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Pre-sleep heart rate variability 
predicts chronic insomnia and 
measures of sleep continuity in 
national-level athletes
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Objective: This study aimed to investigate whether pre-sleep heart rate 
variability (HRV) could predict chronic insomnia (CI) and sleep quality in male 
national-level team-based athletes.
Methods: A total of 174 athletes participated in this study, including 98 
with CI and 76 exhibiting normal sleeping patterns. Pre-sleep HRV was 
assessed using heart rate chest straps, and sleep quality was evaluated 
through polysomnography (PSG) before a single night’s sleep. Binary logistic 
regression was first used to predict CI. Multiple linear regression and multi-layer 
perceptron (MLP) neural network models were then used to predict measures 
of sleep quality.
Results: Binary logistic regression revealed that measures of pre-sleep HRV 
accurately predict CI (R2 = 0.902 and 96% accuracy, AUC = 0.997). Multiple 
linear regression showed that pre-sleep HRV had a moderate predictive capacity 
for time awake (R2 = 0.526, P < 0.001) and sleep efficiency (R2 = 0.481, P < 
0.001). The multiple linear regression model’s predicted values for sleep onset 
latency (r = 0.459, P < 0.01), sleep efficiency (r = 0.554, P < 0.001), and deep 
sleep time (r = 0.536, P < 0.001) showed moderate positive correlations with 
the corresponding actual values, whereas the MLP neural network’s predictions 
were not significantly correlated with the actual values. In contrast, the MLP 
neural network model was superior at predicting time awake when compared 
to the multiple linear regression model (MLP: mean absolute percentage error 
= 0.182 vs. Multiple linear regression: mean absolute percentage error = 0.516).
Conclusion: The present findings support the use of pre-sleep HRV not only to 
predict CI, but also some sleep continuity measures in national level athletes.
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 1 Introduction

Chronic insomnia (CI) is the most common sleep disorder, affecting approximately 
10% of the population (Morin and Jarrin, 2022). It is characterized by persistent difficulty 
falling or staying asleep at least three times per week, for a period of 3 months or longer 
(Perlis et al., 2005). Elite athletes have a higher prevalence of sleep disorders than the general
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population due to overtraining, inadequate recovery, travel and 
performance pressure (Walsh et al., 2021). It is estimated that 
13%–70% of athletes experience some form of sleep disruption, 
with 22%–26% suffering from severe sleep issues (Gupta et al., 
2017). This is highly problematic given that poor sleep impairs 
athletic performance by reducing endurance, strength, speed, and 
reaction time, while increasing perceived effort and the risk of injury 
(Charest and Grandner, 2022). It also disrupts cognitive function, 
such as attention and decision-making, whilst also slowing recovery 
by altering hormonal balance and immune responses (Walsh et al., 
2011). Therefore, finding strategies that assist with the early 
detection of CI and poor sleep quality remains a key focus for 
coaches, practitioners and sport scientists.

Commonly used tools for detecting sleep disturbances in 
athletes include the Pittsburgh Sleep Quality Index (PSQI) and 
actigraphy (Walsh et al., 2021). While these methods are practical 
and offer useful insights into sleep quality, polysomnography 
(PSG) remains the “gold standard” for the accurate diagnosis of 
sleep disorders as it provides more precise measurements of sleep 
architecture and disturbances through directly recording brain 
activity, eye movements, and muscle tone during sleep (Sateia, 
2014). However, solely relying on sleep monitoring may delay 
the early diagnosis and treatment of long-term sleep conditions, 
such as CI (Garbarino and Bragazzi, 2024). Therefore, establishing 
prediction models for CI based on PSG data is essential, as 
they may offer a promising tool for the early diagnosis of 
CI. This would enable the personalized timing of CI treatment 
for individual athletes before significant declines in athletic
performance occur.

Heart rate variability serves as a useful measure of autonomic 
nervous system function (Lehrer and Gevirtz, 2014), particularly 
in understanding sleep-related neural regulation through the 
balance between the sympathetic and parasympathetic branches 
(Li et al., 2024). Enhanced parasympathetic activity, reflected by 
higher high-frequency components of HRV, has been associated 
with the onset of sleep and a higher proportion of deep sleep 
(Grimaldi et al., 2019). In contrast, increased sympathetic activity 
is linked to difficulties in falling asleep and a higher proportion 
of light sleep (Michael et al., 2017). Long-term exercise training 
at appropriate frequencies, intensities, and volumes can lead to 
adaptive changes in HRV, whereas overtraining has been shown 
to have maladaptive effects on HRV (Marzbani et al., 2016). 
Notably, pre-sleep HRV biofeedback or relaxation techniques, such 
as controlled breathing and meditation, have been found to improve 
sleep quality by modulating HRV (Marzbani et al., 2016). These 
findings suggest that HRV may not only influence sleep regulation 
but could also have a role as a physiological predictor of sleep
quality and CI.

