, MAE; root mean squared error, RMSE; mean absolute percentage error, MAPE.
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outperformed the current neural network model at predicting
measures of sleep quality, but the neural network model was superior
at predicting TA. Taken together, these findings demonstrate that
pre-sleep HRV accurately predicts CI and sleep continuity in male
national level athletes.

The present study suggests that the prevalence of CI among
Chinese national level athletes is between 49% and 64%, which
is substantially higher than the rates reported in previous studies
using elite athletes (5%-33%) (Gerber et al., 2022; Gupta et al,
2017). Such large discrepancies are likely due to PSG being more
accurate than subjective measures for detecting CI (Sateia, 2014).
For example, our earlier research, which utilized sleep-monitoring
mattresses, revealed that the incidence of sleep disorders among
Chinese elite bobsleigh athletes was ~63% (Li et al., 2022). As
expected, CI was accompanied by poor sleep quality in the form
of reductions in TST, SE, and DST and increases in SOL and TA
(Table 1). These observations are particularly important considering
that CI is prevalent among athletes and has been linked with
impairments in physical performance, attention, concentration and
memory (Leger et al., 2005). The present study also observed that
pre-sleep HRV parameters, RMSSD, PNN50, ApEn, and SampEn
were reduced in athletes suffering from CI (Table 1). This suggests
an imbalance in autonomic nervous system regulation, specifically
a downregulation of parasympathetic and an upregulation of
sympathetic activity. Since autonomic dysfunction is known to
contribute to overreaching (Achten and Jeukendrup, 2003), these
findings imply that CI may increase an athlete’s vulnerability to
overtraining which can impair athletic performance and increase the
risk of injury and illness (Soligard et al., 2016).

To our knowledge, this is the first study to demonstrate that pre-
sleep HRV can predict CI in national level athletes using a binary
logistic regression model. This is of importance as predicting CI
across a range of different team-sports is challenging due to the
complex interplay of individual-level factors, including sport type,
performance level, training workload, sleep habits and personal
beliefs (Walsh et al., 2021). Binary logistic regression models have
been shown to predict CI in response to cognitive behavioral
therapy with accuracies ranging from 60%-71% when used with
the general public (Holler et al., 2024). In contrast, we showed
a considerably higher accuracy of 96% through using pre-sleep
HRV. However, caution is advised when interpreting these findings
given the high predictive performance for CI as it may partly
reflect hidden overlap between the training and validation datasets.
Although we used separate data sets, these data were drawn from
similar athlete populations (e.g., age, sex, team-based sports and
national level) under similar measurement conditions, therefore
the accuracy of our model could have been inflated. This being
said, the higher predictive accuracy of pre-sleep HRV may also
reflect that parasympathetic and sympathetic systems responding
more clearly to stress, fatigue, or psychological strain in national-
level athletes, making HRV a more sensitive marker of CI in
this population. In this regard, our previous research showed that
national level athletes frequently exhibit negative emotional states
(Li et al., 2022), and there is well-established link between negative
emotions and HRV (Di Simplicio et al., 2012).

The current study also demonstrated that multiple linear
regression could predict parameters of TA and SE, which are key
indicators of sleep continuity. These results align to the small
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body of research that has investigated whether pre-sleep HRV
is related to sleep quality in healthy young and middle-aged
adults (Jung et al., 2017; Fantozzi et al, 2019; Werner et al,
2015). For instance, Fantozzi et al. (2019) found that measures of
parasympathetic activity, such as RMSSD and PNN50 predicted
a shorter wake after sleep onset time. Similarly, in the present
study, PNN50 was an integral component of the multiple linear
regression model to predict both TA and SE, in addition to RMSSD
for the prediction of SE. We expanded on previous work by
identifying additional pre-sleep HRV predictors for sleep continuity
(TA: PNN50, MHR, ApEn; SE: PNN50, MHR, RMSSD). However,
pre-sleep HRV was less effective in predicting sleep phases (TST,
LST, and REM). Nevertheless, the multiple linear regression model
outperformed our MLP neural network model for predicting SOL,
SE, and DST. This suggests that a linear relationship exists between
pre-sleep HRV and some sleep related outcomes. Although the MLP
neural network model was superior at predicting TA, which could
also indicate that this type of model is better at solving more complex
nonlinear problems. Whilst these results are promising, collectively
they indicate that a single physiological signal, such as HRV, may
restrict the predictive potential of a model when assessing measures
of sleep quality which are multidimensional and complex in nature.

5 Limitations and future directions

While this study offers important insights into sleep prediction
among athletes, several limitations should be considered. All
regression models are inherently susceptible to overfitting, in which
the model captures spurious patterns in the training data, thereby
reducing its generalizability to independent datasets. As our work
was considered exploratory, we performed a train-validation split
to efficiently provide an estimate of model performance on unseen
data, helping to detect overfitting. However, future work should
use cross-validation to evaluate the models across multiple splits,
providing a more stable and accurate estimate of their performance.
The sample of participants in the current study was limited to
male Chinese athletes involved in team sports, which may influence
the broader applicability of our findings to other athletic or non-
athletic populations, including female athletes or those in individual
sports. Additionally, the study utilized HRV as the sole physiological
indicator, without accounting for other psychophysiological (e.g.,
circadian rhythm, blood pressure, stress and anxiety), which could
play a key role in sleep regulation. To strengthen the validity
and generalizability of future models, research should include
more diverse cohorts and a wider range of physiological and
psychological variables. Incorporating alternative sleep assessment
tools, such as actigraphy and subjective measures like sleep diaries,
may also enhance ecological validity and provide a more holistic
understanding of sleep in athletic populations.

6 Conclusion

The current binary logistic regression model accurately
predicted CI in male national level athletes. In addition, our multiple
linear regression model was effective at predicting sleep continuity
measures (TA and SE), but was poor at predicting sleep phases (TST,
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LST, DST and REM). Based on these findings, pre-sleep HRV could
be a potential approach for practitioners and coaches to accurately
predict CI, enabling the timely implementation of strategies to
enhance sleep quality and, consequently, maintain optimal athletic
performance.
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