This study aimed to investigate whether pre-sleep HRV 
could predict CI and various indicators of sleep quality in 
male national level team-sport athletes. Specifically, we sought to 
determine whether pre-sleep HRV is associated with the presence 
of CI and with key indicators of sleep quality. Additionally, 
we aimed to compare the predictive effectiveness of different 
modeling approaches. It was hypothesized that measures of pre-
sleep HRV would serve as reliable predictors of CI and sleep
quality outcomes. 

2 Methods

2.1 Ethical approval

The study was approved by the Ethics Committee of the 
Beijing Sport University Sports Science Laboratory (Ethics Approval 
Number: 2023277H). All participants were fully informed of the 
experimental requirements and procedures and provided written 
informed consent prior to participation. This study was carried out 
in accordance with the principles outlined in the Declaration of 
Helsinki, except for prior registration in a database. 

2.2 Participants

The sample size for this study was determined based on a 
multiple linear regression approach with a fixed model (G∗Power 
3.1), with 12 predictors R2 representing the deviation from 0. 
Calculations were based on correlations between sleep onset latency 
(SOL), time awake (TA), and pre-sleep HRV (Li et al., 2022). The 
study was powered a priori to detect effect sizes of 0.3, with α = 0.05 
and β = 0.95. This resulted in a minimum sample size of 23 for SOL 
and 82 for TA. To account for attrition, recruitment was increased 
by 20%, leading to a required minimum sample size of 102.

Only male national-level athletes (Tier 3) (McKay et al., 2022), 
between the ages of 18–25 years, who participated in team sports 
were recruited for the study. The inclusion criteria for CI athletes 
were based on the International Classification of Sleep Disorders-
Third Edition (ICSD-3) (Sateia, 2014) and a Pittsburgh Sleep Quality 
Index (PSQI) score of >7. In addition, athletes were required 
to have no recent history of psychological stress (e.g., family 
accidents, unemployment, major social conflicts), and potential 
sleep disturbances caused by emotional disorders. Anxiety and 
depression were assessed through the Hamilton Anxiety Rating 
Scale (HAMA) and Hamilton Depression Rating Scale (HAMD) 
with scores <7 required to enroll onto the study. Participants were 
not taking psychiatric medications (e.g., sleeping medication), did 
not habitually nap in the day, and were regularly training.

In total, 174 male national-level athletes were enrolled (age: 20 
± 1 year; body mass: 76 ± 9 kg; height: 183 ± 8 cm; training: 4–5 
times/week; sport-specific training duration: 470 ± 30 min/week) 
onto the study. The types of team sports included basketball, soccer, 
volleyball, rugby and ice hockey. Data collection was conducted 
between November 2023 and November 2024 as this was off season 
and therefore avoided long-distance travel, which would cause jet lag 
or circadian rhythm disruption, and irregular training schedules. 

2.3 Experimental protocol

Participants completed inclusion and exclusion screening, 
informed consent forms, and were briefed on experimental 
procedures. To avoid non-standard sleep patterns, participants slept 
1–2 nights in the sleep laboratory with monitoring equipment prior 
to commencing the study (Hu et al., 2024). To ensure participants 
were not experiencing sleep disturbances prior to the study, which 
included two laboratory familiarization nights, we compared PSQI 
scores from the post-familiarization period to those at enrollment, 
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with each score reflecting the preceding 1-month period. On testing 
days, athletes avoided intense physical activity for 24 h. Athletes 
were also advised to refrain from consuming foods and beverages 
known to disrupt sleep, such as caffeine and spicy foods and to limit 
excessive screen time by avoiding the use of devices such as mobile 
phones and laptops over the 4 h before bedtime. Participants arrived 
at the sleep laboratory 45–60 min before their usual bedtime. Prior 
to sleep, anthropometric data were collected and HRV was measured 
before the PSG was attached for overnight sleep monitoring. During 
sleep monitoring, participants were not restricted to specific sleep or 
wake times and were instructed to fall asleep and wake up naturally. 

2.4 Sleep quality monitoring and evaluation

2.4.1 Subjective sleep quality
The PSQI was used to assess sleep quality (BUYSSE and 

REYNOLDS, 1989) and included seven components: subjective 
sleep quality, sleep latency, sleep duration, sleep efficiency, sleep 
disturbances, use of sleeping medication, and daytime dysfunction. 
Each component is scored on a scale from 0 to three and the total 
PSQI score was calculated by summing the scores of all components. 
As such, scores can range from 0 to 21, with higher scores indicating 
greater sleep impairment (Mollayeva et al., 2016). 

2.4.2 Objective sleep quality
A PSG system (Natus Medical Inc., San Carlos, Canada) 

recorded sleep using electroencephalogram (EEG) (C4), 
electrooculogram (EOG) (below the left and above the right eye), 
and electromyogram (EMG) (bilateral submental muscles) signals at 
256 Hz. Sleep analysis was performed with RemLogic-E™ software, 
following AASM Version 2.0 criteria (Berry et al., 2012). Data 
were segmented into 30-s epochs, with signals filtered at 0.3–35 Hz 
(EEG), 10–100 Hz (EOG, EMG), and a 50 Hz notch filter applied. 
CI criteria followed ICSD-3 standards (SOL >30 min and/or TA 
>30 min) (Sateia, 2014). Sleep quality measures included: SOL 
(time from “start” to sleep onset), TST (total sleep time, including 
4–6 cycles), LST (time in stages 1 and 2 NREM), DST (time in 
stages 3 and 4 NREM), REM (time in REM), AT (time awake after 
sleep onset), and SE (sleep efficiency, ratio of actual sleep time to 
time in bed) (Berry et al., 2012). 

2.4.3 HRV measurement and analysis
Heart rate variability is commonly used to assess the balance 

between sympathetic and parasympathetic nervous activity (Santos-
De-Araújo et al., 2022). In accordance with established guidelines, 
HRV was measured at the same time of day before sleep for 
a period of 5 min in a quiet room, whilst participants were 
awake, lying supine and breathing spontaneously (Laborde et al., 
2017). R–R intervals (the time between R waves in two QRS 
complexes) were recorded for no less than 10 min using a Polar 
H10 heart rate chest strap (Polar Electro, Finland). The data were 
processed and analyzed using the Kubios HRV-standard software, 
extracting 5-min segments to calculate HRV and assess autonomic 
nervous status. This included measures of Mean R-R (MRR), Root 
Mean Square of Successive RR Interval Differences (RMSSD), 
SDNN (Standard Deviation of NN Intervals), TINN (Triangular 
Interpolation of NN Interval Histogram), PNN50% (Percentage 

of Successive NN Intervals that Differ by More than 50 m), High 
Frequency (HF), Mean Heart Rate (MHR), Stress Index (SI), Low 
Frequency (LF), LF/HF Ratio (Ratio between sympathetic and 
parasympathetic nervous system activity). Approximate Entropy 
(ApEn) and Sample Entropy (SampEn): Non-linear measures that 
evaluate the complexity and irregularity of HRV patterns. 

2.4.4 HAMA and HAMD scales
The HAMA (Thompson, 2015) and the HAMD (Zimmerman

et al., 2013) scales are commonly used clinical instruments for 
assessing levels of anxiety and depression. In this study, these scales 
were used to exclude participants with sleep-related complications 
caused by anxiety or depressive symptoms. The HAMA consists of 
14 items, and the HAMD consists of 17 items. Both scales use a five-
point Likert scoring system (0–4), corresponding to “no symptoms,” 
“mild symptoms,” “moderate symptoms,” “marked symptoms,” and 
“severe symptoms,” respectively. 

2.5 Model development

Binary logistic regression model: CI was initially diagnosed 
based on the ICSD-3 criteria, alongside PSG data. CI status (1 = 
CI present, 0 = no CI) was treated as the dependent variable, and 
pre-sleep HRV variables, including HF, LF, LF/HF Ratio; Time-
domain: MRR, RMSSD, SDNN, TINN, PNN50%, MHR, SI; Non-
linear: ApEn and SampEn were used as independent variables for 
binary logistic regression analysis. Data were randomly divided 
into a training set (80%) and a validation set (20%) to perform a 
train-validation split. The stepwise method is employed for variable 
selection. In the model formula, p represents the probability of CI 
(0/1 = 1), and 1−p represents the probability of no CI (0/1 = 0). 
The Hosmer-Lemeshow (HL) test was used to evaluate the model’s 
goodness-of-fit. R2 values indicate the fit: The goodness-of-fit of the 
binary logistic regression model was assessed through using the R2

value. Potential multicollinearity among the independent variables 
was assessed using variance inflation factors (VIF), and variables 
with VIF values exceeding the threshold of 10 were excluded from 
the analysis to ensure the robustness of the model. To evaluate how 
well independent variables explained the dependent variable, model 
fit was classified using R2 as follows: poor fit (<0.2), low fit (0.2–0.5), 
moderate fit (0.5–0.8) and high level of fit (>0.8).

Multiple linear regression model: Data were first normalized 
(X-Min)/(Max-Min). HRV measures were set as independent 
variables, and measures of sleep quality were treated as dependent 
variables. Data were randomly divided into a training set 
(80%) and a validation set (20%) to perform a train-validation 
split. The R2 value ranges from 0 to 1, with higher values 
indicating better fit. The tolerance of the prediction equation 
must exceed 0.1, and the VIF must be less than 10, indicating no 
multicollinearity. The Durbin-Watson test values ranged from 0 to 
4, demonstrating independence between variables and the absence
of autocorrelation.

Neural network model: The Multi-Layer Perceptron (MLP) 
neural network model was constructed by randomly dividing data 
into a training set (80%) and a validation set (20%) to perform 
a train-validation split. The training data were normalized (X-
Min)/(Max-Min) to ensure uniform data scaling. The activation 
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function was ReLU, and weights were optimized using the Adam 
optimizer with an initial learning rate of 0.001. L2 regularization 
was set at 0.0001, the maximum number of iterations was 200, 
and the optimization tolerance was 0.0001. The current model 
architecture employed a single hidden layer comprising 100 
neurons, which is a similar approach to earlier studies involving 
comparable data structures and sample sizes (Sheela and Deepa, 
2013). To evaluate the robustness of this configuration, we also 
tested alternative architectures with varying numbers of hidden 
neurons (e.g., 50, 150, and 200) as well as models with multiple 
hidden layers. However, these modifications did not further
enhance performance. 

2.5.1 Model construction and validation
A train-validation split of the binary logistic regression, multiple 

linear regression, and neural network models were carried out 
by firstly randomly dividing data into a training set (80%) and 
validation set (20%). The validation methodology for both the MLP 
neural network and multiple linear regression models was executed 
as follows: The training data set was first used to construct the 
models, and the validation data set (HRV) was then incorporated 
into the formula obtained from the training set to generate the 
predicted values. Parameters of sleep quality measured by the PSG 
validation set were tested for consistency by comparing them to 
the sleep parameters predicted by the validation data set. The 
performance of multiple linear regression and MLP neural network 
models was evaluated and compared using the following metrics: 
Mean Absolute Error (MAE), Root Mean Squared Error (RMSE) 
and Mean Absolute Percentage Error (MAPE). Using the reserved 
20% validation subset, the binary logistic regression model (fitted 
on the training set) was validated by applying its coefficients to the 
HRV data to compute event probabilities. These probabilities were 
converted to binary classifications using a decision threshold of 1 
(1 = CI present, 0 = no CI). Model discrimination was assessed 
via the Area Under the Receiver Operating Characteristic Curve 
(AUC-ROC). 

2.6 Statistical analysis

Data normality was first assessed using the Kolmogorov-
Smirnov test. Pearson correlation coefficients were used to evaluate 
the relationship between observed and predicted sleep quality. 
The magnitudes of the correlations were classified as follows: 
trivial (<0.1), small (0.1–0.3), moderate (0.3–0.5), large (0.5–0.7), 
very large (0.7–0.9), and extremely large (>0.9) (Hopkins et al., 
2009). Bland-Altman analyses were used to assess reliability. The 
mean and difference between observed and predicted sleep quality 
values were then calculated to establish the limits of agreement 
(95% distribution range), and 95% limits of agreement (95% 
LoA) were constructed (Giavarina, 2015). Paired t-tests were used 
to compare the adaptation of PSQI, while independent t-tests 
were used to compare the differences in HRV and sleep quality 
(PSG) between groups. Data are reported as mean ± standard 
deviation (M ± SD). The skew distribution is expressed as the 
median (upper quartile to lower quartile). Statistical significance 
was accepted as α < 0.05. All statistical analyses were performed
using SPSS 26.0. 

3 Results

3.1 Sleep and pre-sleep HRV characteristics

The data of 12 participants were excluded due to electrode 
detachment and erroneous PSG data, and nine did not complete the 
experiment. There were no significant differences between CI and 
normal sleep groups in age, height, or weight (P > 0.05). The absence 
of significant differences in PSQI scores between the screening phase 
and the month prior to study participation indicated that there 
were no differences in sleep disturbances and sleep quality prior 
to commencing the study. The PSQI scores of the CI group were 
significantly higher than those of the normal sleep group (CI group: 
10.96 ± 2.13 vs. normal sleep group: 4.04 ± 1.69, P < 0.01), with our 
PSG data indicating that the prevalence of CI among male athletes 
in this study was 56% (95% CI: 49%–64%). When compared to the 
normal sleep group, the CI group showed an increased duration of 
SOL (P < 0.001, mean difference = 11.94 min, d = 0.68), and TA 
(P < 0.001, mean difference = 41.68 min, d = 2.28). In addition, 
there was also a decrease in the duration of TST (P < 0.001, mean 
difference = −42.94 min, d = 0.84), SE (P < 0.001, mean difference = 
−10.4%, d = 2.18), and DST (P < 0.001, mean difference = −3.7%, d
= 1.133). Athletes with CI also exhibited lower values for a range of 
pre-sleep HRV measures when compared to the normal sleep group, 
including MRR (P < 0.001, mean difference = −213.68 m, d = 1.68), 
RMSSD (P < 0.001, mean difference = −49.35 m, d = 2.01), PNN50 
(P < 0.001, mean difference = −41.84%, d = 2.86), ApEn (P < 0.001, 
mean difference = −0.23, d = 1.66), and SampEn (P < 0.001, mean 
difference = −0.35, d = 1.49) (Table 1).

3.2 Binary logistic regression model for the 
prediction of CI

Binary logistic regression analysis was conducted using 
measures of HRV as independent variables and the presence of CI 
(0/1) as the dependent variable (Table 2). The model automatically 
filters out RMSSD, PNN50, MHR, and SampEn, as they are all 
negatively correlated with CI (R2 = 0.902). The HL goodness-of-
fit test indicated a good model fit (P = 1.000 > 0.05). The final 
model equation is as follows: ln (p/1-p) = 28.317–0.073∗RMSSD-
0.222∗PNN50-11.436∗SampEn. The accuracy of using HRV 
measures to predict CI was 96%, respectively (Table 3). Using 
the validation set, the integrated diagnostic model achieved an 
accuracy of 97.14% and an excellent discriminative ability (AUC 
= 0.997). At the optimal threshold (0.493), both sensitivity and 
specificity exceeded 96%, indicating strong clinical applicability. In 
contrast, individual HRV metrics (RMSSD, PNN50, and SampEn) 
performed at chance level, with AUCs ranging from 0.023 to 
0.072, highlighting their limited diagnostic value when used
in isolation.

3.3 Multiple linear regression model for 
predicting sleep quality

A multiple linear regression model was developed using pre-
sleep HRV measures as independent variables and sleep quality as 
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TABLE 1  Sleep, HRV and EEG test results of athletes included in the model (M ± SD).

Variable type Dependent 
variable

Group 
summary

Normal sleep CI P Value Cohen’s d

Sleep quality

TST/min 421.54 ± 55.51 445.72 ± 44.69 402.78 ± 56.02∗∗∗ <0.001 0.835

SOL/min 20.91 ± 18.60 14.19 ± 9.50 26.13 ± 22.01∗∗∗ <0.001 0.675

TA/min 42.67 ± 27.61 19.20 ± 7.04 60.87 ± 23.55∗∗∗ <0.001 2.279

SE/% 89.55 ± 7.04 95.42 ± 1.76 85.00 ± 6.17∗∗∗ <0.001 2.182

LST/% 61.32 ± 6.36 62.75 ± 5.76 60.21 ± 6.61 0.008 0.407

DST/% 22.34 ± 3.71 24.41 ± 3.22 20.74 ± 3.26∗∗∗ <0.001 1.133

REM/% 16.34 ± 3.89 15.67 ± 3.80 16.86 ± 3.90 0.045 0.308

HRV

MRR/ms 901.02 ± 165.42 1,021.37 ± 125.19 807.69 ± 128.60∗∗∗ <0.001 1.681

SDNN/ms 46.14 ± 26.54 43.65 ± 23.36 48.04 ± 28.71 0.282 0.165

RMSSD/ms 52.24 ± 34.69 80.04 ± 30.36 30.68 ± 18.94∗∗∗ <0.001 2.008

PNN50/% 26.36 ± 25.41 49.93 ± 19.19 8.09 ± 9.73∗∗∗ <0.001 2.860

TINN/ms 235.27 ± 136.74 234.22 ± 150.16 236.08 ± 126.13 0.931 0.014

HF/Hz 0.26 ± 0.07 0.26 ± 0.07 0.26 ± 0.06 0.723 0.056

MHR/bpm 68.89 ± 12.67 69.59 ± 13.29 68.35 ± 12.20 0.522 0.098

SI 12.02 ± 7.98 12.61 ± 8.66 11.55 ± 7.42 0.388 0.132

LF/Hz 0.09 ± 0.08 0.09 ± 0.12 0.08 ± 0.02 0.248 0.177

LF/HF 1.96 ± 2.67 2.17 ± 3.27 1.80 ± 2.10 0.371 0.137

ApEn 1.03 ± 0.18 1.16 ± 0.09 0.93 ± 0.17∗∗∗ <0.001 1.663

SampEn 1.70 ± 0.29 1.89 ± 0.17 1.54 ± 0.27∗∗∗ <0.001 1.485

Significant differences between CI, and normal sleep groups are denoted as follows: ∗P < 0.05, ∗∗P < 0.01, ∗∗P < 0.001. Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, 
TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean R-R, MRR; standard deviation of NN, SDNN; root mean square of successive rr interval 
differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; triangular interpolation of nn interval histogram, TINN; high frequency, HF; mean heart rate, 
MHR; stress Index, SI; low frequency, LF; approximate entropy, ApEn; sample entropy, SampEn.

TABLE 2  Binary logistic regression results of HRV before sleep for predicting CI.

Independent 
variable

Regression 
coefficient

Standard 
error

z-value Wald p-value Odds ratio 95% CI for 
OR

VIF Tolerance

RMSSD/ms −0.073 0.028 −2.572 6.615 0.010 0.930 0.880–0.983 1.615 0.619

PNN50/% −0.222 0.084 −2.657 7.057 0.008 0.801 0.680–0.943 1.638 0.610

SampEn −11.436 4.737 −2.414 5.828 0.016 0.000 0.000–0.116 1.459 0.685

McFadden R2 = 0.902. Abbreviations: root mean square of successive rr interval differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; mean heart 
rate, MHR; sample entropy, SampEn.

the dependent variable (Table 4). All model variables satisfied the 
conditions of variable importance in projection (VIP <10), tolerance 
>0.1, and D-W statistics within the range of 0–4, indicating no 
multicollinearity issues. The model demonstrated a moderate fit for 
predicting TA (R2 = 0.526, P < 0.001) and SE (R2 = 0.481, P < 0.001). 

The remaining measures of TST, SOL, LST, DST and REM exhibited 
poor predictive values, with R2 values below 0.2.

The predictive equation was validated by applying HRV data 
from a validation set of 35 cases (20%) (Table 5). The actual 
and predicted values of SOL demonstrated a moderate positive 
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TABLE 3  Accuracy of the binary logistic regression model for predicting insomnia based on pre-sleep HRV.

Numeric type Predicted 
value

Prediction accuracy Prediction error rate

0 1

Actual Value
0 56 3 94.91% 5.09%

1 3 77 96.25% 3.75%

Summary 95.58% 4.42%

TABLE 4  Multiple linear Regression Model of Pre-sleep HRV for Predicting Sleep Quality.

Dependent 
variable

Regression 
equation

Adjusted
R2

F p-value VIF Tolerance D-W Standardized 
β

95% CI

TST = 0.422 + 0.390∗

RMSSD
0.109 16.768 <0.001 1 1 1.772 0.330 0.203–0.576

SOL = 0.243–0.270∗

RMSSD
0.093 14.034 <0.001 1 1 1.199 −0.305 −0.412 ∼ −0.129

TA = 0.892–0.588∗

PNN50-0.300∗

MHR-
0.267∗ApEn

0.526 49.849 <0.001 1.006–1.453 0.688–0.995 1.794 PNN50: 0.577
MHR: 0.193
ApEn: 0.201

−0.730 ∼ −0.446
−0.482 ∼ −0.119
−0.453 ∼ −0.081

SE = 0.502 + 0.235∗

RMSSD+0.332∗

PNN50+0.201∗

MHR

0.481 41.678 <0.001 1.010–1.498 0.668–0.990 1.616 RMSSD:0.204
PNN50: 0.515
MHR: 0.204

0.085–0.385
0.237–0.428
0.080–0.322

LST = 0.205 + 0.340∗

SampEn
0.074 10.992 0.001 1 1 1.661 0.273 0.139–0.542

DST = 0.374 + 0.201∗

MRR+0.194∗ApEn
0.16 12.912 <0.001 1.347 0.742 1.593 MRR: 0.215

ApEn: 0.245
0.034–0.369
0.052–0.336

REM = 0.708–0.384∗

SampEn
0.069 10.185 0.002 1 1 1.567 −0.263 −0.621 ∼ −0.148

Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean R-R, MRR; root 
mean square of successive rr interval differences, RMSSD; percentage of successive nn intervals that differ by more than 50 m, PNN50; high frequency, HF; mean heart rate, MHR; approximate 
entropy, ApEn; sample entropy, SampEn.

correlation (P < 0.01), while the actual and predicted values 
of TA, SE, and DST showed a strong positive correlation (P < 
0.01). No correlations were observed between the predicted and 
actual values for LST and REM (P > 0.05). The Bland-Altman 
scatterplot (Figure 1) revealed that the probability of agreement 
within the limits of consistency for all predicted values ranged from 
91%–97%.

3.4 Multiple linear regression model for 
predicting sleep quality

The pre-sleep TA prediction values had a strong positive 
correlation with the measured values (P < 0.01), while the prediction 
values for other sleep parameters showed no significant correlation 
with their measured values (P > 0.05) (Table 6). The mean absolute 
error range between the measured and predicted values was 
0.120–0.269, the root mean square error range was 0.157–0.299, 

the mean absolute percentage error range was 0–1.059, and the 
bias range was −0.174 to 0.028. The results of the consistency 
test indicated that the boundary probability ranges were between 
94% and 97% (Figure 2).

4 Discussion

This study aimed to investigate whether pre-sleep HRV could 
predict CI and a range of sleep quality indicators in male 
national level team-sport athletes. We hypothesized that pre-sleep 
HRV would reliably predict both CI and sleep quality outcomes. 
Consistent with our hypothesis, the analysis using pre-sleep HRV 
measures within a binary logistic regression model demonstrated 
an accurate prediction of CI. Furthermore, stepwise multiple linear 
regression moderately predicted sleep continuity measures of time 
awake and SE, but was poor at predicting sleep stages, such as LST, 
DST and REM. In general, the stepwise multiple linear regression 
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TABLE 5  Multiple linear Regression Results of Pre-sleep HRV for Predicting Sleep Quality.

Dependent 
variable 

The boundary probability for consistency

Actual 
value

Predicted 
value

MAE RMSE MAPE r Lower 
limit

Upper 
limit

Probability 
within 

consistency 
limits

bias

TST 0.52 ± 0.21 0.52 ± 0.07 0.101 0.120 0.155 0.248 −0.398 0.390 94.29% −0.004

SOL 0.20 ± 0.19 0.18 ± 0.05 0.127 0.153 0.287 0.459∗∗ −0.306 0.361 94.29% 0.028

TA 0.34 ± 0.26 0.39 ± 0.22 0.207 0.254 0.516 0.554∗∗∗ −0.486 0.372 91.43% −0.057

SE 0.80 ± 0.16 0.76 ± 0.14 0.083 0.104 0.109 0.536∗∗∗ −0.248 0.322 94.29% 0.037

LST 0.41 ± 0.17 0.43 ± 0.05 0.142 0.174 0.337 −0.101 −0.388 0.338 97.14% −0.025

DST 0.57 ± 0.17 0.58 ± 0.07 0.136 0.163 0.284 0.602∗∗∗ −0.288 0.276 94.29% −0.006

REM 0.46 ± 0.20 0.45 ± 0.06 0.13 0.159 0.313 0.080 −0.392 0.412 97.14% 0.010

Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM; mean absolute error, 
MAE; root mean squared error, RMSE; mean absolute percentage error, MAPE.

FIGURE 1
Bland-Altman Scatter Plot for Predicting Sleep Structure Using Multiple Linear Regression Models of Pre-sleep HRV. Abbreviations: (A) total sleep time, 
TST; (B) sleep onset latency, SOL; (C) time awake, TA; (D) sleep efficiency, SE; (E) light sleep time, LST; (F) deep sleep time, DST; (G) rapid eye movement, 
REM. The red line represents the upper limit of the 95% LoA (1.96 SD), while the blue line represents the lower limit of the 95% LoA (1.96 SD).
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TABLE 6  Neural network model of pre-sleep HRV for predicting sleep quality.

Dependent 
variable

The boundary probability for consistency

Actual 
value

Predicted 
value

r MAE RMSE MAPE Lower 
Limit

Upper 
Limit

Probability 
within 
consistency 
limits 

bias

TST 0.52 ± 0.21 0.63 ± 0.08 −0.03 0.188 0.255 0.136 −0.571 0.343 94.29% −0.114

SOL 0.20 ± 0.19 0.17 ± 0.07 0.19 0.142 0.176 0.152 −0.333 0.390 94.29% 0.028

TA 0.34 ± 0.26 0.42 ± 0.20 0.555∗∗∗ 0.170 0.220 0.182 −0.502 0.341 94.29% −0.080

SE 0.80 ± 0.16 0.88 ± 0.12 0.319 0.142 0.184 0.077 −0.415 0.253 94.29% −0.081

LST 0.41 ± 0.17 0.52 ± 0.07 0.315 0.161 0.189 0.221 −0.436 0.202 97.14% −0.117

DST 0.57 ± 0.17 0.70 ± 0.09 0.311 0.186 0.219 0.145 −0.460 0.200 97.14% −0.130

REM 0.46 ± 0.20 0.56 ± 0.07 −0.16 0.188 0.235 0.201 −0.540 0.347 97.14% −0.097

Caption -Abbreviations: total sleep time, TST; sleep onset latency, SOL; time awake, TA; sleep efficiency, SE; light sleep time, LST; deep sleep time, DST; rapid eye movement, REM., mean 
absolute error, MAE; root mean squared error, RMSE; mean absolute percentage error, MAPE.

FIGURE 2
Bland-Altman Scatter Plot for Predicting Sleep Quality Using Neural Network Model of Pre-sleep HRV Abbreviations: (A) total sleep time, TST; (B) sleep 
onset latency, SOL; (C) time awake, TA; (D) sleep efficiency, SE; (E) light sleep time, LST; (F) deep sleep time, DST; (G) rapid eye movement, REM. The 
red line represents the upper limit of the 95% LoA (1.96 SD), while the blue line represents the lower limit of the 95% LoA (1.96 SD).
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outperformed the current neural network model at predicting 
measures of sleep quality, but the neural network model was superior 
at predicting TA. Taken together, these findings demonstrate that 
pre-sleep HRV accurately predicts CI and sleep continuity in male 
national level athletes.

The present study suggests that the prevalence of CI among 
Chinese national level athletes is between 49% and 64%, which 
is substantially higher than the rates reported in previous studies 
using elite athletes (5%–33%) (Gerber et al., 2022; Gupta et al., 
2017). Such large discrepancies are likely due to PSG being more 
accurate than subjective measures for detecting CI (Sateia, 2014). 
For example, our earlier research, which utilized sleep-monitoring 
mattresses, revealed that the incidence of sleep disorders among 
Chinese elite bobsleigh athletes was ∼63% (Li et al., 2022). As 
expected, CI was accompanied by poor sleep quality in the form 
of reductions in TST, SE, and DST and increases in SOL and TA 
(Table 1). These observations are particularly important considering 
that CI is prevalent among athletes and has been linked with 
impairments in physical performance, attention, concentration and 
memory (Leger et al., 2005). The present study also observed that 
pre-sleep HRV parameters, RMSSD, PNN50, ApEn, and SampEn 
were reduced in athletes suffering from CI (Table 1). This suggests 
an imbalance in autonomic nervous system regulation, specifically 
a downregulation of parasympathetic and an upregulation of 
sympathetic activity. Since autonomic dysfunction is known to 
contribute to overreaching (Achten and Jeukendrup, 2003), these 
findings imply that CI may increase an athlete’s vulnerability to 
overtraining which can impair athletic performance and increase the 
risk of injury and illness (Soligard et al., 2016).

To our knowledge, this is the first study to demonstrate that pre-
sleep HRV can predict CI in national level athletes using a binary 
logistic regression model. This is of importance as predicting CI 
across a range of different team-sports is challenging due to the 
complex interplay of individual-level factors, including sport type, 
performance level, training workload, sleep habits and personal 
beliefs (Walsh et al., 2021). Binary logistic regression models have 
been shown to predict CI in response to cognitive behavioral 
therapy with accuracies ranging from 60%–71% when used with 
the general public (Holler et al., 2024). In contrast, we showed 
a considerably higher accuracy of 96% through using pre-sleep 
HRV. However, caution is advised when interpreting these findings 
given the high predictive performance for CI as it may partly 
reflect hidden overlap between the training and validation datasets. 
Although we used separate data sets, these data were drawn from 
similar athlete populations (e.g., age, sex, team-based sports and 
national level) under similar measurement conditions, therefore 
the accuracy of our model could have been inflated. This being 
said, the higher predictive accuracy of pre-sleep HRV may also 
reflect that parasympathetic and sympathetic systems responding 
more clearly to stress, fatigue, or psychological strain in national-
level athletes, making HRV a more sensitive marker of CI in 
this population. In this regard, our previous research showed that 
national level athletes frequently exhibit negative emotional states 
(Li et al., 2022), and there is well-established link between negative 
emotions and HRV (Di Simplicio et al., 2012).

The current study also demonstrated that multiple linear 
regression could predict parameters of TA and SE, which are key 
indicators of sleep continuity. These results align to the small 

body of research that has investigated whether pre-sleep HRV 
is related to sleep quality in healthy young and middle-aged 
adults (Jung et al., 2017; Fantozzi et al., 2019; Werner et al., 
2015). For instance, Fantozzi et al. (2019) found that measures of 
parasympathetic activity, such as RMSSD and PNN50 predicted 
a shorter wake after sleep onset time. Similarly, in the present 
study, PNN50 was an integral component of the multiple linear 
regression model to predict both TA and SE, in addition to RMSSD 
for the prediction of SE. We expanded on previous work by 
identifying additional pre-sleep HRV predictors for sleep continuity 
(TA: PNN50, MHR, ApEn; SE: PNN50, MHR, RMSSD). However, 
pre-sleep HRV was less effective in predicting sleep phases (TST, 
LST, and REM). Nevertheless, the multiple linear regression model 
outperformed our MLP neural network model for predicting SOL, 
SE, and DST. This suggests that a linear relationship exists between 
pre-sleep HRV and some sleep related outcomes. Although the MLP 
neural network model was superior at predicting TA, which could 
also indicate that this type of model is better at solving more complex 
nonlinear problems. Whilst these results are promising, collectively 
they indicate that a single physiological signal, such as HRV, may 
restrict the predictive potential of a model when assessing measures 
of sleep quality which are multidimensional and complex in nature. 

5 Limitations and future directions

While this study offers important insights into sleep prediction 
among athletes, several limitations should be considered. All 
regression models are inherently susceptible to overfitting, in which 
the model captures spurious patterns in the training data, thereby 
reducing its generalizability to independent datasets. As our work 
was considered exploratory, we performed a train-validation split 
to efficiently provide an estimate of model performance on unseen 
data, helping to detect overfitting. However, future work should 
use cross-validation to evaluate the models across multiple splits, 
providing a more stable and accurate estimate of their performance. 
The sample of participants in the current study was limited to 
male Chinese athletes involved in team sports, which may influence 
the broader applicability of our findings to other athletic or non-
athletic populations, including female athletes or those in individual 
sports. Additionally, the study utilized HRV as the sole physiological 
indicator, without accounting for other psychophysiological (e.g., 
circadian rhythm, blood pressure, stress and anxiety), which could 
play a key role in sleep regulation. To strengthen the validity 
and generalizability of future models, research should include 
more diverse cohorts and a wider range of physiological and 
psychological variables. Incorporating alternative sleep assessment 
tools, such as actigraphy and subjective measures like sleep diaries, 
may also enhance ecological validity and provide a more holistic 
understanding of sleep in athletic populations. 

6 Conclusion

The current binary logistic regression model accurately 
predicted CI in male national level athletes. In addition, our multiple 
linear regression model was effective at predicting sleep continuity 
measures (TA and SE), but was poor at predicting sleep phases (TST,
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LST, DST and REM). Based on these findings, pre-sleep HRV could 
be a potential approach for practitioners and coaches to accurately 
predict CI, enabling the timely implementation of strategies to 
enhance sleep quality and, consequently, maintain optimal athletic 
performance.
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